

3D Design & Roadmap

UFRGS, August 27th 2012

P. Vivet

pascal.vivet@cea.fr

3D Design – will dream become reality?

■ Focus today on 3D interconnect for complex MPSoC

Outline

- Introduction:
 - Available 3D-IC technology in LETI and design perspectives
- Our design roadmap
- Mag3D demonstrator implementation:
 - Memory-on-processor (WidelO)
 - Processor-on-processor (ANoC)
- 3D-IC compute node perspective
- Design Flow & perspectives
- Conclusion

A complete toolset for 3D

CMOS 200 mm

MEMS & **3D 200 mm**

Nanoscale
Characterization

 Fully operationnal 300mm line dedicated to 3D – inaugurated in 2011, January

Available 3D-IC technology in LETI

3D IC interconnect: Through Silicon Via

Through Silicon Via (TSV)

Via First TSV (Polysilicon filled)

Processed before CMOS front-end steps

Pitch: ~10μm

Density: 10000 TSV/mm²

Trench AR 20, 5x100µm

Via Middle TSV (Copper filled)

Processed after CMOS front-end steps

Pitch: 40μm to 50μm Density: 500 TSV/mm²

AR 10, 10x100µm

Via Last TSV (Copper liner)

Processed after metallization

Pitch: ~100µm

Density: 100 TSV/mm²

AR 1 80x80µm

AR 2, 60x120µm

AR 3, 40x120µm

Fine pitch interconnect – technological Leti Roadmap

Pre-applied underfill

Performances of Wafer-Level UnderFill with 50µm pitch interconnections: Comparison with conventional underfill, A. Taluy, A Jouve, S. Cherany & al, EPTC 2011

Current technologies

A 10μm pitch interconnection technology using micro tube insertion into Al-Cu for 3D applications; De Brugiere & Al, ECTC 2011

100-30 μm range

TLP(Cu/Sn)

Advanced technologies

Solder-free µ-inserts

Direct bonding WtW or DtW

μ tube

30-10 μm range

Down to 2 µm

Design perspectives

- What can we expect today from the technology?
 - Less than 10 µm diameter TSV is challenging
 - Must add guard interval thus reduce effective interconnect pitch
 - ⇒ ~500 interconnects/mm²
 - ⇒ Coarse grain to medium grain partitioning for 3D SoC and Silicon board

3D SoC

- 3D-stacked dies
- Memory-on-processor:
 - 3D memory hierarchy
- Processor-on-processor:
 - Many-core cluster
- High bandwidth
- Fine grain architecture partitioning
- High density for vertical interconnects
- Face-to-back

Silicon board

- Dies stacked on a silicon interposer
- Heterogeneous integration:
 - Digital, analog, memory, input/output, power management
- Medium bandwidth
- System partitioning
- High density for horizontal interconnects
- Face-to-face
- Large size silicon interposer

Our design roadmap

Our design roadmap

Mad3D demonstrator

- Focus on 3D-SoC and on intra-chip interconnects
- Partnership between LETI, STEricsson, STMicroelectronics and Cadence
- Same SoC addressing several schemes of 3D integration:

High speed CMOS techno - 70mm² 3000 TSVs and micro-bumps 1000 flip-chip bumps **TFBGA 12x12x1.2 - 581balls**

Memory-on-Processor version: WIOMING = Mag3D + WidelO DRAM

DRAM traffic: High bandwidth Low power

Differentiation with minimum number of masks

NoC traffic: **Asynchronous** Serialization

Processor-on-Processor version:

MAGtoMAG = Mag3D + Mag3D with 3D ANoC

Our design roadmap

Why do we need WidelO DRAM?

- Graphics and display performance of high end smartphone and tablet devices will be limited by memory bandwidth in 2013 time frame
- WidelO provides 2x power efficiency compared to LPDDR2/3
- The current wideIO JEDEC spec proposal is going up to 17GBytes/s. Moving to DDR mode and higher frequencies will enable eventually WideIO to provide more than 50GBytes/s

Source: Samsung Mobile Product Planning (2Q'11)

Memory Options and BW

WIOMING

	LPDDR2 PoP	LPDDR3 PoP/Discrete	WideIO single die	WidelO Cube	LPDDR4	WidelO2
BW (Gbyte/s)	8.5	12.8	12.8	12.8	~25.6	~34 → 136
possible BW evolution (Gbyte/s)	-	17 ⁽¹⁾	17 ⁽²⁾	17 ⁽²⁾	-	-
max package density (Gbit)	4x4	4x4	1x4	4x4	TBD	TBD
power efficiency (mW/Gbyte/s)	78	67	42	42	TBD	TBD
Samples availability	ОК	ОК	ОК	4Q '12	2015?	2015?
volume maturity	2011	2012	2013	2013	2015?	2015?
relative memory cost for equivalent density ⁽³⁾	1	~1.1	~1.2	~1.4	TBD	TBD

⁽¹⁾ LPDDR3E: clock from 800 to 1066MHz. Discussion just started at Jedec and memory vendors

⁽²⁾ WidelO clock frequency from 200MHz to 266Mhz: already specified at Jedec

⁽³⁾ Estimates based on memory supplier survey (memory cost only)

Wide IO integration into Mag3D

- 3D test chip backbone is the LETI MAGALI SoC
- The NoC architecture has been extended to interface with Wide IO memory
- Four independent data traffic and memory controllers have been added

Wide IO controller architecture

Port

ANoC output:

550Mflit/s

32-bit flit

2.2 GB/S peak

Soc

with

interface

Wide IO IF: 200 MHz - max 128-bit data 3.2 GB/s peak

Wide IO Memory Controller

NoC Memory Controller and data transfer management (LETI)

WidelO Memory Controller (Denali/Cadence)

Physical interface & testability

(STEricsson)

Performances:

Design sized for saturating the Wide IO 128- bit channel (3.2GB/s) from:

> ANoC data transfer (2x2.2GB/s)

SRAM Direct Memory Access (6.4GB/s)

Mag3D final GDSII

Circuit Technology

- -High speed CMOS TSV middle process
- -Face2Back, Die2Die, Flip-Chip 3Dassembly

Main features

- WidelO memory controllers
- 3D ANOC
- 3GPP LTE multi core CPU backbone
- Host CPU

Circuit numbers

- -125 Million Transistors
- 400 Macros
- 270 pads
- 1980 TSV for 3D NoC
- 1016 TSV for WidelO memory
- 933 Bumps for flip chip

Circuit performances

- WidelO 200MHz / 512 bits
- Units in the [350 400] MHz range
- Asynchronous NoC ~ 550 MHz

WIOMING stack

933 frontside flip-chip bumps:

150 μm min. pitch

For signal, test and power

- 1016 backside micro-bumps / TSVs:
 - 50μm x 40 μm pitch
 - For signal, test and power
 - No backside redistribution layer
 - Mechanical bumps added

Package:

- 12 x 12 x 1.2 BGA
- 0.4 mm ball pitch
- 459 balls for signal, test and power

Package: BGA 12x12, 581 balls

Assembly technology

Assembly teelinology			
Assembly	Die-to-Die		
Stacking	Face-to-Back		
TSV process	Via Middle		
TSV density	10µm diameter		
TSV xy pitch	50μm x 40 μm		
Copper Pillars	20µm diameter		

•481 outer rings balls •100 inner matrix balls

Mag3D application board

- Same application environment for hosting the different 3D versions of Mag3D:
 - Standalone (Mag3D only):
 - 3GPP-LTE Application perimeter
 - Wioming (Mag3D + Wide IO):
 - Wide IO technology performance assessment
 - Thermal behavior analysis
 - Mag –to-Mag:
 - 3D ANoC technology performance assessment
 - Baseline is existing Magali prototyping board

Mag3D daughter board

Our design roadmap

3D Asynchronous NoC for Multi-core Scalability

- For technology nodes < 32 nm
 - Performance is required in many applications, Mask cost + design time limit developments possibilities
 - ⇒ High volume production is required
- Proposal: easily stackable simple "tiles"
 - No complex phy, a set of tiles will give you the performance for your application.
 - ⇒ Increase number of applications for a single die, reach required volume production.
- Constraints?
 - High bandwidth between dies,
 - Easy staking, no clock distribution issues
 - Power distribution,
 - Testability,
 - Fault Tolerance

- Proposal : 3D Asynchronous NoC
 - ⇒ Fast serial link
 - ⇒ Full asynchronous logic
 - ⇒ Including 3D DFT and Fault Tolerance

Quasi Delay Insensitive Asynchronous Logic

- Quasi Delay Insensitive (QDI) Logic
 - Initiated by Caltech Univ. (1995)
 - Provide robustness to PVT conditions
 - Consume energy only for allowed transitions
 - Self adapt to voltage supply
 - Perfectly adapted for 3D TSV connection
- Explicit asynchronous handshakes
 - dual-rail or 4-rail encoding
 - 4-phase Return to Zero protocol
- Fully implemented in standard-cell
 - Using C-elements or Muller gates

QDI 4-Phase / 4-Rail Asynchronous Protocol

3D ANoC: Asynchronous NoC features

ANoC main features

- GALS template
- 2D mesh based extended in 3D
- Paquet based, source routing
- 32 bits, 2 virtual or physical channels
- GALS interfaces to bridge between asynchronous and synchronous domain
- Local clock generators in each synchronous IP
- Asynchronous NoC achieves 550 MFlits/s

« A Fully-Asynchronous Low-Power Framework for GALS NoC Integration » Yvain Thonnart, Pascal Vivet, Fabien Clermidy, DATE'2010

3D ANoC serial link ?

- ⇒ serialization, to reduce number of TSVs at 3D NoC interface,
- ⇒ NoC serial link is also fully implemented in asynchronous logic.
- ⇒ this is a compromise beetween throughput and number of TSVs

Serial Link Circuit Implementation

- a Serializer of n:p composed of p Serializer of m:1
 - a Serializer of m:1 is a tree of "Self-Controlled Multiplexors"

$$m = Serialization Ratio = \frac{n}{p}$$

- R, The Serialization Bandwidth Ratio as the throughput cost factor
 - f, the transfer rate of parallel input data
 - g, the transfer rate of serialized output data

$$R = Serialization B \text{ and width } Ratio = \frac{n \times f}{p \times g}$$

$$R = \frac{4 \times 550 \text{Mflits/s}}{1 \times 1200 \text{Mflits/s}} = 1.8, \text{ and not } 4$$

Serialization Area Cost Analysis

	MD TSV	HD TSV	65 nm	32 nm
Parallel	0.4 mm²	0.016 mm²	0 mm²	0 mm²
Serial x2	0.2 mm ²	0.008 mm²	0.012 mm²	0.0039 mm²
Serial x4	0.1 mm ²	0.004 mm²	0.016 mm ²	0.0056 mm ²
Serial x8	0.05 mm²	0.002 mm²	0.019 mm²	0.0067 mm²

3D ANoC integration into Mag3D

3D test chip based on the LETI Magali SoC backbone

The NoC architecture has been extended to support four 3D NoC interfaces

MAGtoMAG stack specification

- Partnership between LETI, STMicroelectronics and Cadence
- One Mag3D die is stacked on top of an other Mag3D die in the same package
- Face to Back stacking
- Mag3D supplies and interconnect signals (3D-NoC) go through the SoC by means of TSVs

Technology				
Assembly	Die-to-Die			
Stacking	Face-to-Back			
TSV process	Via Middle			
TSV density	10μm diameter			
TSV xy pitch	50μm x 40 μm			
Copper Pillars	20µm diameter			

Package Balls

Package: BGA 12x12, 581 balls

459 balls

Our design roadmap **3D-IC** compute node 3D memory hierarchy with High density 3D Nb of dies: ≥ 2 dies 3D pitch: < 20µm Nb of 3D IOs: > 10000 30 BOC F2B, F2F Compute node with Large size Interposer System partitioning with Active Interposer Nb of dies: ≥ 3 dies Si board 3D pitch: < 40μm Nb of 3D IOs: > 10000 Double side interposer NB of dies: ≥ 2 die 3D pitch: 40µm Nb of 3D IOs: ~5000 Face-to-Face 2015 2014

Where is 3D in massively parallel computing?

Silicon board:

3D Integrated Circuit to fill the integration gap for massively parallel computing

- **Processor (could be Multi-core CPU with HW accelerators)**
- Memory device (could be RAM, NVM, SSD, HDD)
- ICN Interconnect (could be electrical, optical)

3D-IC compute node architecture

- Several small and low power System-on-Chips:
 - Multi-processor SoC: MPCore CPU + FPU + GPU + processing fabric with 3D-cache hierarchy
 - Memory SoC: Wide IO SDRAM, Non Volatile Memory
 - Interconnect, peripheral and IO SoC: Interfaces (memory, PCIe...), peripheral interconnect and primary Inputs/outputs
- Energy efficient interconnects:
 - WidelO for memory connections
 - Asynchronous Network on Chip (3D NoC) for inter-processor communications

Interposer based system integration

- Focus is miniaturization and energy efficient intra-chip communications.
- Silicon interposer technology benefits for system integration are:
 - High horizontal interconnect density with metal layers
 - Aggressive **vertical interconnect thanks to TSV** technology
 - Backbone for **heterogeneous integration** of small dies + **passives**
 - Backbone for integration of IOs, shared peripherals, test, Power Management Units
 - Better **thermal conductivity** with silicon

3D Design Flow & Challenges

Collaborative definition of 3D Design Flow with EDA partners

Yesterday: Survivor kit...

- manual implementation of TSV
- Manual partitioning with 2D tools

3D Stack Design Exploration

- Multiple techno nodes
- Die partitioning
- Architecture exploration
- Simultaneous floorplan and TSV location exploration

Multiple partnerships to prepare 3D design flow

3D Stack/Package analysis

- 3D Thermal Profile analysis
- 3D Test & Defect analysis

3D Implementation

- 3D Floorplan
- 3D Power planning
- 3D Test
- 2D Place & CTS & Route
- 3D analysis (power/timing)
- 3D Verification

3D Design Flow: WIOMING exemple

Target technology

- Uses ST-Microelectronics high-speed CMOS library
- Uses TSV middle (\varnothing 10 μ m) + Copper Pillar (\varnothing 10 μ m)
- Is a Flip-Chip packaging assembly
- Is a Face2Back, Die to Die 3D stacking assembly

Back End kit

- Virtuoso tech file addon kit for 3D layers
- EDI Techno file & captable
- DRC & LVS « 3D » addon kit

Specific cells

- Flip Chip Bumps, Micro-bumps,
- ESDs, Micro-buffers,

Cadence EDI 3D-IC Stack Design Implementation & Analysis

- Cadence Encounter 3D-IC design implementation is developed in collaboration with major foundries and advanced system designers.
- Supports a comprehensive 3D-IC modeling for both implementation and analysis.
 - Different types of 3D Interconnect: TSV, microbump, cupper pillar or direct bonding and backside metal layers.
 - Multiple set of manufacturing rules
- Supports multiple types of 3D-IC stacking in design implementation and analysis
 - Silicon interposer
 - Vertical stack.
 - Mixed stack.
- EDI Design methodology and design flow are proven with several 3D-IC tape-out.

Cadence EDI 3D-IC Analysis Methodology

3D-ANoC: TSV Floorplanning

3D-ANoC TSV design

- Symetrical 3D NoC connection for face-up ⇔ face-down
- 3D NoC matrix also contains power supplies (gnd/vdd) to supply top die through bottom die

Place & Route tool flow

- Use automated TSV creation + assignement + symetric top ⇔ bottom die faces
 - set die to bottom
 - Create the TSV matrix
 - Assign TSV + backBump for bottom die
 - save TSV & back Bump for bottom die connection
 - set die to top
 - create front Bump of top die, from bottom die file
- Then, use semi-automated FP commands for :
 - PG connections between TSV and flip-chip bumps,
 - μ- Buffer cell placement,
 - PG routing within the TSV matrix,
 - ESDs, etc ...

3D-IC: Power & IR drop analysis

- Using Encounter Power System (EPS tool)
 - Currently using ERA (Early Rail Analysis) mode
 - No sign-off mode, due to missing of sign off library views
- Power analysis
 - Top chip power consumption in the 1-2 Watt,
 - according to target frequency and activity ratio.
- 3D IR-Drop analysis (of the same die)
 - Bottom Die
 - => supplied from the Flip-Chip IO ring + central matrix power supplies
 - 0.02 mV max IR drop
 - Top Die
 - => supplied from the TSV matrix, through the bottom die
 - 0.2 mV max IR drop

3D-IC: Thermal Analysis

Power Map :

SoC Die : 2 Watts

Memory Die : 0.5 Watts

→ Using Encouter Thermal analysis

Mag3D heaters and thermal sensors

- For thermal behavior analysis in a 3D package environment:
 - 8 heater blocks (STEricsson) to emulate hot spots
 - Can generate each 1Watt
 - Total ~ 8Watt
 - Separate supplies by use of dedicated flip chip bumps for rich power profile emulation from application board
 - Thermal sensor for temperature measurement from the application software

3D ANoC: DFT and fault tolerance

3D ANoC DFT architecture
 test individual TSVs

Based on JTAG protocol IEEE 1149.1

One DFT test wrapper + one TAP per die

JTAG protocol propagation in the 3D stack

COM_DATA [3:0]

TSV fault tolerance

COM_DATA [3:0]

- Add 15% spare TSV per ANoC serial link
- ⇒ Test & repair JTAG based architecture

3D-Micro-Buffers

3D ANoC Router

Config

1

1

Unconnected

Unconnected

3D-Micro-Buffers

Wide IO Test Architecture

WideIO if. with Memory

- Specific design for WidelO Testability
 - Use of IEEE 1500 Test Controller
 - Use of OCC (On Chip Clock controller)
 - 5 different test mode features

WidelO memory test?

- Memory is delivered tested by the DRAM foundry,
- but through dedicated pads, not through its WideIO matrix signals ...

Test mode	Test feature & coverage
Boundary Scan	To test TSV connections between die & memory
Direct Access	To generate direct (but partial) memory accesses from die (used for debug purpose mainly)
Memory BIST	Memory BIST, included in the die (DENALI controller), to test the whole memory, using the WidelO interface
Stuck-at	Standard DFT of the WidelO memory Controller
PLL test & bist	To test the specific memory controller PLL

Some Other Design Challenges

- 3D Design Tools
 - 3D-stack and package co-design
 - 3D System Level partitionning and early floorplanning analysis
 - More automation for final verification (DRC, LVS)
- 3D Testability
 - On going standardization efforts
 - IEEE WG 3D Test (see http://grouper.ieee.org/groups/3Dtest/)
 - Optimize the overall 3D DFT architecture and 3D ATPG algorithm
 - Get more data on TSV defect & yield analysis
- 3D Analysis and Optimization
 - Power Delivery Networks, for IRdrop and Thermal constraints
 - Thermal characterization & optimization

Conclusion & perspective

- Wide IO: Memory-on-processor
 - In mobile computing, off-package memory interfaces have reached their limit above ~10GByte/s
 - 3D stacking technology enables a power efficiency breakthrough in memory interconnect
 - Integrated and validated in a real 3D prototype
- Asynchronous NoC: Processor-on-processor
 - Template based design offering efficient communication infrastructure
 - Asynchronous logic get rid of any timing deviation, of unknown 3D TSV, Bumps characteristics
 - Integrated in a real 3D prototype
- Wide IO + ANoC + Interposer
 - Key technologies for next generation power efficient compute node

Main publications

- « A Fully-Asynchronous Low-Power Framework for GALS NoC Integration » Yvain Thonnart, Pascal Vivet, Fabien Clermidy, DATE'2010
- « 3D Embedded multi-core: Some perspectives », F. Clermidy , F. Darve, D. Dutoit, W. Lafi, P. Vivet, DATE'2011
- « 3D Technologies: Some Perspectives for Memory », D. Dutoit, F. Clermidy, P. Vivet, CODESS, ESWEEK 2011
- « Physical Implementation of an Asynchronous 3D-NoC Router using Serial Vertical Links » -Florian Darve, Abbas Sheibanyrad, Pascal Vivet and Frédéric Petrot, ISVLSI'2011
- « 3D NoC Using Through Silicon Via: an Asynchronous Implementation » Pascal Vivet, Denis Dutoit, Yvain Thonnart and Fabien Clermidy, VLSI-SOC'2011
- « A Three-Layers 3D-IC Stack including Wide-IO and 3D NoC Practical Design Perspective », P. Vivet, V. Guerin, Presentation at the 3D Architecture for Semiconductor Integration and Packaging, 2011 RTI 3D ASIP, San Francisco, USA, Dec 2011.
- WideIO JEDEC standard, see http://www.jedec.org/

Many Thanks ...

- To our partners in this project
 - STMicroelectronics, ST-Ericsson, CADENCE

- To LISAN LETI Design Team
 - D. Dutoit, F. Clermidy, Y. Thonnart, C. Bernard, F. Darve, T. Khandelwal,
- Work partly funded by the following European programs:
 - **COCOA** (Chip-On-Chip technology to Open new Applications)
 - **3DIM3** (3D-TSV Integration for Multimedia and Mobile applications)
 - **PRO3D** (*Programming for Future 3D Architecture with Many Cores*)

eti

LABORATOIRE D'ÉLECTRONIQUE **ET DE TECHNOLOGIES** DE L'INFORMATION

38054 GRENOBLE Cedex 9

www.leti.fr

Thank you for your attention

