
On network-on-chip comparison
Erno Salminen, Ari Kulmala, and Timo D. Hämäläinen

Tampere University of Technology, P.O. Box 553, FIN-33101 Tampere, Finland
email:erno.salminen@tut.fi

Abstract— This paper presents the state-of-the-art in the field
of network-on-chip (NoC) benchmarking and comparison. The
study identifies the mainstream approaches, how NoCs are cur-
rently evaluated, and shows which aspects have been covered and
those needing more research effort. No single article can cover
all the aspects, and therefore, possibility to compare results from
various sources must be ensured by proper scientific reporting.
Basic guidelines for achieving that are given.

Keywords: network-on-chip, literature study, comparison,
benchmarking, guidelines

I. INTRODUCTION

The future System-on-Chip (SoC) architectures are
predicted to become communication-bound. Traditionally,
System-on-Chips (SoCs) utilize topologies based on shared
buses. Dally and Towles proposed replacing dedicated, design
specific wires with general purpose, (packet-switched) network
[18], hence marking the beginning of network-on-chip (NoC)
era.

The vast number of NoC parameters is an inherent problem
in design and comparison, for example in defining the topol-
ogy, switching and flow control policy, and routing algorithm.
The design space, that is the number of possible combinations
for parameter values, is way too large to allow a complete,
brute-force exploration. Hence, advanced design methods and
heuristics are needed to obtain a functional, preferably opti-
mized system in finite time.

No optimal NoC exists in general case. However, bench-
marking allows identifying the parameters that are most signif-
icant for certain application scenarios. This reduces the design
space once the major characteristics of the system and its
requirements are known. Naturally, the benchmark results must
be validated by other researchers by repeating the experiments.
This necessitates that the benchmarking is done with care and
by following strict scientific principles both in measurements
and in reporting.

This paper presents the state-of-the-art in the field of
network-on-chip benchmarking and comparison. To our
knowledge, this paper is one of the first concentrating purely
on the how NoCs are and should be compared. A vast set of
studies are gathered from literature and analyzed. A deliberate
choice was made not to point out mistakes in specific papers
but to describe the potential pitfalls in general terms and
without pointing to the sources. Several guidelines are given to
alleviate the current shortcomings. The guidelines give direct
practical benefit for NoC community as they enhance the
reproducibility and credibility of the results.

II. GOALS OF THE NETWORK-ON-CHIP PARADIGM

The early work and basic principles of NoC paradigm were
outlined in various seminal articles, for example [61][7][29]
[60][25][22][41][42][8][11]. The basic properties of the NoC
paradigm are

• separates communication from computation
• avoids global, centralized controller for communication
• allows arbitrary number of terminals
• has a topology that allows the addition of links as the

system size grows (offers scalability)
• does not utilize long, global wires spanning the whole

chip 1

• customization (link width, buffer sizes, even topology)
• allow multiple voltage and frequency domains
• delivers data in-order either naturally or via layered

protocol
• offers varying guarantees for transfers
• offers support for system testing

However, there is no commonly-agreed definition what is
the minimum network configuration that is still a real “NoC”.
Some authors consider packet-switching as a key property of
a NoC. There are, however, quite a few circuit-switched ap-
proaches dubbed as NoC as well. Naturally, certain properties,
such as bit error rate, energy, and area, have to be minimized
as noted by several authors. However, the opposite goal is
not meaningful anyway. It must be possible to measure the
desired properties, either numerically or with Boolean values
(true/false). For example, if scalability, flexibility, or simplicity
is taken as requirement, some exact criteria or measuring unit
must also be explicitly defined. Consequently, the authors
of this paper adopt a simple and neutral, although loose,
definition that “network-on-chip is a communication network
targeted for on chip”.

However, the fine goals above alone help only little in
selecting the most appropriate solution among all the NoCs.
Especially so since no NoC is good by definition. Hence,
various approaches must be compared and contrasted fairly
and extensively.

III. NOC COMPARISONS IN LITERATURE

It is necessary to quantitatively measure
the various NoC proposals. Table I lists
network comparisons found in literature:
[54][39][46][24][51][55][59][57][58][63][2][31][32][43][15]

1This restricts the utilization of single-hop topologies, such as single bus,
crossbar or point-to-point although they all are NoCs.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

TABLE I

SUMMARY OF COMPARATIVE NOC STUDIES.

si
n

g
le

 b
u

s

h
ie

r.
b

u
s

cr
o

ss
b

a
r

m
es

h
/t

o
ru

s

tr
ee

/f
a

t-
tr

ee

ri
n

g

o
th

er

#
 n

et
w

o
rk

s

#
 s

y
st

em
 s

iz
es

si
ze

 r
a

ti
o

a
n

a
ly

ti
ca

l

st
a

ti
st

ic
a

l
tg

tx
-d

ep
.
tg

a
p

p
li

ca
ti

o
n

#
ca

se
s

R
ep

ea
ta

b
le

 c
a

se
s

ru
n

ti
m

e

a
re

a

p
o

w
er

/e
n

er
g

y

la
te

n
cy

th
ro

u
g

h
p

u
t

fr
eq

u
en

cy

o
th

er

#
 c

ri
te

ri
a

Salminen, T. [54] m 1 1 1 4 4 (x) x x 2

Moraes [39] m 1 2 6 3 3 x x x x 3

Penolazzi [46] m 1 5 4 1 1 x x 1

Hu [24] b p 2 1 1 30 1 31 - x x 2

Saastam. [51] tr r 2 1 1 1 1 x x x x 3

Thid [57] b m 2 1 1 1 1 x x x x 3

Thid [58] b m 2 1 1 2 2 x x 1

Xu [63] b x 2 1 1 1 1 - x x x x x 5

Andriahant. [2] b f 2 4 8 1 1 2 x x x 2

Lahtinen [31] b x 2 4 4 x 1 x x x x (x) 4

Lee, H.G. [32] x p 2 4 2 1 1 x x x x x 4

Ogras [43] m, em 2 5 6 3 3 (x) x x x 3

Charlery [15] b f 2 6 6 1 1 (x) x x 2

Lu, R. [37] b sb 2 8 8 2 2 x x x 2

Arteris [1] hb c 2 f() f() x 1 x x (x) x x x 5

Zeferino [66] b m 2 f() f() x 1 x x x (x) 3

Zeferino [65] b f 2 f() f() x 1 x x x (x) 3

Chang [14] sb m 3 1 1 3? 3 x x x x x 4

Dumitrascu [20] b er dms 3 1 1 1 1 - x x x 3

Hilton [23] b 3 1 1 1 1 x x x x 3

Kreutz [27] m,t f 3 1 1 x 3 4 - x x 2

Lahiri [30] b hb r 3 1 1 3 3 x x 1

Liljeberg [35] b sb r 3 1 1 3 3 (x) x 1

Lu, Z. [38] m,t 3 1 1 x 1 2 x x x x 3

Pimentel [47] b x omega 3 1 1 1 1 - x x 2

Shen [55] b sb m 3 1 1 2 2 - x x x 3

Wolkotte [62] m 3 1 1 4 4 x x x x 3

Cardoso [13] m 3 3 4 2 2 - x x 2

Liang [34] b hb m 3 5 5 5 5 - x x 2

Vassiliadis [59] m f,tr 3 18 2
17 1 1 - x x x 3

Salminen, E. [53] b (hb) ideal 3 36 36 (x) 1 1 - x (x) 2

Zhang [67] mb m hier m. 3 49 49 3 3 - x 1

Angiolini [4] b mb m 4 1 1 2 2 (x) x x x x x x 6

Kreutz [28] b m tr 4 1 1 3 3 - x 1

Richardson [49] b m 4 4 16 2 2 (x) x 1

Ryu [50] b hb (c) 4 4 24 3 3 - x x x 3

Bolotin [12] b hb m p 4 f() f() x 3 4 x x x x 3

Bartic [6] x m,t tr h 5 1 1 x 1 x x x x 3

Pande [45] m,t f er 5 1 1 3 3 x x x x x x 5

Bertozzi [9] m,t f c 5 3 3 4 2 6 x x x x x 4

Loghi [36] b mb x 5 4 3 4 4 - x x x 3

Salminen, E. [52] b hb m 6 4 16 1 5 6 x x x x x 4

Bartic [5] x m,t tr 7 1 1 1 1 - x x 2

Lee, K. [33] mb x m p 9 7 6 2 2 (x) x x 2

Count 44 25 15 8 26 11 5 12 44 44 44 9 18 12 13 44 29 25 24 17 17 13 11 13 44

% - 57 34 18 59 25 11 27 - - - 20 41 27 30 - 66 57 55 39 39 30 25 30 -

Avg - - - - - - - - 2.9 5.1 5.9 - 2.3 4.5 2.2 3.0 - - - - - - - - 2.8

Symbols for topologies: x crossbar f, tr fat-tree, tree p point-to-point

b, mb (single shared) bus, multibus m, em mesh, extended mesh r, er ring, extended ring h hypercube

hb, sb hierarchical bus, split bus t torus c custom dms distributed shared mem.

Author Ref.

Evaluation criteriaTopology and size Evaluation type

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

[37][1][66][65][14][20][23][27][30][35][38][47][62][13][34]
[67][4][28][49][50][12][6][9][36][45][52][53][5][33]. Various
comparisons of networks in general, not just NoCs, can also
be found in [17]. The results are divided into three sections:
Topology and size, evaluation type, and criteria. The studies
are sorted according to the number of networks, system sizes
and then alphabetically. The bottom rows show the absolute
and relative occurrences. For example, single bus is included
in 25 studies (57% of the cases). Average values are shown
for numerical attributes.

A. Compared topologies

The evaluated topologies and number of different system
sizes are shown in the column Topology and size. Single
bus is separated from bus topologies with multiple links
(hierarchical, split, and multibus). Single bus and mesh/torus
are the most studied topologies (over 50% of the cases). They
are followed by hierarchical buses, fat-trees, and rings. One
fourth of the studies consider also other topologies, such as
point-to-point or custom. A special case is [53] where a single
bus is compared to “ideal” network.

Column #networks shows how many NoCs are compared.
The value can be larger than the sum of the listed topologies
because different versions of the same topology are counted
separately. For example, wormhole and store-and-forward
mesh are considered as two networks. On average, 3 networks
are compared and the largest study includes 9 [33].

Half of the cases consider only one system size (number of
terminals) and about 5 sizes are included on average. The most
sizes are covered in [59](18 system sizes), [53](36 sizes),and
[67](49 sizes). Analytical models are shown with f() and they
offer naturally very large range of systems. Large networks
have been studied in simulation also; up to 100 nodes in
[13][33][43] and 256 nodes in [45].

The size ratio is the largest system size divided by the
smallest and rounded to nearest integer. It gives coarse idea of
how large design space is covered. It is 5.5 on average and 11
when counting only the studies with multiple sizes. Varying
the system size over 10x covers wide spectrum and hence
gives good justification for presented claims and observations.
An exceptional and clearly the largest system range, 23

− 220

nodes, is covered in [59] and it is not included in the above
average values.

B. Evaluation type

The basic methods for performance comparison are analy-
sis and simulation with various test case types. Area and
frequency estimates are obtained from synthesis. However,
prototyping or emulation are not widely utilized. Few per-
formance results are obtained from FPGA [23][32] [43] and
from reconfigurable Maia chip [67]. Note that FPGA synthesis
only is not quite the same as running full applications on the
FPGA (which naturally includes synthesis).

Several cases are needed to make general conclusions. The
listed test case counts for the synthetic cases are merely sug-
gestive since it is not clear when the change in some parameter

actually defines a new test case. Most studies use only limited
number traffic scenarios, 3 on average. Different scenarios are
often modeled with some sort of traffic generator (tg), either
omitting (usual case) or considering the dependencies between
tasks. Real applications are used in one third of the studies.
Sometimes the traffic generators are used to mimic the real
applications but without performing actual computation. The
largest synthetic test set, 30 random task graphs, is in [24]
whereas application sets with 4 [36] and 5 cases [34] have
been reported. The utilized test cases are discussed later in
more detail.

The last column in this part denotes how well the test cases
are documented. The test cases that can be repeated based
on the publication are marked with x. Notation (x) is used
when some information is missing but rough reproduction is
possible. The analytical studies are reproducible by nature.
The synthetic cases without dependencies can be defined with
few parameters and are therefore easiest simulation cases to
reproduce. Using dependencies and applications necessitates
documenting also the mapping information. Applications are
generally too complex to describe briefly.

C. Evaluation criteria

On average, the studies in Table I use 3 different metrics
for comparing NoCs. The most popular and important metrics
are application runtime, silicon area, power consumption, and
latency. All these are to be minimized and usually appropriate
trade-off is sought. There are few papers where the marked
metrics are measured only for a fraction of studied networks
or system sizes.

Short runtime is the most straightforward indication of high
performance experienced by the user. The runtime is hard to
measure without real applications or transfer-dependent traffic
models. Latency can be measured in all cases and it affects
the runtime. However, the relation is not straightforward, for
example, various latency hiding techniques can remove the
impact of latency as long as it is below certain threshold.
Therefore, smaller latency does not necessarily translate to
smaller runtime; see for example [20]. However, shorter la-
tency will not increase the runtime either, when the possible
scheduling anomalies are neglected. Therefore, achieving the
same latency with fewer resources (area, power) is a viable
target for optimization. Similarly, the bandwidth of the NoC
is only an indirect clue of performance [4].

There are various other metrics that are important in un-
derstanding and optimizing the system, for example conges-
tion, path diversity, error tolerance, and operating frequency.
However, their impact should be reflected in the four “major”
metrics.

IV. OVERVIEW OF THE REPORTED FINDINGS

Some results from the literature may sound contradicting
at first but it must be noted that the performance depends on
the application. The various studies have simply utilized test
cases with different characteristics and requirements.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

There are large differences between various configurations
of the same topology. Circuit-switched mesh outperforms
packet-switched in [34](1.1 − 2x speedup), [14] (13x energy
reduction, 6x speedup). On contrary, packet-switching offers
2.5− 3.5x speedup in [28]. For buses, different versions may
have 1.4 − 3x and 9.5x difference in runtime [52][23].

Comparison results from literature are summarized in Ta-
ble II with emphasis on runtime comparisons. The compared
topologies are given on the two left-most columns, followed
by runtimes ratio when available. When ratio is < 1, NoC1 is
faster and vice versa. For example, a runtime ratio 2x means
that NoC2 offers two-fold speedup because NoC1 takes twice
the runtime compared to NoC2. The last columns show the
ratio of other studied metrics and reference to the source.

Mesh and hierarchical bus (hier.bus) achieve shorter runtime
than single bus in most cases. However, both single and
hier.bus require smaller area than mesh. Crossbar is also
superior to bus but suffers from unacceptable area in large
systems. Hier.bus have quite similar performance with ring in
[30][35] and mesh in [52]. On the other hand, 2-D mesh is
outperformed by hierarchical mesh [67], extended mesh [43],
custom [9], and fat-tree [59]. In few cases, a single bus is
actually faster than hierarchical bus, 0.9x runtime [34], or
mesh 0.1 − 0.5x [28] and 0.3 − 0.9x runtime [58].

The simulated speedups are clearly smaller than expected
by analytical studies or by those concentrating purely on load-
latency curves. However, the speedup depends on how runtime
is measured; in clock cycles or in seconds. Using cycle counts
favors buses and crossbars that are likely to have limited
operating frequency. Fat-tree also exhibits few links near the
root whose length and delay depend on the system size.

It should be noted that a network with increased parallelism
does not translate directly to shorter runtime. Octagon network
outperforms single bus clearly in terms of latency [26] when
synthetic traffic is utilized. For video encoding [20] bus and
octagon obtain identical runtime despite the fact that bus
exhibits larger and more varying latency.

As another example, 5x5 crossbar enables 5 parallel trans-
fers and gives 50% increase in application performance com-
pared to single bus [47]. This study emphasizes an important
point: the increased parallelism in the network allows improve-
ments via allocating more resources (memory banks in this
case). Parallel memories are unlikely to produce any speedup
with the bus. Similarly, the crossbar is unlikely to improve
the performance when utilized with one centralized memory.
Hence, the resource allocation and optimal network are tightly
coupled to each other.

A. The reported applications

The utilized applications vary from simple kernels (FFT,
IIR, sort, image binarization, vector sum) to full applications
(mostly video encoding). The most common workload is
uniform random traffic that is used to determine the load-
latency curves for the networks. Destinations have uniform
distribution which means that each source sends data to all
others with equal probability. Sources generate data based on

TABLE II

REPORTED FINDINGS FROM NOC STUDIES

Runtime ratio Other ratio

#1 #2 #1 /#2 #1 /#2

1x N
2.5

area, N
0.5

 power [12]

0.1-0.5x - [28]

1.1 - 3x - [34]

1.2x 1.4x energy [55]

2x 0.8x area [23]

0.3-0.9x, 3-6x - [58]

1-50x (11x avg) 0.3x area [52]

1x Nx area, 1x power [12]

0.9x - [34]

1.4-2.4x 0.3-1.3x area [50]

1-30x (10x avg) 0.7x area [52]

- 0.3-0.6x TP [30]

1.5x - [47]

1.6x 1x area [63]

1.5-2.5x - [36]

1.1-4x 0.5x area [31]

- 1.5-3x TP [30]

- 1.3-1.9x TP [35]

fat-tree - 0.2x sat.point [2]

multibus 4-7x - [4]

split bus - 0.2x BW, 5.5x lat. [37]

octagon 1x 3x lat. [20]

p2p - 4x energy [24]

tree 0.3x - [28]

ext.mesh 1.5x 0.9x area, 1.5x energy [43]

hier.bus 0.2-0.9x - [34]

hier.mesh - 1.3-1.9x energy [67]

p2p 1x 0.6x power [32]

tree 0.9x - [28]

- 0.8x area/BW [6]

- 1x area, 2x energy [33]

0.9x 1.9x area (NoC) [4]

0.9x 1.3x area (chip) [4]

- 0.1-0.4x energy [67]

- 1.5-3x area [33]

4-16x - [59]

- 0.9x lat., 1.2x energy [27]

- 1x area/BW [6]

- 1x TP [30]

- 1x TP [35]

crossbar fat-tree - 1.3x area/BW [6]

tree fat-tree 0.5-1.8x 1x area [59]

N =number of NoC terminals, used for asymptotic cost functions

BW =bandwidth

TP =throughput

Ref.

ring

hier.bus ring

crossbar

fat-treemesh

mesh

mesh

NoC

mesh

hier.bus

multilayer-

bus

bus

bus

bus

bus

bus

mesh

crossbar

their assigned load, for example 5% of the time. This type of
traffic belongs to category statistical tg in Table I and it can be
parameterized by changing the offered load per terminal and
temporal behavior (burstiness, self-similarity). Uniform distri-
bution is unlikely in real application and therefore localized
target distributions must be evaluated also [45]. Sometimes all
these parameters are not reported.

It is easy to cover wide design space by modifying such
parameters. However, the researchers should also consider
which parameter values are actually present in real applications
currently and they are estimated to evolve. This is important
research problem and definitely needs more attention. Some

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

work has been carried out in multiprocessor community, see
for example [16], but their application domain differs from
SoC. Traffic characteristics and modeling in shared-memory
cache-coherent multiprocessor chips have been studied in [56].

B. Network interface

In addition to router, a network interface (NI) (also called
network adapter) is usually needed to handle the packetization,
packet re-ordering and for controlling the retransmissions. It
offers high-level services by abstracting the underlying net-
work to an interface. The impact of NI is too often neglected.
We discuss briefly the basic considerations.

The interfacing usually needs some hardware, for exam-
ple to connect processor’s memory bus to the network, but
some parts, for example retransmission or reordering, may
be performed in software. Hardwired accelerators (especially
third-party components) and memories require that interfacing
is done with special purpose hardware. Software approach is
slower and requires program memory [10] but may be easier
to design and implement in the start of the development.
Interfaces and other network components should be reused
in several environments to amortize the development and
verification cost, and hence, modularity and scalability are
desired properties [48].

Adaptive routing may deliver packets out-of-order. The
network interface is responsible for reordering if processing
element (PE) requires that. Reordering typically needs large
buffers and the receiver must send acknowledge at known
intervals, for example after 8 packets, to avoid infinite buffers.
However, buffers are still required for each active source.
The buffer size per source is a product of interval between
acknowledges and the maximum packet size. In the worst case,
all other N − 1 agents may be sending to one target which
means that total buffer size grows with (N − 1)2. This can
be reduced if sources first request a permission to send (i.e.
a buffer at the receiver) but this induces a round-trip latency
prior any data transfer and higher network load. Fixed size
packets and locating the reordering buffers into the local data
memory may simplify the procedure.

V. PRACTICAL BASIC GUIDELINES FOR SIMULATION AND

BENCHMARKING

Comparison is a difficult task and requires consistent and
generally accepted guidelines. It is clear that no single article
can cover all aspects due to myriad of affecting parame-
ters. Therefore, strict evaluation procedures must be followed
throughout the research, not just in NoC design but especially
in reporting phase. This ensures meaningful comparison be-
tween various sources and the overall view can be determined
in incremental steps.

The issue of evaluation pitfalls has been addressed in two
excellent articles. Andel and Yasinsac [3] analyze the credi-
bility of mobile ad-hoc network (manet) simulations whereas
Frachtenberg and Feitelson [21] concentrate on the evaluation
of job scheduling policies. To alleviate shortcomings, both
articles also provide few guidelines and it is interesting to note

TABLE III

SIMULATION GUIDELINES FOR NOC EVALUTION. PARTLY BASED ON [3]

AND [21].

Guidelines

1.1 Use several cases, ensure that they are representative

1.2 Validate statistical workload models against real applications

1.3
Ensure that cases are different enough and not biased towards

some property

1.4
Document properly if there are limiting assumptions about

the usage scenario

1.5
Include variable bit rate (self-throttling) and bursty (self-

similar) traffic

1.6
Scale the load with great care to avoid distortion of important

properties

1.7
Use documented, freely available benchmark workloads

when available

2.1 Evaluate many system sizes and configurations

2.2
Validate models against data from external source (other

publications etc.)

2.3
Validate the analytical and simulation models against real

implementations

2.5
Include various overheads (e.g. synchronization or interrupt

latency)

3.1 Document all settings and assumptions to enable repeatability

3.2
Determine the number of required independent runs to gain

statistical validity

3.3
Address the sources of randomness to ensure simulation run

independence

3.4
Perform sensitivity analysis to identify the significance of a

certain parameter

3.5
Carefully select and document the used metrics. Use several

metrics.

3.6
Specify units and ratios explicitly. Use (de-facto) standard

units when possible.

3.7
Discard warm-up period and saturated workloads from the

results

3.8 Use long workloads and (simulation) runs

3.9 Use "infinite" source queue in load-latency measurements

4.1 Account for estimation/simulation errors in comparison

4.2 Compare and contrast the results to the state-of-the-art

4.3 Repeat the evaluations on a reference system

4.4 Search for trends and correlation in the obtained results

4.5
Do not use speedup from a small system directly to estimate

the bigger ones

C
o

n
cl

u
si

o
n

s
W

o
rk

lo
ad

S
y

st
em

 m
o

d
el

M
ea

su
re

m
en

ts

how well they also apply for the NoC evaluation. Table III lists
those guidelines and the proposed additions.

The guidelines given here might seem obvious and self-
evident at the first look. However, they are not; judging by
[3][21] and the articles cited here. Some of them are usually
considered but a reader cannot be sure unless the matter
is explicitly stated, which is rare. First step to improve the
situation is the brief checklist given in Table III. Second,
the research community should evaluate the guidelines, and
then thrive for their wide adoption. For example, a newly
formed NoC benchmark workgroup [40] aims to provide
the academic and industrial R&D communities with a set
of characteristic benchmark designs and guidelines that will
serve as a common repository of relevant information with

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

the following objectives:

• Enable the sharing and comparison of NoC-related R&D
efforts and findings

• Enable and accelerate the NoC paradigm development
• Increase the reproducibility of R&D claims and results
• Bridge the gap between academic and industrial state of

the art.

The proposed guidelines are divided into 4 parts: workload,
system modeling, measurement, and conclusions. Each part is
discussed separately in the following.

A. Workload

Workload refers to applications or their models that are
used during the evaluation. Several cases are needed to obtain
overall view on the behavior of a system and they must be
representative for target domain, for example multiprocessor
SoC targeted for mobile devices. In addition to their number,
the cases must present different characteristics to justify their
inclusion in the test set. If the cases are biased, for example
assuming very small transfer sizes, that must be explicitly
documented and motivated. In the NoC domain, the traffic
cases may differ, for example, in their offered load, locality,
burstiness, and latency tolerance.

Applications can be modeled by injecting synthetic traffic
to the network with traffic generators. Compared to real
applications, this method offers speedup for simulation and
easier modification. Hence, they are suitable for covering large
application space with proper scaling. However, care must
be taken when modifying the basic parameters not to distort
the important properties which would give misleading results
[21]. The models must be validated against real applications
to identify the reasonable values (e.g. offered load and spatial
distribution). Common benchmarks offer partial solution to the
problem as they greatly simplify documenting the workload.

B. System model

The utilized modeling technique must support various sys-
tem sizes and configurations to cover reasonable design space.
It is practically impossible to include all the minor details to
simulation and analysis which evidently leads to estimation
errors. Therefore, the complete simulation (developed proto-
col, traffic, environment model, and usage scenario) should
be validated against a real-world implementation, analytical
models, or protocol specifications. The latter is viable dur-
ing early concept development but less precise, but it can
be further refined later [3]. This applies to models of the
NoC (transaction-level, cycle-accurate models, area and wire
estimates) as well as the environment (traffic generation, third-
party IP). Comparing just the analytical and in-house devel-
oped simulation models is somewhat dangerous as they both
might have the same erroneous assumptions [21]. Therefore,
validation must be performed against external, independent
data, when possible.

If the models turn out to be inaccurate, they must be tuned
and usually that means adding more details. In MP-SoC, such
details include, for example, interrupt latency at the receiver,

data synchronization at the clock boundary, context switch
overhead, DMA transfers, crosstalk, and chip layout. Estimates
based on early models need revision during the course of
research. For example, the area overhead of the NoC was
first estimated to be 1 − 2% [44] but after more research the
estimates were updated to range 9− 45% [45]. The analytical
studies in Table I are well motivated and seem intuitively
correct. However, no results were found on the validation of
the models.

C. Measurement

The results are affected by numerous parameters and as-
sumptions related to test application, the NoC itself but also
to simulation and synthesis environments. Large design space
necessitates automatic exploration and optimization of map-
ping, scheduling, buffer, topology, and various other aspects.
Complete coverage is practically always out of the question,
though. Other researchers should be able to repeat the ex-
periments and hence justify the findings. This requires very
detailed description and reporting. Unfortunately, the settings
and assumptions are cumbersome to define and list, especially
as the available space is limited in the publication venue.
Such data sheets could be published, for example, in research
group’s web pages so that they are freely accessible.

The environment models and synthesis tools commonly
apply some pseudo-random techniques and hence several
independent runs ensure statistical reliability. Independence
can be achieved, for example, by explicitly varying the seed
value for random number generator. Sensitivity analysis iden-
tifies the most important parameters; those that produce the
greatest variation in results. Proper selection of values for
these parameters is a critical step at benchmarking and requires
thorough motivation and background work.

Some phenomena appear only with long enough simulation
or execution run. The warmup period at the beginning must
be discarded from the results to measure steady-state behavior.
For example, the first few packets experience zero-load condi-
tions because NoC congestion arises only after several packets
have been injected. Therefore, inclusion of first packets distorts
the average values. Large (infinite, in theory) buffers must
be placed between traffic source and network to avoid self-
throttling during load-latency measurements [17]. Without
such buffers, generators stop the data injection every now and
then and the real offered load does not match the expected.
Once a NoC gets saturated, the source queues start growing
infinitely. The maximum observed latency is not infinite but
defined by the length of the measurement. The results must,
however, assume infinite latency during saturation.

The performance and cost are hardly universal metrics with
well-defined semantics and units. There is a clear distinc-
tion that the performance is to be maximized and the cost
minimized. The overall performance or merit is a combina-
tion of several factors, such as runtime, latency, throughput,
utilization, error rate, power consumption, and area [6][52].
They can be used to determine a Pareto-front where each
point along that curve denotes one Pareto-optimal solution.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Alternatively, a performance function (inverse of cost function)
can obtain a single value for comparison. It is defined case
by case as a combination of available metrics, for example
cost = runtime · area · power. Weighing exponents help
to balance the importance of the parameters. A special case
is performance with given constraint which seems more nat-
ural for embedded systems than raw, maximum performance.
Given a strict upper (lower) bound, find the solution that meets
that while minimizing other factors. For example, find the NoC
with smallest area (or power) while achieving at least 500
MB/s throughput for test case X.

All the metrics and units must be defined explicitly. La-
tency is a common metric for networks but its definition is
ambiguous. It can be measured per data word, header, packet,
or transfer (several packets) while including/excluding the
time at the source queue. Furthermore, minimum, average,
or maximum value may be reported. These basics are quite
often left unspecified. It does not destroy the validity of the
comparisons within the paper as long as all cases use the
same (unspecified) definition. However, comparison between
publications becomes impossible.

Offered load means the traffic injected to the network.
It is closely related to the latency and suffers from similar
ambiguities. For example, it is not always evident whether the
load is given for the terminal or the whole network. Likewise,
it may be given as packets/cycle/terminal but the packet
size is not known. Both temporal and spatial distributions and
the definition of load (inclusion of headers or payload only)
must be explicitly given. The unit Bytes/s/whole net allows
unequal load for separate terminals. Packet size has profound
impact on NoC performance and must be documented. Prefer-
ably, several packet sizes must be evaluated, as in [5][64].

D. Concluding the findings

ASICs are expensive and therefore usually unsuitable for
prototyping in most cases. Modern FPGA devices alleviate
the prototyping since they are large enough for multiprocessor
SoC implementation. They are still rarely used and hence
the comparisons are mostly performed via simulation or
analytically. However, the comparison must take estimation
errors into account. For example, any runtime difference less
than estimation error, say 10%, is negligible. The fundamental
problem is how to determine estimation error beforehand. The
only option seems to be using models that have been validated
and verified earlier and assume that the accuracy remains
static. In addition to min/avg/max values, the results can make
use of confidence intervals [58]. For example, the latency of
8-word packets is less than 30 cycles in 95% and 40 cycles
99% of the cases.

An important, although usually difficult, issue is to compare
the obtained results to the state-of-the-art in the field. Rough
comparison ensures that the presented results are reasonable.
For example, assume that the new proposal offers 10% re-
duction in latency compared to the previous version by the
same authors. However, the novelty is questionable if the

optimized version is clearly slower than known approaches
from literature.

Direct comparison, for example “latency is 5 cycles lower
than in [ref. X]”, is more difficult but also more beneficial.
However, care must be taken to use exactly the same input
values and key parameters. Therefore, common test cases and
reference implementations are of great value. One option is to
re-implement novel ideas from the literature such as routing
or coding schemes. First, this either ensures the validity of
the approach or reveals deficiencies that were not covered
in the original article. Second, this allows just comparison,
as many parameters, such as processing technology, can be
held constant. Currently, most NoCs and their test cases are
proprietary and unavailable for public evaluation. A freely
available NoC, such as [19], can be used a common reference
for implementation results.

It is very beneficial to identify systematic trends from
the results. Especially when the source of the phenomena
is analyzed. It is crucial to avoid generalizations without
large coverage of parameter space. For example, deriving the
speedup from a small system and extrapolating it to larger, is
a common source of errors [21].

VI. CONCLUSIONS

This paper gives an overview of state-of-the-art network-
on-chips. An extensive set of examples is collected from
literature concentrating on the comparative studies. Currently,
the most studied topologies are bus and mesh. They are
compared, on average, in 5 system sizes and by using 3
traffic scenarios. The most common metrics are area, runtime,
latency and power consumption. They are usually obtained
via simulation and synthesis. The simulation evidently leads
to some simplifications and inaccurate estimates. Therefore,
more results from real prototypes are desired.

Currently, there are many details missing from the publica-
tions. The omission is very likely innocuous, but nevertheless
the other investigators cannot repeat the experiments without
these information. Practical guidelines were given to further
enhance the NoC research.

REFERENCES

[1] “A comparison of network-on-chip and busses,” Arteris, white paper,
2005.

[2] A. Adriahantenaina et al., “SPIN: a scalable, packet switched, on-chip
micro-network,” in DATE, Mar. 2003, pp. 70–73.

[3] T. Andel and A. Yasinsac, “On the credibility of manet simulations,”
IEEE Computer, vol. 39, no. 7, pp. 48–54, Jul. 2006.

[4] F. Angiolini et al., “Contrasting a NoC and a traditional interconnect
fabric with layout awareness,” in DATE, Mar. 2006, pp. 1–6.

[5] T. Bartic et al., “Network-on-chip for reconfigurable systems: From
high-level design down to implementation,” in FPL, 2004, pp. 637–647.

[6] ——, “Topology adaptive network-on-chip design and implementation,”
IEE Proc. Comput. Digit. Tech., vol. 152, no. 4, pp. 467–472, Jul. 2005.

[7] L. Benini and G. de Micheli, “Networks on chips: A new SoC paradigm,”
IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan. 2002.

[8] ——, Networks on chips: technology and tools. Morgan Kaufmann,
2006.

[9] D. Bertozzi et al., “Noc synthesis flow for customized domain specific
multiprocessor systems-on-chip,” IEEE Trans. Parallel and Distributed
Systems, vol. 16, no. 2, pp. 113–129, Feb. 2005.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

[10] P. Bhojwani and R. Mahapatra, “Interfacing cores with on-chip packet-
switched networks,” in VLSI design, Jan. 2003, pp. 382–387.

[11] T. Bjerregaard and S. Mahadevan, “A survey of research and practices
of network-on-chip,” ACM Computing Surveys, vol. 38, no. 1, p. article
No. 1, 2006.

[12] E. Bolotin et al., “Cost considerations in network on chip,” Integration,
the VLSI Journal, vol. 38, no. 1, pp. 19–42, Oct. 2004.

[13] R. Cardoso et al., “Design space exploration on heterogeneous network-
on-chip,” in ISCAS, May 2005, pp. 428–431.

[14] K.-C. Chang, J.-S. Shen, and T.-F. Chen, “Evaluation and design
trade-offs between circuit-switched and packet-switched NOCs for
application-specific SOCs,” in DAC, Jul. 2006, pp. 143–148.

[15] H. Charlery and A. Greiner, “A SystemC test environment for SPIN
network,” in MIXDES, Jun. 2006, pp. 449–453.

[16] R. Cypher, A. Ho, S. Konstantinidou, and P. Messian, “Architectural
requirements of parallel scientific applications with explicit communi-
cation,” in ISCA, 1993, pp. 2–13.

[17] W. J. Dally and B. Towles, Principles and practices of interconnection
networks. Morgan Kaufmann Publishers, 2004.

[18] W. Dally and B. Towles, “Route packets, not wires: on-chip intercon-
nection networks,” in DAC, 2001, pp. 684–689.

[19] A. V. de Mello and L. H. Möller, “Hermes project web page,” [Online]
http://toledo.inf.pucrs.br/ gaph/Projects/Hermes/Hermes.html, 2004.

[20] F. Dumitrascu et al., “Flexible MPSoC platform with fast interconnect
exploration for optimal system performance for a specific application,”
in DATE, Mar. 2006, pp. 1–6.

[21] E. Frachtenberg and D. G. Feitelson, “Pitfalls in parallel job scheduling
evaluation,” in LNCS 3834: Job Scheduling Strategies for Parallel
Processing. Springer-Verlag, 2005, pp. 257–282.

[22] J. Henkel, W. Wolf, and S. Chakradhar, “On-chip networks: a scalable,
communication-centric embedded system design paradigm,” in VLSI,
Jan. 2004, pp. 845–851.

[23] C. Hilton and B. Nelson, “A flexible circuit switched NOC for FPGA
based systems,” in FPL, 2005, pp. 24–26.

[24] J. Hu, Y. Deng, and R. Marculescu, “System-level point-to-point
communication synthesis using floorplanning information,” in ASP-
DAC/VLSI, Jan. 2002, pp. 573–579.

[25] A. Jantsch and H. Tenhunen, Eds., Networks on Chip. Dordrecht, The
Netherlands: Kluwer Academic Publishers, 2003.

[26] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture for
networking systems on chips,” IEEE Micro, vol. 22, no. 5, pp. 36–45,
Sep.-Oct. 2002.

[27] M. Kreutz et al., “Energy and latency evaluation of NoC topologies,”
in ISCAS, vol. 6, May 2005, pp. 5866–5869.

[28] M. E. Kreutz et al., “Communication architectures for system-on-chip,”
in SBCCI, 2001, pp. 14–19.

[29] S. Kumar et al., “A network on chip architecture and design methodol-
ogy,” in VLSI, April 2002, pp. 105–112.

[30] K. Lahiri, A. Raghunathan, and S. Dey, “Evaluation of the traffic-
performance characteristics of system-on-chip communication architec-
tures,” in Conference on VLSI design, 2001, pp. 29–35.

[31] V. Lahtinen et al., “Comparison of synthesized bus and crossbar inter-
connection architectures,” in ISCAS, vol. 5, May 2003, pp. 433–436.

[32] H. G. Lee et al., “Design space exploration and prototyping for on-chip
multimedia applications,” in DAC, Jul. 2006, pp. 137–142.

[33] K. Lee, S.-J. Lee, and H.-J. Yoo, “Low-power network-on-chip for high-
performance soc design,” IEEE Trans. VLSI Syst., vol. 14, no. 2, pp.
148–160, Feb. 2006.

[34] J. Liang et al., “An architecture and compiler for scalable on-chip
communication,” IEEE Trans. VLSI Syst., vol. 12, no. 7, pp. 711–726,
2004.

[35] P. Liljeberg, J. Plosila, and J. Isoaho, “Self-timed ring architecture for
SOC applications,” in SOCC, Sep. 2003, pp. 359–362.

[36] M. Loghi et al., “Analyzing on-chip communication in a MPSoC
environment,” in DATE, Feb. 2004, pp. 752–757.

[37] R. Lu and C.-K. Koh, “Samba-bus: a high performance bus architecture
for system-on-chips,” in ICCAD, Nov. 2003, pp. 8–12.

[38] Z. Lu, M. Zhong, and A. Jantsch, “Evaluation of on-chip networks using
deflection routing,” in GLSVLSI, May 2006, pp. 296–301.

[39] F. Moraes et al., “Hermes: an infrastructure for low area overhead
packet-switching networks on chip,” Integration, the VLSI Journal,
vol. 38, no. 1, pp. 69–93, Oct. 2004.

[40] NoC Benchmark Workgroup, “An initiatie towards open
network-on-chip benchmarks,” white paper, OCP-IP, [Online]
http://www.ocpip.org/socket/whitepapers/NoC-Benchmarks-
WhitePaper-15.pdf, 2007.

[41] J. Nurmi, H. Tenhunen, J. Isoaho, and A. Jantsch, Eds., Interconnect-
Centric Design for Advanced SoC and NoC. Dordrecht, The Nether-
lands: Kluwer Academic Publishers, 2004.

[42] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems in noc
design: a holistic perspective,” in CODES, 2005, pp. 69–75.

[43] U. Ogras et al., “Communication architecture optimization: making the
shortest path shorter in regular networks-on-chip,” in DATE, Mar. 2006.

[44] P. P. Pande et al., “Design of a switch for network on chip applications,”
in ISCAS, 2003, pp. 217–220.

[45] P. Pande et al., “Performance evaluation and design trade-offs for
network-on-chip interconnect architectures,” IEEE Trans. Computers,
vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[46] S. Penolazzi and A. Jantsch, “A high level power model for the Nostrum
NoC,” in DSD, Aug. 2006, pp. 673–676.

[47] A. D. Pimentel et al., “Towards efficient design space exploration of
heterogeneous embedded media systems,” in SAMOS, 2002, pp. 57–63.

[48] A. Radulescu et al., “An efficient on-chip NI offering guaranteed ser-
vices, shared-memory abstraction, and flexible network configuration,”
IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 1, pp. 4–17, Jan. 2005.

[49] T. Richardson et al., “A hybrid SoC interconnect with dynamic TDMA-
based transaction-less buses and on-chip networks,” in VLSI design, Jan.
2006.

[50] K. K. Ryu and V. J. Mooney III, “Automated bus generation for
multiprocessor SoC design,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 23, no. 11, pp. 1531–1549, Nov.
2004.

[51] I. Saastamoinen, M. Alho, and J. Nurmi, “Buffer implementation for
Proteo network-on-chip,” in ISCAS, 2003, pp. 113–116.

[52] E. Salminen et al., “Benchmarking mesh and hierarchical bus networks
in system-on-chip context,” Journal of System Architectures (in press),
vol. 53, no. 8, pp. 477–488, Aug. 2007.

[53] E. Salminen, T. Kangas, and T. Hämäläinen, “The impact of communi-
cation on the scalability of the data-parallel video encoder on MPSoC,”
in Intl. Symposium on Soc, Nov. 2006, pp. 191–194.

[54] T. Salminen and J.-P. Soininen, “Evaluating application mapping using
network simulation,” in Intl. Symposium on Soc, Nov. 2003, pp. 27–30.

[55] J.-S. Shen, K.-C. Chang, and T.-F. Chen, “On a design of crossroad
switches for low-power on-chip communication architectures,” in ISCAS,
May 2006.

[56] V. Soteriou, H. Wang, and L.-S. Peh, “A statistical traffic model for
on-chip interconnection networks,” in MASCOTS, 2006, pp. 104–116.

[57] R. Thid, M. Millberg, and A. Jantsch, “Evaluating NoC communication
backbones with simulation,” in Norchip, 2003, pp. 27–30.

[58] R. Thid, I. Sander, and A. Jantsch, “Flexible bus and NoC performance
analysis with configurable synthetic workloads,” in DSD, 2006, pp. 681–
688.

[59] S. Vassiliadis and I. Sourdis, “Reconfigurable fabric interconnects,” in
Intl. Symposium on Soc, Nov. 2006, pp. 41–44.

[60] P. Wielage and K. Goossens, “Networks on silicon: blessing or night-
mare?” in DSD, Sep. 2002, pp. 196–200.

[61] D. Wiklund and D. Liu, “Switched interconnect for system-on-a-chip
designs,” in IP2000, Oct. 2000, pp. 198–192.

[62] P. Wolkotte et al., “An energy-efficient reconfigurable circuit-switched
network-on-chip,” in IPDPS, Apr. 2005, p. 155a.

[63] J. Xu et al., “Methodology for design, modeling, and analysis of
networks-on-chip,” in ISCAS, May 2005, pp. 1778–1781.

[64] T. Ye, L. Benini, and G. de Micheli, “Packetization and routing analysis
of on-chip multiprocessor,” Journal of System Architecture, vol. 50, pp.
81–104, Feb. 2004.

[65] C. A. Zeferino et al., “Models for communication tradeoffs on systems-
on-chip,” in IP based design, Oct. 2002, pp. 394–400.

[66] ——, “A study on communication issues for system-on-chip,” in SBCCI,
Sep. 2002, pp. 121–126.

[67] H. Zhang et al., “Interconnect architecture exploration for low-energy re-
configurable single-chip DSPs,” in Workshop on VLSI, Orlando, Florida,
USA, 1999, pp. 2–8.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

