
1

Memphis Manycore
Apresentação Angelo Elias Dalzotto

Coordenador: Prof. Dr. Fernando G. Moraes
Adaptado da apresentação de Dr. Marcelo Ruaro

GAPH-PUCRS

Overview

2

Memphis
Many-core Modeling Platform for Heterogeneous SoCs

GPPC – Homogeneous region
General Purpose Processing Core

3

Peripherals – Heterogeneous region

● Connected to PE borders
● Provides:

○ I/O Interface
■ Default: Application Injector
■ Default: MA Injector

○ Hardware acceleration

4

Memphis
Many-core Modeling Platform for Heterogeneous SoCs

Hardware

5

PE – Homogeneous region
Processing Element

● RISC-V CPU
● DMNI (DMA + NI)
● Scratchpad memory
● Hermes router
● BrNoC router

6

Memphis1

Many-core Modeling Platform for Heterogeneous SoCs

1. Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2019). Memphis: a framework for heterogeneous many-core SoCs generation and validation. Design Automation for
Embedded Systems, 23(3-4):103-122.

Processor
7

RISC-V CPU
● RV32IM Instruction Set Architecture

○ 32-bit

○ 32 registers

○ No floating-point

● Currently ISS-only

● Simple paging support

Local Memory
8

Scratchpad memory
● Dual-port

○ CPU access

○ DMNI access

Local Memory
9

Scratchpad memory
● Dual-port

○ CPU access

○ DMNI access

● Parameterizable pages

○ Equal sizes

○ Currently no dynamic

memory

no heap

kernel

page 1

page n

...

stack

text

data

bss

DMNI
10

Direct Memory
Network Interface2

● Interface between local memory and NoC

● Specialized for NoC-based manycores

2. Ruaro, M., Lazzarotto, F. B., Marcon, C. A., and Moraes, F. G. (2016). DMNI: A specialized network interface for NoC-based MPSoCs. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pages 1202-1205.

Packet-Switching Router
11

3. Moraes, F., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004). HERMES: an infrastructure for low area overhead packet-switching networks on chip. Integration, 38(1):69-93.

Hermes Router3

● XY addressing and routing

● Packet switching

● Wormhole credit-based control flow

Hermes has other derivations:

● Asynchronous

● Virtual-channel

● Circuit-switching

● ...

Broadcast Router
12

4. Wachter, E., Caimi, L., Fochi, V., Munhoz, D., Moraes, F. (2017). BrNoC: A broadcast NoC for control messages in many-core systems. Microelectronics Journal, 68:69-77.

BrNoC Router4

● Broadcast transmission only

○ Interrupts ALL or a TARGET PE

● Single-flit messages

Broadcast Router
13

4. Wachter, E., Caimi, L., Fochi, V., Munhoz, D., Moraes, F. (2017). BrNoC: A broadcast NoC for control messages in many-core systems. Microelectronics Journal, 68:69-77.

BrNoC Router4

● Broadcast transmission only

○ Interrupts ALL or a TARGET PE

● Single-flit messages

● Buffered output

○ Transmission is faster than

processing

● Monitoring messages through DMNI

Application Injector
14

Injectors
● Interacts with external off-chip memory

● Loads applications into the manycore

● Separated injection for secure content (MA

Inj.)

Software

15

Management Application5

16

● Division of management tasks
● Observer tasks
● Decider tasks
● Actuator tasks

● Mapper task6

6. Dalzotto, A. E., Ruaro, M., Erthal, L. V., and Moraes, F. G. (2021). Dynamic Mapping for Many-cores
using Management Application Organization. In Proceedings of the International Conference on
Electronics, Circuits, and Systems (ICECS), pages 1-6.

5. Ruaro, M., Santana, A., Jantsch, A., and Moraes, F. G. (2021). Modular and Distributed
Management of Manycore SoCs. ACM Transactions on Computer Systems (TOCS), 38(1-2):1-16.

Operating System
17

Kernel
● User tasks

○ Virtual Memory
○ Scheduler

● System Calls
● Message Passing Interface
● Actuation Mechanisms

○ Task migration support

Scheduler
18

Best effort
● Round-robin

Real-time7

● LST
Least Slack Time

7. Ruaro, M., and Moraes, F. G. (2016). Dynamic real-time scheduler for large-scale MPSoCs. In Proceedings of the Great Lakes Symposium on VLSI, pages 341-346.

NoC packet and message structure
19

Packet Header - seen by NoC:
● Target PE
● Payload Size

Packet Payload - seen by kernel:
● Service
● 10 configurable flits
● Optional payload with variable

size

BrNoC message structure
20

Header - NoC view only:
● ID - retransmission control
● SVC - ALL/TARGET/CLEAR
● SRC and TGT
● PROD - producer task ID

Payload - seen by kernel:
● Additional 40-bit payload

○ 8-bit system service
○ 32-bit actual payload

Inter-task Communication
21

Tasks communicate using Send and Receive primitives

Communication Layers
22

Application
● Sends the message by calling the Send API primitive

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
23

Kernel
● Stores the message in the pipe and creates a packet
● Configures the DMNI to send the message

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
24

DMNI
● Copies packet and pipe to NoC
● Serialization and flow control

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
25

NoC
● Sends the message to the target PE
● Divided in 32-bit flits

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
26

DMNI
● Receives packet containing MESSAGE_DELIVERY
● Deserialization and flow control

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
27

Kernel
● Handles the packet
● Programs the DMNI to receive the message

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

Communication Layers
28

Application
● The execution is returned to the application
● Message is stored in the pointer set by the Receive syscall

Application

Interconnection - NoC

Application

Processor ↔ DMNI

Kernel

Processor ↔ DMNI

Kernel

BrNoC Services

Hermes Services

DATA_AV (to/from periph.)
Avoid broadcast DoS

MESSAGE_REQUEST (to/from periph.)

MESSAGE_DELIVERY
Deliver message with variable-size payload

MIGRATION_*

Applications

31

Application
32

Application
● Set of tasks
● Modeled as a CTG

(Communicating Task Graph)

Task
33

Task
● Performs computation and communication

● Each .c file is a task

#include <memphis.h>
34

typedef struct {
int length;
int msg[MSG_SIZE];

} message_t;
void memphis_send(message_t *msg, unsigned cons_id);
void memphis_receive(message_t *msg, unsigned prod_id);
void memphis_send_any(message_t *msg, unsigned cons_id);
void memphis_receive_any(message_t *msg);
void memphis_br_send_all(unsigned payload, char service);
void memphis_br_send_tgt(unsigned payload, unsigned cons_id, char service);
unsigned memphis_get_tick();
unsigned memphis_get_id();
unsigned memphis_get_addr();
void memphis_real_time(unsigned period, unsigned deadline, unsigned exec_time);

Generation8

35

8. Castilhos, G., Wachter, E., Madalozzo, G., Erichsen, A., Monteiro, T., and Moraes, F. (2014). A framework for mpsoc generation and distributed applications evaluation. In
Proceedings of the International Symposium on Quality Electronic Design (ISQED), pages 408-411.

Testcase
36

Features of the platform
File: example_testcase.yaml

sw:
 max_tasks_app: 10
hw:
 page_size_KB: 32
 stack_size: 1024
 tasks_per_PE: 4
 mpsoc_dimension: [3,3]
 Peripherals:
 - name: APP_INJECTOR
 pe: 2,2
 port: N
 - name: MAINJECTOR
 pe: 0,0
 port: S

$ memphis testcase example_testcase.yaml
● Creates folders and copies files
● Builds hardware and kernel

Scenario
37

Applications to evaluate
File: example_scenario.yaml

management:
 - task: mapper_task
 static_mapping: [0,0]
 - task: migration_task
 static_mapping: [0,1]
 - task: rt_monitor
 static_mapping: [0,2]
apps:
 - name: synthetic
 - name: prod_cons
 start_time_ms: 5
 static_mapping:
 prod: [1,1]

$ memphis scenario example_testcase/ example_scenario.yaml
● Copies applications
● Builds applications
● Generates repository (MA/Application Injector memory)

Debugging

38

Debugging Framework9

39

Data Extraction (back-end)
● Extracts simulated data from platform
● Inserts into logs

Graphical Debugging (front-end)
● Read extracted data from logs
● Enable easy debuggability by the graphical features

9. Ruaro, M., Carara, E. A., and Moraes, F. G. (2014). Tool-set for NoC-based MPSoC debugging—A protocol view perspective. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pages 2531-2534.

Main View
40

Debug possibilities:
● Communication flows
● Routing
● Link utilization
● Management Protocols
● Parallel communications

Mapping View
41

Debug possibilities:
● Task mapping algorithm
● PEs occupation
● Task execution status

CPU Utilization View
42

Debug possibilities:
● Scheduling algorithms
● OS and task bugs
● Other software malfunctions

Resources

43

Resources
44

Code, installation and usage instructions:
https://github.com/gaph-pucrs/MA-Memphis

Debugger tutorial (pt):
https://youtu.be/nvgtvFcCc60

https://github.com/gaph-pucrs/MA-Memphis
https://youtu.be/nvgtvFcCc60

