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AbstractÐThis paper presents a model for designing adaptive wormhole routing algorithms for meshes without virtual channels. The

model restricts the locations where some turns can be taken so that deadlock is avoided. In comparison with previous methods, the

degree of routing adaptiveness provided by the model is more even for different source-destination pairs. The mesh network may

benefit from this feature in terms of communication efficiency. Simulation results show that the even adaptiveness provided by the odd-

even turn model makes message routing less vulnerable to nonuniform factors such as hot spot traffic. In addition, this property results

in a smaller fluctuation of the network performance with respect to different traffic patterns.

Index TermsÐAdaptive routing, deadlock, mesh, turn model, wormhole routing.
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1 INTRODUCTION

THE mesh topology has become a popular interconnection
architecture for constructing massively parallel multi-

processors. In particular, low-dimensional meshes have
been used in several academic and commercial machines,
such as the DASH multiprocessor [17], Intel TFLOPS
supercomputer [19], and Intel Paragon [6].

Processors (or nodes) of a mesh communicate with each
other by sending messages through the underlying net-
work. Hence, efficient communication is critical to the
performance of a mesh. Recently, the most popular
technique for switching packets is wormhole routing [20].
With wormhole routing, a packet is divided into flow control
digits (or flits). The flits are routed through the network one
after another in a pipeline fashion. The first flit of a packet is
designated as the header flit, which contains routing
information and leads the packet through the network.
When the header flit is blocked from advancing due to lack
of output channels, all of the flits wait at their current nodes
for available channels. Each router only requires small
buffer space to store the flits and communication latencies
are low with wormhole routing.

Routing algorithms are used to determine the sequence
of channels a message packet traverses from the source to
the destination. A desirable property of a routing algorithm
is freedom from deadlock and livelock. Livelock occurs
when a message proceeds through the network indefinitely,
never arriving at its destination. Livelock is possible only if
message routing is adaptive and is nonminimal. Deadlock is
caused by packets waiting for each other in a cycle. In
wormhole routing, the order in which channels are used for
a packet must meet certain criteria so that deadlock is
prevented. Adaptiveness is also an important factor for
message routing [16]. Adaptiveness increases the chances
that packets may avoid hot spots or faulty components and
reduces the chances that packets are continuously blocked.

There have been many routing algorithms proposed for
meshes that are based on wormhole routing in the literature
[2], [3], [5], [13], [15], [18], [22], [23]. Routing algorithms can
be generally classified into three categories, depending on
the degree of adaptiveness provided by the algorithms. A
nonadaptive routing algorithm is deterministic and routes a
packet from the source to the destination along a unique,
predetermined path. A minimal fully adaptive routing algo±
rithm routes all packets through any shortest paths to the
destinations. A partially adaptive routing algorithm allows
multiple choices for routing packets via shortest paths, but
it does not allow all packets to use any shortest paths. In
[8], [9], virtual channels were introduced to assist the design
of nonadaptive routing algorithms so that deadlock is
avoided. Virtual channels are abstractions that share the
same physical channel. Later, several researchers [3], [5],
[10], [14], [18], [21], [22], [23] used virtual channels to design
partially adaptive and fully adaptive routing algorithms for
a variety of network architectures, including meshes.
Adding virtual channels allows the design of highly
adaptive routing algorithms. In fact, it is impossible to
produce a deadlock-free fully adaptive routing algorithm
for a mesh without addition of virtual channels [20].

However, adding virtual channels to meshes is not free.
It involves adding buffer space and complex control logic to
routers, thus communication performance of the network
and reliability of the routers may be affected [4], [16].
Furthermore, deadlock-free routing schemes that are not
based on adding virtual channels may be used as the basic
mechanisms for implementing adaptive routing algorithms
that use virtual channels [10]. Hence, the development of
deadlock-free routing algorithms that do not use virtual
channels is important.

Several routing algorithms that require no virtual
channels have been proposed for mesh networks. The xy
routing algorithm [7] for two-dimensional meshes routes a
packet first along x dimension (dimension 0) and then along
y dimension (dimension 1). The xy algorithm ensures
deadlock freedom, but it provides no adaptiveness. Glass
and Ni [15], [16] presented an elegant technique, called turn
model, for designing partially adaptive wormhole routing
algorithms that require no virtual channels. The basic idea
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of the model is to prohibit the minimum number of turns
that break all of the cycles so that deadlock can be avoided.
Based on the turn model, three partially adaptive routing
algorithms, namely west-first, north-last, and negative-first,
were presented for two-dimensional meshes. Unfortu-
nately, the degree of adaptiveness provided by the turn
model is highly uneven. Using any of the above-mentioned
routing algorithms, at least half of the source-destination
pairs are restricted to having only one minimal path, while
full adaptiveness is provided for the rest of the pairs. Such
uneven adaptiveness not only causes unfairness but also
curtails the ability of the model in alleviating traffic
congestion problem. Performance of the network commu-
nication may be affected as a result. The xy algorithm can
also be considered as achieving deadlock freedom by
prohibiting certain turns. In [2], a model called direction
restriction model was proposed to facilitate the design of
partially adaptive routing algorithms. This model is based
on dividing a system into two unidirectional networks.
Message routing is done in two phases. In the first phase, a
packet is routed adaptively to an intermediate node using
one unidirectional network. It is then routed adaptively to
the destination using the other network in the second phase.
The degree of adaptiveness provided by the model is also
highly uneven.

In this paper, we propose a novel model for designing
partially adaptive, deadlock-free routing algorithms for
meshes. The model is not based on adding virtual channels
to network topologies. Unlike the previous methods, which
rely on prohibiting certain turns in order to achieve
deadlock freedom, our model restricts the locations where
some types of turns can be taken. The degree of routing
adaptiveness provided by the proposed model is more even
for different source-destination pairs. The mesh network
may benefit from this feature in terms of communication
efficiency. Extensive simulations have been conducted to
evaluate the performance of the model. The simulation
results show that the even adaptiveness provided by our
odd-even turn model is important under nonuniform
traffic. It makes message routing less vulnerable to nonuni-
form factors, such as hot spot traffic. Furthermore, this
property allows the performance of the network to have
smaller fluctuation with respect to different types of traffic.

In the next section, the odd-even turn model for two-
dimensional meshes is presented. Simulation results for
two-dimensional meshes are shown in Section 3. Section 4
addresses an extension of the model to higher-dimensional
meshes. Section 5 draws the conclusions.

2 ROUTING IN TWO-DIMENSIONAL (2D) MESHES

In this section, we present a model, called the odd-even turn
model, to facilitate deadlock-free routing in two-dimen-
sional (2D) meshes with no virtual channels. In a K0 �K1

2D mesh, a node X is identified by a two-element vector
(x0; x1), 0 � x0 � K0 ÿ 1 and 0 � x1 � K1 ÿ 1, where x0 and
x1 are called the coordinates of dimension 0 and
dimension 1 of X, respectively. To facilitate the presenta-
tion, we label the four sides of a 2D mesh as East, West,
South, and North. All of the nodes that have the same
coordinates of dimension 0 constitute a column, and all of

the nodes that have the same coordinates of dimension 1
constitute a row. Row channels refer to channels along
dimension 0; that is, a row channel connects two neighbor-
ing nodes on the same row. Similarly, column channels refer
to channels along dimension 1. Further, a column channel is
called an SN (respectively, NS) channel if its direction is
from South to North (respectively, North to South). Suppose
that a channel links node A to node B. Nodes A and B are
called the tail node and the head node of the channel,
respectively.

Definition 1. A turn consists of a row channel and a column
channel such that the tail node of one of the channels is the
head node of the other; the common node of the two channels is
called the turning node of the turn.

Essentially, a turn involves a 90-degree change of
traveling direction. Unless otherwise specified, a turn is a
90-degree turn in the following description. There are eight
types of turns, according to the traveling directions of the
associated channels. A turn is called an ES turn if it involves
a change of direction from East to South. Similarly, we can
define the other seven types of turns, namely EN, WS, WN,
SE, SW, NE, and NW turns, where E, W, S, and N indicate
East, West, South, and North, respectively. A packet is said
to take a turn at node X if it traverses the turn and the
turning node of the turn is X.

2.1 The Odd-Even Turn Model

Deadlock in wormhole routing is caused by packets waiting
on each other in a cycle. Previous methods, such as the turn
model [15] and the xy algorithm, avoid deadlock by
prohibiting certain turns. Instead, the odd-even turn model
is based on restricting the locations at which certain turns
can be taken so that a circular wait can never occur. The
proposed model does not eliminate any types of turns for
message routing.

Definition 2. In a 2D mesh, a column is called an even
(respectively, odd) column if the dimension-0 coordinate of the
column is an even (respectively, odd) number.

For example, in a K0 �K1 mesh, the column which
consists of all the nodes with addresses (2, j), for
0 � j � K1 ÿ 1, is an even column.

The basic idea of the odd-even turn model is to restrict
the locations where some of the turns can occur so that an
EN turn and an NW turn are not taken at nodes in the same
column, and neither are an ES turn and an SW turn. As
shown later, this may avoid deadlock. More precisely, the
odd-even turn model is governed by the following two
rules:

Rule 1. Any packet is not allowed to take an EN turn at any
nodes located in an even column, and it is not allowed to
take an NW turn at any nodes located in an odd column.

Rule 2. Any packet is not allowed to take an ES turn at any
nodes located in an even column, and it is not allowed to
take an SW turn at any nodes located in an odd column.

No other restrictions need to be applied. Note that the even
and odd columns in either of the above rules may be
interchanged. According to Rule 1, the column channel of
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an EN turn cannot be located in the same column as that of
an NW turn. Similarly, according to Rule 2, the column
channel of an ES turn cannot be located in the same column
as that of an SW turn.

In the following, we show that any routing algorithm,
whether minimal or nonminimal, that is based on the odd-
even turn model is deadlock free as long as 180-degree
turns are prohibited. A routing algorithm is minimal if it
routes a packet via a shortest path between the source and
the destination. The key to deadlock freedom is that the
rightmost column segment of a circular waiting path, which
is essential for a deadlock state, can never be formed.
Consider a set of packets p1; p2; . . . ; pl where pi waits for pi�1

for all 1 � i � lÿ 1. The sequence of channels which include
the channels traversed by p1, followed by the channels
traversed by p2 from the node at which p1 is blocked, then
followed by those traversed by p3 from the node at which p2

is blocked, and so on until the current node of pl, is called
the waiting path of the set of packets. Deadlock is formed if
pl waits for p1, as a circular wait is generated by the packets.
The associated waiting path for this deadlocked situation is
a circular path; here the waiting path includes the channels
that are traversed by p1 from the node at which pl is
blocked, rather than from the source of p1.

Theorem 1. Any routing algorithms that follow the rules of the
odd-even turn model are deadlock free as long as 180-degree
turns are prohibited.

Proof. We prove the theorem by contradiction. Assume that
there exists a set of packets p1; p2; . . . ; pl; that are
deadlocked. Thus, the associated waiting path is a
circular path. Since 180-degree turns are prohibited, the
waiting path must include both row and column
channels. Consider any column line segment, CSr, on
the waiting path that is located in the rightmost column,
i.e., no other column channels on the waiting path are
more eastward than CSr. Here a column line segment
consists of a sequence of column channels of the same
direction in the same column. Let nodes A and B denote
the beginning and the end nodes of CSr, respectively.
Suppose that the channels of CSr are SN channels as
illustrated in Fig. 1a. In this case, there must be some pi,
1 � i � l, that either has already taken or would take an
EN turn at node A. There must also be some pj, 1 � j � l,
that either has already taken or would take an NW turn
at node B. Moreover, both turns are on the waiting path.
This can be easily argued by using the fact that CSr is a
rightmost column line segment on the waiting path and
180-degree turns are prohibited. However, according to
Rule 1 of the odd-even turn model, an EN turn and an
NW turn cannot possibly be taken at nodes in the same

column, column of CSr in this case, and thus contra-

diction arises. By the same token, we can show that,

according to Rule 2 of the odd-even turn model, similar

contradiction exists for the case in which the channels of

CSrare NS channels, as illustrated in Fig. 1b. Hence, we

prove the theorem. tu
2.2 Implementation of Routing Algorithms

Based on the odd-even turn model, we can design various

partially adaptive routing algorithms that are free from

deadlocks. In this section, we mainly address the issues

involved in the implementation of minimal routing algo-

rithms. Basically, at any intermediate node an odd-even-

turn-based routing algorithm must first determine the set of

directions toward which a packet may be forwarded for the

next hop. Appropriate turn criteria specified by either Rule 1

or Rule 2 must be applied. Consider the case where the

destination of a packet is to the west of its source. The

packet is prohibited from moving north or south at an

intermediate node that resides in an odd column, unless the

destination is located in the same column. This is because

the packet must otherwise take an NW (respectively, SW)

turn at some node in the same column later in order to

reach the destination, which is an action prohibited by

Rule 1 (respectively, Rule 2). Now, consider the case where

the destination of a packet is to the east of its source. Care

must be taken when the destination node is located in an

even column. The packet must finish routing in dimension 1

before it reaches the column in which the destination is

located. This is because an EN or ES turn is not allowed in

an even column, according to Rule 1 and Rule 2. Therefore,

when the current node is located one column to the west of

the destination column, the packet cannot move east, unless

it is now in the same row as the destination. The packet can

always move north or south, if needed, as long as the

current node is in an odd column, as the rules cannot be

violated. In addition, if the source node of the packet is in

an even column, it is allowed to continuously move north or

south, if needed, in the column where the source resides.

We show a minimal routing algorithm ROUTE in Fig. 2. In

the algorithm, the set Avail Dimension Set contains dimen-

sions that are available for forwarding the packet.
Minimal routing can always be achieved by algorithm

ROUTE for any source-destination pair. In Fig. 3, we show

some possible routing paths for four packets in a 9� 9

mesh. Si and Di represent the source and the destination

nodes of packet pi, 1 � i � 4. Packets p1, p2, and p3 use the

minimal routing algorithm ROUTE. At node �2; 3�, p1 can

only move east as an EN turn is not allowed at the column.

Consider p2, which is a westbound packet. It cannot turn

north at node �7; 1� or node �5; 1� since it is prohibited from

taking an NW turn, which is required later for it to reach the

destination, in odd columns. Note that, in Fig. 3, the routing

path for packet p4 is illustrated to show that nonminimal

paths are possible with the odd-even turn model. However,

nonminimal paths are not guaranteed to exist.
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2.3 Degree of Adaptiveness

One metric for measuring the adaptiveness of a partially

adaptive routing algorithm is the degree of adaptiveness

[15], which is essentially the number of shortest paths the

algorithm allows from the source to the destination. Let

�xs; ys� and �xd; yd� denote the addresses of the source and

the destination nodes of a packet, respectively. Also let

Palgorithm represent the number of shortest paths the

algorithm allows from the source to the destination for the

packet. In the following treatment, �x and �y are defined

as �x � xd ÿ xs and �y � yd ÿ ys. To facilitate the follow-

ing description, we call the packet an NE (respectively, SE,

NW, and SW) packet if �x > 0 and �y � 0 (respectively,

�x > 0 and �y < 0, �x � 0 and �y � 0, and �x � 0 and

�y < 0). A column is called an allowable column for an NE

(respectively, SE, NW, and SW) packet if and only if an EN

(respectively, ES, NW, and SW) turn can be taken in the

column according to the rules of the odd-even turn model.

In the following, let dx � j�xj and dy � j�yj.
For a fully adaptive algorithm, we have:

Pfully adaptive algorithm � �dx � dy�!
dx!dy!

Now consider the odd-even turn model. Let h and h0 be

defined as h � dx
2

� �
and h0 � dxÿ1

2

� �
. Suppose that the packet

is an NE or SE packet, i.e., �x > 0. We can readily obtain

the degree of adaptiveness as follows.
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Poddÿeven turn model �

�dy�h0�!
dy!h0!

if column xs is an allowable

column and dx is an odd
number;

�dy�h�!
dy!h! otherwise:

8>>><>>>:
In case the packet is an NW or SW packet, i.e., �x � 0, the

degree of adaptiveness for the odd-even turn model

becomes

Poddÿeven turn model �
�dy�h�!
dy!h! if column xs is an allowable

column or �x � 0;
�dy�h0�!
dy!h0!

otherwise:

8><>:
In contrast, the degrees of adaptiveness for the west-first and

the negative-first algorithms that are based on the turn

model are given [15] as follows:

Pwestÿfirst �
�dx�dy�!
dx!dy!

if xd � xs
1 otherwise:

(

Pnegativeÿfirst �
�dx�dy�!
dx!dy!

if �xd � xs and yd � ys� or

�xd � xsand yd � ys�
1 otherwise :

8<:
It is apparent that the odd-even turn model provides more

even adaptiveness than the turn model of [15].

3 PERFORMANCE EVALUATION

To evaluate the performance of the odd-even turn model,

we have developed an event-driven simulator. The simula-

tions were conducted on a 15� 15 mesh under various

traffic patterns. Two unidirectional channels exist between

each pair of neighboring nodes. All of the channels have the
same bandwidth of 20 flits/�sec. Each input channel has a
buffer the size of a single flit. We compare our algorithm
with the nonadaptive xy algorithm and the west-first and
negative-first algorithms that are based on the turn model
[15]. In the simulation, we consider minimal routing of
messages. For the odd-even turn model, algorithm ROUTE

is used. When multiple header flits wait for the same
available output channel, the local first-come-first-served

policy [16], which decides in favor of the header flits that
arrive at the node first, is adopted. When a header flit has

two output channels available for it, our algorithm uses the
output channel along dimension 1.

Processors generate messages at time intervals chosen
from a negative exponential distribution. Each message is
assumed to be a 20-flit packet as commonly used in the
literature. Three traffic patterns, namely uniform, transpose,
and hot spot [12] are considered in the simulation. With the
uniform pattern, a processor sends a message to any other
node with equal probability. For the transpose traffic, we
have simulated two types of patterns. With the first
transpose traffic pattern, a node (i, j) only sends messages
to node (14ÿ j, 14ÿ i). This traffic pattern is identical to the
matrix-transpose used in [16]. In the second transpose traffic
pattern, a node (i, j) only sends messages to node (j, i).
These two transpose patterns correspond to reflections of
the source about the lines y � ÿx and y � x, respectively,
given a coordinate system through the center of the
network. In the hot spot traffic patterns simulated, one or
more nodes are designated as the hot spot nodes, which
receive hot spot traffic in addition to the regular uniform
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traffic. In multiprocessors, these traffic patterns could be

representative of computations in which critical sections or

shared/replicated data are placed at the hot spot node(s).
In the simulation, we measure the average communica-

tion latency of the packets and the average sustainable

network throughput under various traffic patterns. For each

run of the simulation, the results are averaged over 110; 000

messages. Performance data are not collected for the first

40; 000 messages to allow the system to stabilize. The

95 percent confidence intervals are mostly within 2 percent

of the means. Fig. 4 shows the simulation results for the

uniform traffic. The results indicate that for uniform traffic,

the nonadaptive xy algorithm outperforms all three

partially adaptive algorithms at high traffic load. At low

traffic load, all four algorithms perform about the same with

the west-first algorithm saturating at a traffic load slightly

higher than the odd-even turn model. This is mainly due to

that the xy algorithm incorporates more global, long-term

information about the characteristics of uniform traffic,

which may lead to more even distribution of traffic. The

west-first algorithm routes westbound messages in the same

way as the xy algorithm, and thus it may benefit from this

practice. However, our algorithm performs better than the

negative-first algorithm.
In Figs. 5 and 6, we show simulation results under the

first and the second transpose traffic patterns, respectively.
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As expected, the negative-first algorithm performs the best

with the first transpose traffic, as the pattern allows full

adaptiveness for all the packets when the algorithm is used.

Our algorithm performs better than the west-first and the xy

algorithms. Under the second transpose traffic pattern, our

algorithm is superior to all of the other algorithms. More

importantly, from Figs. 5 and 6, one may observe that the

odd-even turn model has very close performance under

both transpose traffic patterns. This observation exhibits the

importance of even routing adaptiveness provided by our

model.

Hot spot traffic pattern, in which the hot spot nodes

receive hot spot traffic in addition to the regular uniform

traffic, is considered a more realistic traffic model [1]. In this

paper, we consider various hot spot traffic patterns with

different hot spot percentages. In the simulation, given a hot

spot percentage of h, a newly generated message is directed

to each hot spot node with an additional h percent

probability. We first simulate hot spot traffic with a single

hot spot node. The hot spot node is chosen to be node (7; 7),

which is located at the center of the 15� 15 mesh. Fig. 7

shows the simulation results with 6 percent and 10 percent

hot spot traffic. As the hot spot percentage increases, the

CHIU: THE ODD-EVEN TURN MODEL FOR ADAPTIVE ROUTING 735

Fig. 6. Performance of the algorithms under the second transpose traffic, �i; j� ! �j; i�.

Fig. 7. Performance of the algorithms under the hot spot traffic with a single hot spot node (7; 7). The hot spot percentages are 6 percent and

10 percent.



sustainable traffic rate (or throughput) decreases for all four

algorithms. However, the odd-even-turn-based routing

algorithm is least vulnerable to the hot spot traffic. In fact,
with 10 percent hot spot traffic, our routing algorithm

outperforms the other algorithms. The performance of the

xy algorithm is most seriously affected by the hot spot
traffic, followed by the west-first algorithm.

We then simulate hot spot traffic with multiple hot spot
nodes. In Fig. 8, we show simulation results with four hot
spot nodes, which are chosen to be nodes (5; 5), (5; 9), (9; 5),
and (9; 9). The hot spot percentages simulated are 6 percent
and 8 percent. Our routing algorithm performs better than
the other algorithms for both hot spot percentages. In
addition, it is least vulnerable to the hot spot traffic. In Fig. 9,

we show simulation results with five hot spot nodes, which
are the center node �7; 7� and the four previous hot spot
nodes. The hot spot percentages simulated are 6 percent
and 8 percent. In comparison with the previous case with
four hot spot nodes, the performance of the xy algorithm is
seriously degraded in this case.

We may summarize our observation of the simulation
results as follows: Although the xy algorithm performs
well under uniform traffic, adaptiveness is important
for nonuniform traffic. Adaptiveness may alleviate
congestion problem caused by the nonuniformity of the
traffic. In particular, the even adaptiveness provided by the
odd-even turn model makes message routing less vulner-
able to nonuniform factors such as hot spot percentage.
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Fig. 8. Performance of the algorithms under the hot spot traffic with four hot spot nodes. The hot spot percentages are 6 percent and 8 percent.

Fig. 9. Performance of the algorithms under the hot spot traffic with five hot spot nodes. The hot spot percentages are 6 percent and 8 percent.



Furthermore, this property results in a smaller fluctuation
of the network performance with respect to different types
of traffic.

4 EXTENSION TO HIGH-DIMENSIONAL MESHES

In this section, we show that the odd-even turn model can

be readily extended to high-dimensional meshes. To

facilitate the presentation, we will address 3D meshes.

Let the three dimensions of a 3D mesh be denoted by x,

y, and z. Further, the two directions associated with x

dimension are represented by x� and xÿ, which correspond

to directions with increasing and decreasing x coordinate,

respectively. Similarly, we can define directions y�, yÿ, z�,

and zÿ. In a 3D mesh, there are 24 90-degree turns. We use

x�y� to denote a turn that involves a change of direction

from x� to y�. The notations for the other types of turns are

used in a similar fashion. A yz-plane consists of all the

nodes that have the same coordinates of dimension x. An

even (respectively, odd) yz-plane is a yz-plane whose

dimension-x coordinate is an even (respectively, odd)

number. To facilitate the description of our scheme, the

following four turns x�y�, x�yÿ, x�z�, and x�zÿ collec-

tively constitute the class of x� ÿ yz turns. Further, the turns

y�xÿ, yÿxÿ, z�xÿ, and zÿxÿ collectively constitute the class

of yzÿ x turns. In a 3D mesh, the odd-even turn model is

governed by the following rules:

yz Rule. On any yz-plane, Rule 1 and Rule 2 adopted for 2D
mesh routing are used, with dimension y corresponding to
dimension 0 and dimension z corresponding to dimension 1.

x Rule. A packet is not allowed to take any of the x� ÿ yz turns
at a node located in an even yz-plane, and it is not allowed to
take any of the yzÿ x turns at a node located in an odd
yz-plane.

Essentially, we do not allow an x� ÿ yz turn to be

connected to a yzÿ x turn so that the property of deadlock

freedom can be achieved. The existence of this property can

be readily argued by following the proof of Theorem 1.

5 CONCLUSIONS

We have presented the odd-even turn model for designing

partially adaptive wormhole routing algorithms without

adding virtual channels. In comparison with the well-

known turn model [15], our scheme provides more even

routing adaptiveness. Simulation results demonstrate that

communication performance of the meshes may be im-

proved under nonuniform traffics using the proposed

model.

Although fault tolerance is not addressed in this paper,

the odd-even turn model may be useful for designing fault-

tolerant routing algorithms. The relative locations where

restrictions on the individual turns are placed is an issue

that requires further study in this respect. In addition,

nonminimal routing and 180 degree turns must also be

considered to avoid faulty components [11]. This is an

interesting subject for future work.
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