
Journal of Systems Architecture 61 (2015) 423–434
Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier .com/ locate /sysarc
MultiCS: Circuit switched NoC with multiple sub-networks and
sub-channels
http://dx.doi.org/10.1016/j.sysarc.2015.07.013
1383-7621/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +46 722935320.
E-mail addresses: liu2@kth.se (S. Liu), axel.jantsch@tuwien.ac.at (A. Jantsch),

zhonghai@kth.se (Z. Lu).
Shaoteng Liu a,⇑, Axel Jantsch b, Zhonghai Lu a

a KTH Royal Institute of Technology, Sweden
b TU Wien, Vienna, Austria

a r t i c l e i n f o
Article history:
Received 26 August 2014
Received in revised form 9 June 2015
Accepted 27 July 2015
Available online 13 August 2015

Keywords:
NoC
Circuit switched
Multi-channel
SDM
a b s t r a c t

We propose a multi-channel and multi-network circuit switched NoC (MultiCS) with a probe searching
setup method to explore different channel partitioning and configuration policies. Our design has a vari-
able number of channels which can be configured either as sub-channels (spatial division multiplexing
channels) or sub-networks. Packets can be delivered on an established connection with one or multiple
channels. An adaptive channel allocation scheme, which determines a connection width according to the
dynamic use of channels, can greatly reduce the delay, compared to a deterministic allocation scheme.
However, the latter can offer exact connection width as requested. The benefits and burden of using dif-
ferent number of channels and configurations are studied by analysis and experiments. Our experimental
results show that sub-network configurations are superior to sub-channel configurations in delay and
throughput, when working at the highest clock frequency of each configuration. Under reasonable chan-
nel partitioning, sub-networks with narrow channels can generally achieve higher throughput than the
network using single wide channels.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Compared to packet switched (PS) NoCs with TDM channels,
circuit switched (CS) NoCs are preferable under certain require-
ments. For example, the advantages of using CS NoC with spatial
division multiplexing (SDM) channels on streaming applications
like 3D graphics have been demonstrated in [1].

With the increasing number of wires available on-chip, the
number of possibilities to organize, use and allocate them grows
combinatorially. We have more freedom to choose the number of
channels and allocate wires for them, instead of giving all wires
to only one channel. Thus, how to allocate wire resources and orga-
nize multiple channels becomes an interesting research question.

We propose a CS network with multiple channels and multiple
networks (MultiCS) to explore the effects of different channel par-
titioning and configuration polices. We offer the following
contributions:

� The proposed CS NoC combines spatial division multiplexing
[1], which we call sub-channels, with sub-networks.
Sub-channels divide the wires between two switches which
then can be allocated separately and independently.
Sub-networks are independent networks that connect to the
same nodes. A connection between two nodes can utilize one
or several sub-channels and one or several sub-networks
(Section 3).
� We extend the parallel probing setup method described in [2] to

allow a single communication to utilize several sub-networks or
sub-channels to meet its bandwidth requirements. This setup
method uses a minimal number of extra wires. If a connection,
possibly spanning across multiple sub-channels and
sub-networks, with sufficient bandwidth is available, it will be
found in 3 ⁄ D + 4 cycles, where D is the distance between
source and destination (Section 3).
� We propose two schemes for building connections with multi-

ple channels. One is called deterministic channel allocation
(DCA), which imposes an exact width requirement on a connec-
tion. The other is called adaptive channel allocation (ACA), with
which the width of a connection is allocated according to
run-time channel usage of the network. ACA avoids the channel
fragments and superfluous connections problems associated
with DCA. However, it guarantees only a minimum connection
width (Section 4).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2015.07.013&domain=pdf
http://dx.doi.org/10.1016/j.sysarc.2015.07.013
mailto:liu2@kth.se
mailto:axel.jantsch@tuwien.ac.at
mailto:zhonghai@kth.se
http://dx.doi.org/10.1016/j.sysarc.2015.07.013
http://www.sciencedirect.com/science/journal/13837621
http://www.elsevier.com/locate/sysarc

Fig. 1. Splitting wide channel into sub-channels or sub-networks.

Fig. 2. Overview of a switch.

424 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
� We discuss the implementation cost of MultiCS. We also
develop an analytical performance model to explain how the
maximum throughput is related to packet size and the number
of channels (Section 5).
� We evaluate five configurations of MultiCS under the two

schemes. The five configurations vary the number of
sub-networks and sub-channels. The experiment results com-
ply with our previous model and analysis (Section 6).

2. Motivation

CS NoC has a fundamental limitation. When a channel between
two switches is allocated to one connection, it cannot be used by
any other connection. This inherent inflexibility limits the useful-
ness of CS. A solution is to partition the channel into multiple nar-
row channels and allocate only one or a few narrow channels to a
given connection. An obvious question is, what would be the
trade-off of number of narrow channels: as many as possible, or
is there any limitation?

The second question is: what are pros and cons of different
ways of organizing multiple channels? Generally speaking, there
are two methods to configure channels of a node: by
sub-channels or by sub-networks, as illustrated in Fig. 1. The term
sub-network refers to several separate circuit switched networks
working in parallel. A network interface has access to all available
sub-networks, but once data has entered one particular
sub-network, it cannot change to another sub-network. In contrast,
sub-channels are parallel links between switches. Those
sub-channels are organized as SDM inside a switch. Data can use
different sub-channels for different hops in the network.

The third question is how to establish a connection with multi-
ple channels. Traditionally, even if there are multiple channels, still
each packet flow is delivered by building a connection with only
one channel [3,4] per hop. However, multiple channels have
offered us the possibility of building a wide connection by combin-
ing several channels together for data transfer. Thus, we need new
schemes and guidelines for connection set-up.

In the following we answer these three questions by comparing
alternatives with the same total wire resources and with the same
path search and setup algorithm. We construct our platform by
combining features and merits from earlier work [2,5,6], and mod-
ify them to support multiple sub-channels and multiple
sub-networks. We use a mesh topology but arguable many of our
main conclusions are also valid for other topologies.
3. Architecture of MultiCS using parallel probing setup

Our MultiCS NoC can have any number of sub-channels,
sub-networks, or a combination of them. The term ‘‘sub’’ denotes
the number of sub-networks used, and the term ‘‘ch’’ denotes the
number of sub-channels used. Suppose k is the number of
sub-channels of a switch and m is number of sub-networks
(subm chk), and given that the total number of wires of a switch
is a constant.

3.1. Overview of a switch

As shown in Fig. 2, in a mesh topology every switch has five
directions which are used for connecting to four neighbors and
one local resource. Each direction may have multiple duplex chan-
nels. Each channel contains a data path, which is used for carrying
the probe during the setup phase and for transmitting data when a
connection has been established. Every data path is also associated
with 3 bits control signals: an answer (ANS) signal consisting of 2
bits, which goes in the opposite direction to the data channel, and 1
bit for a request signal, which travels in the same direction as the
data channel. When the request signal is ‘1’, a probe search is run-
ning or data transfer is active. When request signal is ‘0’, it denotes
the idle state, and an established connection will be released. The
usage of the ANS signal is listed in Table 1.

The messages required for connection configuration are simpli-
fied by using these control signals: tear-down message is carried
by the request signal, and Ack/Nack messages are delivered by
ANS signal. They are free of contention.

In this switch architecture, the overhead of each channel is just
the 3-bit control signals. We believed this is the minimum require-
ment for supporting probing based setup. Although it may be
argued that the 1 bit request signal can be omitted, this would
increase the logic inside a switch.

The probe format is also compact. It contains source address,
destination address and the channel id of the network interface
of the source (Table 2). In an 8 � 8 mesh with 4
sub-channels/sub-networks, the minimum width of a probe is 14
bits. Each probe is one flit in length. Thus the width of a data path
is ranged from 14 bits to any bits.

3.2. Path searching algorithm

Generally speaking, our platform is not bound to a particular
path searching algorithm, meaning that any algorithm can be

Table 1
Usage of ANS signal.

ANS Usage

00 Idle
01 Probe search continue
10 Probe failed
11 Path established

(a) In each node a probe may double. (b) When two probes meet,
one is cancelled.

Fig. 3. The overview of the parallel probing algorithm.

Fig. 4. Operation flow of parallel probing method.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 425
applied. The performance comparison results of different path
searching algorithms are shown in Section 6.2.1.

The parallel probing algorithm [2] is chosen as our default path
searching algorithm in this paper because of its high performance.

Parallel probing is an adaptive path searching algorithm. The
fundamental idea was proposed by us in [2]. We illustrate this idea
in Fig. 3. Suppose node 1 want to set-up a path to the destination
node 9. In the beginning, a setup probe carrying information such
as source address, destinations address and channel id is generated
by the network interface and enters into node 1. Then, node 1
sends out two probes to the neighboring nodes 2 and 4. In the sec-
ond hop each probe splits into two, and all the probes continue to
move towards the destination along all the possible minimum
paths.

Whenever two probes containing the same setup request meet,
one of them is regarded as redundant and is canceled, and all chan-
nels used only by the canceled probe are released. For example,
when node 5 receives two probes which are the same, one of them
is canceled and all the channels it has booked before are released,
(we have marked the released channel with a cross marker) as
shown in Fig. 3b). Note that, the channel between node 1 and node
2 is not released, because it is still needed for the probe that has
traveled further to node 3.

The release process proceeds backwards hop by hop. The switch
does a release based on the registered connectivity information
that connects an input port to an output port. When a release sig-
nal (ANS = 10, ‘‘probe failed’’) arrives at an output port from a
downstream switch, the corresponding input port is looked up,
the connection is canceled, and the release signal is forwarded
upstream to the input port. Applying this mechanism, if several
possible paths exist, one and only one of them can be finally
booked, just as desired.

In this way, a wavefront of probes travel through the network
and reach the destination on a minimal path. The time is exactly
2D, where D is the distance in terms of hops, and it takes 2 cycles
to traverse each hop. When a probe successfully reaches the desti-
nation, an acknowledgment is sent back to the source node, which
takes 1 cycle per hop.

However, in our previous work [2], this algorithm is designed
for circuit switched NoC with one wide link per direction. It applied
a complicated priority based arbitration mechanism which is not
applicable for multiple sub-channel usage. It requires a sorting
component when applied in a multi-sub-channel switch, which
is too costly to implement in hardware. Instead we use a
round-robin based allocation. The set-up clock frequency is
increased from 570 MHz [2] to 1.1 GHz (using SMIC 90 nm Tech).
3.3. Operation flow

Our circuit switched network has six operations which are
explained in Fig. 4. In stage 1, a probe carrying setup information
is sent out from source node and moving towards the destination
Table 2
Probe format.

6-Bit src. addr 6-Bit dest. addr 2-Bit channel id
according to the following algorithm. At each hop, if there are free
channels, the probe will book one channel and move forward
(stage 2). Otherwise, the probe is failed and it will use ANS signal
(Nack) to clear all the channels it has already been booked (stage
3). When the source node gets notice that all the sent out probes
have failed (stage 4), it will retry again. If a probe successfully
reaches its destination, the Ack signal will be sent back, which
means the connection has been established and data transfer can
be launched (stage 5). After data transfer finished (stage 6), con-
nection will be torn-down. It will then go back to stage 1 to wait
and serve new setup request.

3.4. Detailed switch architecture

The internal structure of a switch is shown in Fig. 5. It is divided
into two parts: control path and data path. The data path transfers
data through the configured data crossbar. The control path is used
to set up or tear-down a data path. The control path and data path
share the same input and output wires.

We designed an allocator to do channel allocation for the probes
arriving simultaneously at a switch. The principle of our single
cycle maximal allocator with round-robin fairness is similar to a
wave-front allocator [7], but it is smaller, fairer, faster and free of
combinational loops. Detailed description of this allocator is
described in our work [8].

It should be noted that the area of this allocator increase
with O(n2), the critical path length scales O(n), with n being
the number of channels per direction. For example, in a
1-channel-per-direction switch, the allocator in charge of each
output direction consists of only 4 tiles, while in a

Fig. 5. Internal structure of a switch.

426 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
4-channel-per-direction switch, the allocator per direction con-
tains 64 tiles.
3.4.1. Source synchronized data transfer
The control path and data path can work at different clock fre-

quencies and share the same wires without interference. This clock
scheme takes advantage of the property of circuit switched NoC
that the setup phase never overlaps with the data transfer phase.
During the connection setup phase, the data path should have no
active clock signal, thus it is idle. And the cross-bar of the data path
can be configured under the control path clock (probe clock). Dur-
ing the data transfer phase, the control path ignores data variations
on the shared wire links. It just listens to the request and ANS
signals.

Therefore, we can utilize either source synchronous data trans-
fer [9–11] or clock gating to realize this separation of data and con-
trol path clock schemes, so that the data transfer can benefit from a
higher clock frequency. In this paper, we chose the former source
synchronous data transfer. The usage of this technique on CS NoC
has been justified by Pham et al. [11,6].
3.4.2. Predictable delay
One of the benefits of the probing set-up approach is pre-

dictable latency. In our design, each probe takes 2 clock cycles
per hop, and the ANS signal takes 1 cycle per hop. So, it takes at
most 3 ⁄ D + 4 cycles for a probe to travel from source to destina-
tion and back the ANS signal (D is the hop distance between source
and destination). 4 cycles is the overhead consumed in the source
and destination nodes. Therefore, in an n ⁄ n mesh the worst case
for a single search takes 3 ⁄ (2 ⁄ n � 2) + 6 cycles, no matter if the
result is a success or a failure. There is no such bound for the packet
configuration approach such as [12]. It is reported that it takes 76
cycles on average for 6 hop distances [12], while it is fixed to 22
cycles by using our probing approach.
For data transfer, the head flit takes two cycles per hop, and the
following flits are pipelined.
3.4.3. Configurable sub-channels and sub-networks
Even though the total number of wires between switches is the

same in different configurations, their costs and performances are
different. Fig. 6 depicts configurations sub1_ch2 and sub2_ch1.
Their intra-switch connection relationship of channels is unveiled
by using a switch block diagram, in which a line denotes a
bi-directional connection between two duplex channels. For exam-
ple, in the multi-sub-channel sub1_ch2 case, an output channel
can be connected to all input channels except to the ones of the
same direction. Since each output channel needs to select from 8
input channels, which means an 8-to-1 multiplexer is required
by each output channel, and thus the switching logic in total has
ten 8-to-1 multiplexers. However, in the multi-sub-network
sub2_ch1, a channel is restricted to connect to the channels of
the same sub-network. Thus, each output channel just needs a
4-to-1 multiplexer and the entire switching logic is just made up
of ten 4-to-1 multiplexer. As a result, for a given number of wires,
although sub-channel configuration offers more switching flexibil-
ity [13] than sub-network, its switching logic is much more
complicated.
4. Connection building schemes in MultiCS

Since a network interface has access to all available
sub-networks and sub-channels (Fig. 6), we have the flexibility to
build a wide connection with one or more channels per hop to deli-
ver a packet, rather than only one-channel-per-hop. For example,
in a sub2_ch2 network, each resource node is connected to 4
input–output channel pairs, so at most it can use all its 4 output
channels for one connection. In order to set up a connection with
4-channel width, the resource node has to send 4 setup probes

Fernando Moraes

, a
ler até aqui

Fig. 6. Switch block diagram of sub1_ch2 and sub2_ch1.

SRC 01

10 DST

C

D

SRC 01

10 DST

00

(a) sub1_ch1 (b) sub2_ch1 or sub1_ch2
Fig. 7. Illustration for channel fragments.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 427
out through its 4 output channels. Each probe will try to set up a
narrow connection of 1-channel width to the destination. After
the success of all 4 probes, a 4-channel connection is established.

We propose two schemes to explore the opportunities and chal-
lenges of building connections with multiple channels. We name
the two schemes as deterministic channel allocation (DCA) and
adaptive channel allocation (ACA), respectively.

� DCA: DCA imposes mandatory requirement on the connection
width. For example, if a packet has a connection width require-
ment of 4 bytes, it is restricted to use two 2-bytes channels per
hop, or four 1-byte channels per hop to build up a connection;
any allocation below or above this figure is unacceptable.
� ACA: ACA scheme has no hard connection width requirement.

During the setup phase, a setup request tries to utilize as many
channels as possible to build a connection. However, the final
SRC 01

10 DST

Fig. 8. Illustration for a superfluous connection.
connection width is determined by the number of successful
setup probes, which depends on the run-time congestion situa-
tion of the network.

The DCA scheme is intended to provide desired and predefined
throughput and flit width for data transfer. It imposes strict
requirement on the setup phase. DCA scheme is useful in the cir-
cumstances when an end-to-end transfer has exact predefined
throughput or flit width requirement.

The ACA scheme is designed to achieve better performance, at
the expense of only minimum throughput and flit width
(1-channel width) guarantee. Depending on channel use, ACA
adaptively sets up a connection, of which the width of a connection
can vary from 1 to k channel-width, where k is the total number of
output channels per direction. As a result, at low load connections
are likely to be wide and thus data transfer time can be shortened;
at high load connection width tends to be narrower because of
contention. Thus, more requests can be served and high through-
put can be reached.

The traditional one-channel-per-connection (OCPC) scheme is a
special case of DCA scheme (DCA with 1-channel width require-
ment). In OCPC scheme, the width of every connection is restricted
to 1-channel width.

The implementation of DCA may introduce additional steps
during setup. For example, if a packet in a sub4_ch1 or sub1_ch4
Fig. 9. Evaluation of path searching algorithm by using sub1_ch4 in ACA-FPS
(packet size 5120 bytes).

428 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
configuration has a DCA requirement of 8-byte width, and each
channel is 2-byte wide, the resource node has to wait until four
2-byte output channels of the network interface are available,
and then four probes are sent out simultaneously. Only if all of
the probes succeed, the data transfer can commence. Otherwise,
the one-channel connections (superfluous connections) established
will be released and all four probes will be re-sent again until all
four succeed. The release of superfluous connections is adopted
to avoid deadlock.

The implementation of ACA takes advantage of the predictable
set-up delay of MultiCS. For each setup request, a resource sends
out probes through all free output channels of the network inter-
face, and each probe tries to build up a one-channel connection.
After one probe succeeds, the sender will wait a short period
(<(3 ⁄ D + 4) cycles) for all outstanding probes to return their
results, then combine all the established one-channel connections
together to form a wide connection for transfer.
5. Cost and performance analysis

5.1. Implementation cost

Suppose k is the number of sub-channels of a switch and m is
number of sub-networks (subm chk), and given that the total num-
ber of wires of a switch is a constant.

The critical latency of the data path of a switch is chiefly
decided by the crossbar latency, which scales with Oðlog kÞ, and
it is independent of m.

The area of a data cross-bar scales Oðk2Þ with sub-channels, and
it is again independent of m. The registers inside the data path take
a large part of area, but their number is independent of k and m.

To the latency of the control path, the allocator contributes OðkÞ
latency and the cross-bar contributes Oðlog kÞ. Combining both we
see that latency scales OðkÞwith sub-channels. Again, the latency is
independent of the number of sub-networks m.

The area of control path scales OðmÞ with sub-networks and

Oðk2Þ with sub-channels. This is because using sub-networks
causes a linear increase of certain components, e.g. FSMs. However,
using sub-channels will cause certain components, e.g. allocator,

have a k2 increase.
The synthesis results of a few configurations are listed in Table 3

with SMIC 90 nm library. The number of wires per-direction of
each configuration is the same, i.e. 8 bytes. The total power and
area per node is reported by Design Compiler and calculated at
each one’s maximum clock frequency.

Generally speaking, synthesis results are in accordance with our
expectation. For example, sub1_ch1 has the smallest area and
power consumption, and can work at the fastest clock frequency.
Sub4_ch1 has the same frequency as sub1_ch1, while sub1_ch4

consumes the largest area because it has an Oðk2Þ increase in area,
and works at the slowest clock frequency due to its OðkÞ latency
scale factor.
5.2. An analytical performance model

We propose a model for per-node maximum throughput analy-
sis. We assume that every node inside a network has the same
behavior and the network achieves the maximum throughput
when a node is always busy in requesting connection setup or
transferring data. This means that there is no idle time.

Suppose t0 is the time used for data transfer when a connection
has been established, t1 is the time consumed for a single search (it
has a bounded value in our approach), a is the failure rate (1� a is
the success rate). Suppose further that the intensity (average num-
ber of certain events per time unit) of successful transfers of a node
is kðAÞ, the intensity of a single search is kðBÞ. Based on the conclu-
sions of Palm Calculus [14], we have

kðAÞ
kðBÞ ¼ 1� a ð1Þ

The average time between two single searches is 1=kðBÞ, which
is equal to

1
kðBÞ ¼ ð1� aÞðt0 þ t1Þ þ at1 ð2Þ

As there is always either a search or a data transfer going on,
kðAÞt0 þ kðBÞt1 ¼ 1.

The average time between two successful searches is 1=kðAÞ,
and, combining (1) and (2), we obtain

1
kðAÞ ¼ t0 þ

t1

1� a
ð3Þ

According to (3), maximum normalized throughput (bandwidth
utilization rate) is

THN ¼ t0

t0 þ t1
1�a

ð4Þ

Suppose B is the bandwidth of a resource node, then the maxi-
mum throughput of each resource is

TH ¼ THN � B ¼ Bt0

t0 þ t1
1�a

ð5Þ

This simple model can explain the following intuitions:

I. As the packet size increases, t0 goes up and thus TH goes up,
i.e. CS NoC becomes more efficient with larger packets.

II. Assume a fixed packet size of M (bytes) and a total band-
width B of a resource node. If each node just has one chan-
nel, then the required time for data transfer is t0 ¼ M=B,
and from (4) we obtain the normalized throughput THN.
However, if we allocate the total bandwidth into two chan-
nels, with each one B=2 the bandwidth, then the data trans-
fer time for a packet become t00 ¼ 2t0, and the normalized
throughput becomes

THN0 ¼ kðAÞ�t00 ¼
2t0

2t0 þ t1
1�a

ð6Þ

Thus, splitting a wide channel into narrow channels increases
the maximum throughput. This conclusion is less expected but
can intuitively be explained by the fact, that if the channel band-
width is smaller, the penalty of not using this bandwidth during
setup is also smaller.

This model is a simplification. For example, in reality, a in for-
mula (4) is not a constant. It depends on a number of factors such
as t0, topology, sub-network/sub-channel configuration, connec-
tion build-up schemes and so forth. Although the model is fairly
simple we will see in the subsequent simulation results, that the
main conclusions are confirmed.
5.3. Analysis of connection building schemes

The behavior of ACA in general follows our previous intuitions,
as we will see in Section 6, e.g. Fig. 10.

For DCA, however, contrary to our intuition II, under certain cir-
cumstances, the throughput of multiple narrower channels is infe-
rior to a single wide channel. Two phenomena degrade the
performance of DCA.

Fig. 10. Influences of packet size on maximum throughputs.

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 429
5.3.1. Channel fragments
As Fig. 7 illustrates, in multiple channel configurations such as

sub2_ch1 or sub1_ch2, a DCA requirement demands a 2-channel
connection and such a connection is possibly built by using chan-
nels from two distinct routes1 (Fig. 7b)). This kind of channel alloca-
tion will generate channel fragments. Although there is a free
channel between nodes SRC and 01, it cannot be utilized by node
00 to build a connection with 2-channel requirement to node 01.
In comparison, single channel configuration sub1_ch1 has the double
channel width of sub2_ch1 or sub1_ch2. Thus, it can build a
one-channel connection to satisfy the same DCA requirement. There
is no fragment in sub1_ch1 under such a DCA requirement. Channel
fragments are the result of increased flexibility when given a higher
number of narrower channels. But for certain traffic scenarios this
increased flexibility is doing more harm than good, as we will see
in Fig. 15.

5.3.2. Superfluous connections
Connections that are setup but cannot be used, are superfluous.

Suppose we have a CS NoC as sub2_ch1, and each channel is 2-byte
wide. For example, as Fig. 8 suggests, a connection with 4 bytes
width requirement needs to send out 2 probes and set up two
one-channel connections simultaneously with DCA scheme. How-
ever, since some of the channels have already been occupied, only
one one-channel connection can be established. As a result, since
the DCA requirement cannot be satisfied, data transfer cannot be
launched and thus the established one-channel connection
becomes superfluous. The superfluous connection will be released
and then a new setup is attempted. However, the reserve and
release of these superfluous connections inside a CS NoC puts a
heavy burden on the network and degrades performance.
6. Experiments and evaluations

In this section, we will check whether experiment results are in
accordance with our design goals, intuitions and analysis. All
experiments are based on 8 � 8 mesh topology. Uniform random
traffic with Poisson arrival time distribution is used for evaluation
purpose.

In addition to the four configurations in Table. 3, configuration
sub2_ch1 is also used in our experiments. This configuration has
1 In this situation, each flit will be split into two phits at the source, with each route
simultaneously delivering only one phit. At the receiver side, it will restore a flit by
combining the two phit together.
two sub-networks, each of which has a channel width of 4 bytes,
so that the total channel width per-direction is also 8 bytes. The
clock frequencies of sub2_ch1 are the same as sub4_ch1.

We use two scenarios which use ACA and DCA, respectively, to
compare the performance of different number of sub-channels and
sub-networks, as well as the path searching algorithms. In both
scenarios we include several test cases, such as fixed packet size
case (FPS) (all packets have the same size), variable packet size
case (VPS) (all packets have random packet sizes). However, since
FPS and VPS have similar results, we just show the results of FPS.

When nothing else is specified, we use the parallel probing
algorithm by default.

6.1. Simulation method and metrics

Inside each resource node a generator generates setup requests
according to a probability and pushes them into a queue. An FSM
pops a request from the queue and sends it out when sufficient
output channels are available. Then the FSM waits for a success
or failure notification. Then it either retries the request or com-
mences the data transfer.

We have implemented an HDL model for synthesis and for area
and power evaluation. We have also built a cycle accurate SystemC
simulator which can run 10–30 times faster than the HDL model.
Any data point that is shown in the figures comes from simulation
of 250 million cycles, of which the first 250 thousand cycles are
discarded as warm up period.

Suppose b is the packet generation probability and M is the
packet size (in bytes), and clkfreq is the data path clock frequency
of a configuration, B is the bandwidth of a resource node, then
the injection rate per node (IR) is defined as

IR ¼ b �M � clkfreq

Besides throughput and delay, we use bandwidth utilization effi-
ciency (Eb), also called normalized throughput, as one of the metrics.
It is defined as

Eb ¼ Throughput ðper nodeÞ
Bandwidth ðper nodeÞ

In our simulations each configuration operates at its maximum
frequency.

6.2. ACA (adaptive channel allocation) evaluation

6.2.1. Evaluation of path searching algorithms
Three path searching algorithms are compared, which are x–y

[15], minimal adaptive [15] and parallel probing [2]. The results
in Fig. 9 suggest that parallel probing is the best path searching
algorithm for ACA scheme. E.g. at offered load 0.35, the average
packet delay of parallel probing is only 83% of minimal adaptive,
and 57% of x–y algorithm. We also have evaluated algorithms in
different channel number and configurations. Their results suggest
the same ranking of algorithms. Consequently, we choose parallel
probing as our default path searching algorithm.

6.2.2. Influences of packet size on maximum throughputs
The influence of packet size on maximum normalized through-

put is shown in Fig. 10, which suggests that as packet size
increases, the maximum normalized throughput for each configu-
ration also goes up. This result complies with intuition 1 from our
model. Thus, we may safely conclude that CS NoC is suitable for
delivering large packets. This is the reason why throughout this
paper we prefer large packets for evaluations. This conclusion
implies that applications that generate large bulk of data for com-
munication, like task allocation and migration on MPSoC, or page

Table 3
Per-node synthesis results of different CS NoCs with 8 bytes of wires per-direction.

Configuration Sub1_ch4 Sub2_ch2 Sub4_ch1 Sub1_ch1

Channel width 2 Bytes 2 Bytes 2 Bytes 8 Bytes
Num. sub-network 1 (Sub1) 2 (Sub2) 4 (Sub4) 1 (Sub1)
Num. sub-channel 4 (Ch4) 2 (Ch2) 1 (Ch1) 1 (Ch1)
Max. probe freq. (MHz) 556 740 1111 1111
Max. data freq. (GHz) 1.116 1.397 1.786 1.786
Total area (um2) 150214.5 86777.5 57599.5 30874.9
Probe path area 85791.8 53161.3 35632.8 8908.2
Data path area 64422.7 33616.2 21966.7 20133.7
Power@max. freqs. (mW) 50.1 45.0 49.5 26.8

Fig. 11. Delay influence of dividing a wide channel into narrow sub-channels
(packet size 5120 bytes).

Fig. 12. Throughout influence of dividing a wide channel into narrow sub-channels
(packet size 5120 bytes).

430 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
based virtual memory management, benefit from CS NoCs, while
applications with mostly short messages may prefer PS NoCs, as
concluded in [16].

6.2.3. Evaluation of different number of channels
The experiment results of splitting a wide channel into narrow

sub-channels is shown in Figs. 11 and 12. The packet size is fixed to
5120 bytes in this evaluation.

As shown in Fig. 12, sub4_ch1 provides higher throughput than
sub2_ch1, which in turn is better than sub1_ch1. E.g. the maximum
throughput of sub4_ch1 is about 17% higher than sub1_ch1. The
increase in maximum throughput complies with our intuition II.
We can imagine that some packets in the sub4_ch1 configuration
use only 1, 2, or 3 of the subnetworks. However, e.g. using 1 sub-
network with 1=4 the channel width compared to the sub1_ch1 con-
figuration means that the packet consists of 4 � the number of flits.
As we studied in the last section, larger packet sizes lead to higher
maximum throughput in CS NoC. Thus, using narrow sub-links will
achieve higher maximum throughput because the average packet
size counted in flits is also larger.

Regarding delay, as Fig. 11 suggests, sub1_ch1 has better packet
delay results only when the injection rate is low. This is due to the
connection setup delay contributes little to the total packet delay
because of low contention probability. In this situation, data trans-
fer delay dominates the total packet delay. Sub1_ch1 has shorter
data transfer delay due to its wider channel. However, at high
injection rate, sub4_ch1 outperforms sub1_ch1. For example, at
injection rate 3500 MB/s, the average packet delay of sub4_ch1 is
20% less than sub1_ch1.

If throughput is our main concern, the number of channels
should be maximized. However, in our design, the minimum chan-
nel width is decided by probe format, which is about 14 bits. Nar-
rower than this value complicate the probe delivering process.

6.2.4. Evaluation of different configurations (Fig. 13)
Although sub1_ch4 has more switching flexibility than sub4_-

ch1, this advantage is compensated by its slower clock frequency.
As a result, sub-network configuration (sub4_ch1) outperforms
sub-channel configurations (sub2_ch2 and sub1_ch4) in delay
and throughput. Sub1_ch1 has lower maximum throughput than
the other multi-channel configurations. However, it presents bet-
ter latency at low load for the same reasons explained above.

Bandwidth utilization efficiency discounts the difference in fre-
quency and gives a performance comparison under the assumption
that the networks operate at the same frequency. Sub1_ch4 has the
best bandwidth utilization efficiency under ACA scheme. For exam-
ple, we observed 30% higher efficiency than sub1_ch1 in ACA
scheme. Sub2_ch2 and sub4_ch1 fall in between.

Bandwidth utilization efficiency may also be useful because in
certain situations the maximum clock frequency differences of
configurations are not sharp. For example, as reported in [25],
when implemented in FPGA, a CS NoC with SDM channels roughly
has the same maximum clock frequency no mater if 1 or 4
sub-channels are used. In situations like this, sub1_ch4 could offer
better performance than other configurations.

We also tested under ACA scenarios with variable size of pack-
ets. The comparison among different configurations basically
shows consistent results and is thus omitted here.
6.2.5. Comparison between ACA scheme and one-channel-per-
connection (OCPC) scheme

OCPC is compared with ACA by using configuration sub4_ch1,
as Fig. 14 suggests, at low load ACA offers much better average
packet delay. E.g. at load 0.02, average packet delay with ACA is
170 probe clock cycles, while it is 490 cycles with OCPC. At very
high load, OCPC represents slightly higher bandwidth utilization
efficiency, and its maximum bandwidth utilization efficiency is
0.283, while for ACA it is 0.271.

The comparison result obeys our design goals of ACA in Sec-
tion 4. At low load when data transfer delay dominates, ACA can
significantly shorten the delay since the majority of packets are
delivered by wide connections. At high load, due to contention,
the probability of building a connection containing multiple chan-
nels is low and the majority of connections contain one channel
only. Thus, the average packet length in flits by using ACA at high
load is just slightly smaller than using one-channel-per-connection

Fig. 13. Performance results of scenario ACA–FPS (packet size 5120 bytes).

Fig. 14. Comparison between ACA scheme with traditional OCPC scheme (packet
size 1280 bytes).

Fig. 15. Influence of dividing a wide channel into narrow sub-links for DCA transfer
(packet size 5120 bytes).

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 431
scheme. As suggested by intuition II, the maximum bandwidth uti-
lization of ACA drops slightly (smaller than 5% in this experiment).
6.3. DCA (deterministic channel allocation) evaluation

As mentioned before, ACA puts more emphasis on performance,
while DCA focuses on desired throughput and flit width.
6.3.1. Evaluation of different number of channels
Previously, we showed that ACA benefits from the usage of mul-

tiple channels. However, the following example with DCA tells a
different story.

Fig. 15 shows the result of a simulation with the exact connec-
tion width requirement of 8 bytes and a fixed packet size of 5120
bytes. In this case, as the latency curves suggest, more channels
lead to higher delay.

This observation complies with our analysis in Section 5.3.
Sub4_ch1 and sub2_ch1 perform worse than sub1_ch1, since
sub1_ch1 generates neither channel fragments nor superfluous
connections. Sub4_ch1 performs worse than sub2_ch1 because it
generates more superfluous connections.

In addition, it is worth noting that, if less than half of the band-
width can be utilized, splitting the wide channel into sub-links
seems to be beneficial, even without special care on channel frag-
ments and superfluous channels. In Fig. 16, the exact throughput
requirement is 4 bytes/cycle. Because only half of the channel
width in sub1_ch1 can be utilized for data transfer, sub1_ch1 is
inferior to the other multi-channel configurations. This result also
suggests that, according to the connection width requirement,
proper channel partitioning could still be beneficial.

6.3.2. Evaluation of different configurations
For delay and throughput, both Figs. 16 and 17 demonstrate

that sub-network configuration sub4_ch1 outperforms
sub-channel configurations sub2_ch2 and sub1_ch4. These results
are similar to those under ACA. However, in Fig. 17, the channel
utilization efficiency of sub1_ch4 is worse than sub2_ch2, which
is worse than sub4_ch1. This observation opposes the result with
ACA and is not quite expected. It seems that switching flexibility
becomes a handicap in this DCA case.

The reason for this phenomenon is that sub1_ch4 and sub2_ch2
are more likely to generate superfluous connections. Due to the
increased switching flexibility, sub1_ch4 and sub2_ch2 have
higher chances to set up a one-channel connection, which leads
to a higher burden on the network due to set up and release of
superfluous connections.

Generally speaking, as the comparison of Figs. 16 and 17 with
Fig. 13 suggests, we may conclude that ACA offers better perfor-
mance than DCA scheme. However, as mentioned before, DCA
offers exactly predefined connection width and throughput.

We also tested DCA scenarios with variable size of packets. The
comparison among different configurations basically shows consis-
tent results and is thus omitted here.
7. Related work

The usage of sub-network and sub-channel in PS NoC has been
studied during the past. For example, the cost and effect of intro-

Fig. 16. Performance results of scenario DCA-FPS (packet size 2560 bytes, connection width requirement is 4 bytes).

Fig. 17. Performance results of scenario DCA-FPS (packet size 5120 bytes, connection width requirement is 8 bytes).

432 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
ducing sub-networks into PS NoC has been studied by Yoon et al. in
[17,18]. The pros and cons of using sub-channels in PS NoC has also
been investigated in [3]. Besides, work [19,20] intend to increase
the switching flexibility between virtual channels and the output
ports of PS NoCs. In [19], several separate cross-bars are used
inside one router, so that each virtual channel (VC) can choose
between multiple crossbars to reach an output. In [20], a new
switching layer is introduced at each input port, so that multiple
VCs of an input port can be connected to different outputs at the
same time.

However, compared with PS NoC, the usage of sub-network and
sub-channel in CS NoC is not fully exploited and evaluated. Actu-
ally, in the past, the CS NoC architecture assumed in many papers
(e.g. [2,11,21]) has just one duplex-channel between every two
neighboring nodes. They did not consider the situation when a
CS NoC can have multiple physical channels between two nodes.

Although some works [4,22] design CS NoCs with multiple
channels and organize them in a sub-channel (SDM) way, the con-
sequences of applying multiple channels in CS NoCs are still not
well studied. For example, although [4,22] have multiple channels,
packets are still delivered by following connections with only
1-channel width.

Another import aspect about CS NoC is connection setup, since a
CS NoC requires a connection should be established before data
transfer begins. According to the connection search and setup
method, CS NoCs can be classified into two categories: dynamic
setup or static setup. Static setup methods schedule connections
at compilation time. As a result, they [23,24] may not well support
applications like H.264 [25] with requirements for dynamic com-
munication setups. Therefore, in this paper, we only focus on
dynamic methods which search and setup connections at run time.

Dynamic methods can be further classified into centralized or
distributed methods. Generally speaking, centralized set-up like
[21,26] has two disadvantages. Firstly, the central schedule node
needs to receive setup/release requests and distribute allocation
decisions from/to the entire network. Such multiple-to-one and
one-to-multiple traffic pattern is likely to become the system bot-
tleneck which the number of nodes inside a NoC grows [27]. Sec-
ondly, since retrying of failed requests causes the blockage of the
following requests, failed setup requests are usually dropped in
centralized setup methods. Thus, we focus on decentralized setup.

Distributed setup can be implemented by sending configuration
packets [4,28,29] or by a probing search approach [1,11,6,5].

Sending configuration packets requires a separate PS (packet
switched) NoC to deliver configuration messages like set-up,
tear-down and Ack/Nack during a connection setup procedure. In
our view, this approach suffers from four major drawbacks. Firstly,
using an additional PS NoC for connection set-up is an unnecessary
overhead. Secondly, set-up, tear down and Ack/Nack packets of a
connection must be routed by pre-determined routing algorithm
to ensure them on the same connection. For example, [4,29] use
deterministic routing algorithm, and in [28], source based routing
information has to be carried by each configuration packet. How-
ever, such pre-determined routing algorithm is a sub-optimal
choice among routing algorithms. Thirdly, compared with probing
search, tear-down and Ack/Nack signals have to be sent in the form
of packets. These packets will contend with set-up packets inside
the PS NoC. There is typically no delay guarantee for configuration
packets in the PS network, rendering the connection set-up proce-
dure unpredictable. Fourthly, this approach does not scale well.
The auxiliary PS NoC has fixed throughput, since each output port
of a switch just allows to deliver one setup packet at a time. How-
ever, if there are many sub-channels in a CS NoC, and since each
sub-channel requires a separate setup packet for connection con-
figuration, this will significantly increase the number of setup
packets as observed in [4].

S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434 433
Compared with above mentioned shortcomings of a packet con-
figuration approach, probing search is the superior choice because
of its efficiency in wire usage and connection setup procedure. The
concept of the probing search was first proposed in [5]. Pham et al.
[11,6] developed a backtracking path searching algorithm, which
reportedly has better performance than [5]. Another contribution
of [11,6] is that a source synchronized data transfer mechanism
is introduced into CS NoCs, so that separate clocks can be applied
to connection set-up and data transfer. [2] developed a parallel
probing method for CS NoC. It can complete a search over all pos-
sible paths within O(n) time complexity where n is the geometric
distance between source and destination. They demonstrated
superior performance of this parallel probing algorithm compared
to Pham’s backtracking algorithm [11] by experiments. But their
channel allocation mechanism [2] is too complicated for
multi-sub-channel usage.

The probing search approaches in all aforementioned works
[1,11,6,5] are only implemented on CS NoC with a single channel
between two neighboring nodes.

In this paper, we extend the parallel probing search method [2]
to multiple sub-channels and sub-networks and study cost and
performance of several configurations with sub-channels and
sub-networks among 1 and 4.
8. Conclusion and future work

We have implemented MultiCS, a CS with multiple
sub-channels and sub-networks with a parallel probing setup algo-
rithm to study the consequences of splitting a wide channel into
narrow channels. The design space of multi-channel CS NoC is
explored from two angles: the channel number, and channel con-
figurations. We have reached the following main conclusions:

A. Given a number of wire resources for each node inside a CS
NoC, with ACA scheme, the thinner the channel width with
more channels, the higher the throughput. However, the
latency for data transfer also increases by using thinner
channels. Sub-channels (SDM channels) consume much
more resources than sub-networks. When splitting a wide
channel into n narrow channels, organizing those channels
into sub-networks gives an OðnÞ increase in area, and the
critical latency is unchanged. However, organizing those
channels in sub-channels increases the area by Oðn2Þ, and
the delay by OðnÞ. Furthermore, our experiments suggest
that sub-networks offer better performance than
sub-channels. Although sub-channels can achieve better
channel efficiency due to higher switching flexibility, this
is only useful in special situations. Thus, in general
sub-networks are more efficient than sub-channels.

B. We can build a connection consisting of multiple channels
with different schemes. The DCA offers desired and prede-
fined throughput and flit width, but channel fragments and
superfluous connections are two obstacles for DCA. Because
of this, under certain width requirements, the performance
of using multiple channels is even worse than using one sin-
gle wide channel. ACA generally offers better performance
than DCA. However, although ACA provides minimum con-
nection width guarantee (one channel width), the actual
width of a connection by applying ACA cannot be known
beforehand. The connection width is decided by the success
probability of setup probes, which depends on the dynamic
channel use.

Our future work will study techniques to avoid channel frag-
ments and superfluous connections, in depth evaluation of
multi-channel CS NoC, and implementation and evaluation of
mixed packet and circuit switched NoCs.
References

[1] A. Leroy, P. Marchal, A. Shickova, F. Catthoor, F. Robert, D. Verkest, Spatial
division multiplexing: a novel approach for guaranteed throughput on NoCs,
in: Proceedings of the IEEE/ACM/IFIP International Conference on Hardware/
Software Codesign and System Synthesis, 2005, pp. 81–86.

[2] S. Liu, A. Jantsch, Z. Lu, Parallel probing: dynamic and constant time setup
procedure in circuit switching NoC, in: proceedings of Design, Automation Test
in Europe Conference Exhibition (DATE’12), 2012, pp. 1289–1294.

[3] C. Gomez, M. E. Gomez, P. Lopez, J. Duato, Exploiting wiring resources on
interconnection network: increasing path diversity, in: Proceedings of
Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’08), 2008, pp. 20–29.

[4] A.K. Lusala, J.-D. Legat, Combining SDM-based circuit switching with packet
switching in a router for on-chip networks, Int. J. Reconfigurable Comput. 2012
(2012) 1–16.

[5] D. Wiklund, D. Liu, SoCBUS: switched network on chip for hard real time
embedded systems, in: Proceedings of Parallel and Distributed Processing
Symposium, 2003, p. 8.

[6] P.-H. Pham, P. Mau, J. Kim, C. Kim, An on-chip network fabric supporting
coarse-grained processor array, IEEE Trans. Very Large Scale Integr. VLSI Syst.
21 (99) (2013) 178–182.

[7] D.U. Becker, W.J. Dally, Allocator implementations for network-on-chip
routers, in: Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, 2009, pp. 52:1–52:12.

[8] S. Liu, A. Jantsch, Z. Lu, A fair and maximal allocator for single-cycle on-chip
homogeneous resource allocation, IEEE Trans. Very Large Scale Integr. VLSI
Syst. 22 (10) (2014) 2229–2233.

[9] D. Walter, S. Hoppner, H. Eisenreich, G. Ellguth, S. Henker, S. Hanzsche, R.
Schuffny, M. Winter, G. Fettweis, A source-synchronous 90 Gb/s capacitively
driven serial on-chip link over 6 mm in 65 nm CMOS, in: proceedings of Solid-
State Circuits Conference Digest of Technical Papers (ISSCC’12), 2012, pp. 180–
182.

[10] D. Schinkel, E. Mensink, E. Klumperink, E. van Tuijl, B. Nauta, Low-power, high-
speed transceivers for network-on-chip communication, IEEE Trans. Very
Large Scale Integr. VLSI Syst. 17 (1) (2009) 12–21.

[11] P.-H. Pham, J. Park, P. Mau, C. Kim, Design and implementation of backtracking
wave-pipeline switch to support guaranteed throughput in network-on-chip,
IEEE Trans. Very Large Scale Integr. VLSI Syst. 20 (2) (2012) 270–283.

[12] A.K. Lusala, J.-D. Legat, A SDM-TDM-based circuit-switched router for on-chip
networks, ACM Trans. Reconfigurable Technol. Syst. 5 (3) (2012) 15:1–15:22.

[13] J. Rose, S. Brown, Flexibility of interconnection structures for field-
programmable gate arrays, IEEE J. Solid-State Circuits 26 (3) (1991) 277–282.

[14] J.Y. Le Boudec, Performance Evaluation of Computer and Communication
Systems, Epfl Press, 2011.

[15] W.J. Dally, B. Towles, Principles and Practices of Interconnection Networks,
Morgan Kaufmann, 2003.

[16] S. Liu, A. Jantsch, Z. Lu, Analysis and evaluation of circuit switched NoC and
packet switched NoC, in: Proceedings of Euromicro Conference on Digital
System Design (DSD’13), 2013, pp. 21–28.

[17] Y. J. Yoon, N. Concer, M. Petracca, L. Carloni, Virtual channels vs. multiple
physical networks: a comparative analysis, in: Proceedings of IEEE Design
Automation Conference (DAC’10), 2010, pp. 162–165.

[18] Y.J. Yoon, N. Concer, M. Petracca, L.P. Carloni, Virtual channels and multiple
physical networks: two alternatives to improve NoC performance, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 32 (12) (2013) 1906–1919.

[19] S. Noh, V.-D. Ngo, H. Jao, H.-W. Choi, Multiplane virtual channel router for
network-on-chip design, in: Proceedings of First International Conference on
Communications and Electronics (ICCE’06), 2006, pp. 348–351.

[20] F. Gilabert, M.E. Gómez, S. Medardoni, D. Bertozzi, Improved utilization of NoC
channel bandwidth by switch replication for cost-effective multi-processor
systems-on-chip, in: Proceedings of the ACM/IEEE International Symposium
on Networks-on-Chip (NOCS’10), 2010, pp. 165–172.

[21] M. Winter, G.P. Fettweis, Guaranteed service virtual channel allocation in NoCs
for run-time task scheduling, in: Proceedings of Design, Automation Test in
Europe Conference Exhibition (DATE’11), 2011, pp. 1–6.

[22] A. Leroy, D. Milojevic, D. Verkest, F. Robert, F. Catthoor, Concepts and
implementation of spatial division multiplexing for guaranteed throughput
in networks-on-chip, IEEE Trans. Comput. 57 (9) (2008) 1182–1195.

[23] R. Stefan, A. Molnos, K. Goossens, dAElite: a TDM NoC supporting QoS,
multicast, and fast connection set-up, IEEE Trans. Comput. PP (99) (2012) 1.

[24] K. Goossens, J. Dielissen, A. Radulescu, AEthereal network on chip: concepts,
architectures, and implementations, IEEE Des. Test Comput. 22 (5) (2005)
414–421.

[25] N. Ma, Z. Lu, L. Zheng, System design of full HD MVC decoding on mesh-based
multicore NoCs, Microprocess. Microsyst. 35 (2) (2011) 217–229.

[26] M. Winter, G.P. Fettweis, A network-on-chip channel allocator for run-time
task scheduling in multi-processor system-on-chips, in: Proceedings of
EUROMICRO Conference on Digital System Design Architectures, Methods
and Tools (DSD’08), 2008, pp. 133–140.

http://refhub.elsevier.com/S1383-7621(15)00083-1/h0020
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0020
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0020
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0030
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0030
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0030
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0040
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0040
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0040
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0050
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0050
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0050
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0055
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0055
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0055
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0060
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0060
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0065
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0065
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0070
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0070
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0070
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0075
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0075
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0075
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0090
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0110
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0110
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0110
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0115
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0115
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0120
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0125
http://refhub.elsevier.com/S1383-7621(15)00083-1/h0125

434 S. Liu et al. / Journal of Systems Architecture 61 (2015) 423–434
[27] S. Liu, A. Jantsch, Z. Lu, Parallel probe based dynamic connection setup in TDM
NoCs, in: Proceedings of the Conference on Design, Automation & Test in
Europe (DATE’14), 2014, pp. 239:1–239:6.

[28] J. Lim, E. Hunt Siow, Y. Ha, P.K. Meher, Providing both guaranteed and best
effort services using spatial division multiplexing NoC with dynamic channel
allocation and runtime reconfiguration, in: Proceedings of International
Conference on Microelectronics (ICM’2008), 2008, pp. 329–332.

[29] A.K. Lusala, J.-D. Legat, Combining sdm-based circuit switching with packet
switching in a NoC for real-time applications, in: Proceedings of IEEE
International Symposium on Circuits and Systems (ISCAS’11), 2011, pp.
2505–2508.

Shaoteng Liu received the B.Sc. degree from Fudan
University, Shanghai, China, in 2006. He received his
M.Sc. degree from Royal Institute of Technology (KTH),
Stockholm in 2010. He is currently a PHD student at
KTH. His current research interests include system
modeling, performance analysis, embedded operating
system, reconfigurable computing, network-on-chip
and software defined network.
Axel Jantsch received the Dipl.Ing. and Dr.Tech. degrees
from the Technical University of Vienna, Vienna, Aus-
tria, in 1988 and 1992, respectively. He was a professor
of electronic system design with the Royal Institute of
Technology, Stockholm, Sweden, from December 2002
to September 2014. He is currently a professor in sys-
tem on chip with TU Wien, Vienna, Austria. His current
research interests include VLSI design and synthesis,
system-level specification, modeling and validation,
HW/SW co-design and co-syntheses, reconfigurable
computing, and networks-on-chip.
Zhonghai Lu received the B.Sc. degree from Beijing
Normal University, Beijing, China, in 1989, and the M.Sc.
and Ph.D. degrees from KTH Royal Institute of Tech-
nology, Stockholm, Sweden, in 2002 and 2007, respec-
tively. He is currently an Associate Professor with KTH.
His research interests include Network-on-Chip,
Embedded Systems, Computer Architecture, and
Internet-of-Things. He has published over 130
peer-reviewed papers in transactions, journals and
international conferences in these areas.

	MultiCS: Circuit switched NoC with multiple sub-networks and sub-channels
	1 Introduction
	2 Motivation
	3 Architecture of MultiCS using parallel probing setup
	3.1 Overview of a switch
	3.2 Path searching algorithm
	3.3 Operation flow
	3.4 Detailed switch architecture
	3.4.1 Source synchronized data transfer
	3.4.2 Predictable delay
	3.4.3 Configurable sub-channels and sub-networks

	4 Connection building schemes in MultiCS
	5 Cost and performance analysis
	5.1 Implementation cost
	5.2 An analytical performance model
	5.3 Analysis of connection building schemes
	5.3.1 Channel fragments
	5.3.2 Superfluous connections

	6 Experiments and evaluations
	6.1 Simulation method and metrics
	6.2 ACA (adaptive channel allocation) evaluation
	6.2.1 Evaluation of path searching algorithms
	6.2.2 Influences of packet size on maximum throughputs
	6.2.3 Evaluation of different number of channels
	6.2.4 Evaluation of different configurations (Fig. 13)
	6.2.5 Comparison between ACA scheme and one-channel-per-connection (OCPC) scheme

	6.3 DCA (deterministic channel allocation) evaluation
	6.3.1 Evaluation of different number of channels
	6.3.2 Evaluation of different configurations

	7 Related work
	8 Conclusion and future work
	References

