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ABSTRACT The academia and industry have been pursuing network-on-chip (NoC) related research
since two decades ago when there was an urgency to respond to the scaling and technological challenges
imposed on intra-chip communication in SoC designs. Like any other research topic, NoC inevitably goes
through its life cycle: A. it started up (2000-2007) and quickly gained traction in its own right; B. it then
entered the phase of growth and shakeout (2008-2013) with the research outcomes peaked in 2010 and
remained high for another four/five years; C. NoC research was considered mature and stable (2014-2020),
with signs showing a steady slowdown. Although from time to time, excellent survey articles on different
subjects/aspects of NoC appeared in the open literature, yet there is no general consensus on where we
are in this NoC roadmap and where we are heading, largely due to lack of an overarching methodology
and tool to assess and quantify the research outcomes and evolution. In this paper, we address this issue
from the perspective of three specific complex networks, namely the citation network, the subject citation
network, and the co-authorship network. The network structure parameters (e.g., modularity, diameter, efc.)
and graph dynamics of the three networks are extracted and analyzed, which helps reveal and explain the
reasons and the driving forces behind all the changes observed in NoC research over 20 years. Additional
analyses are performed in this study to link interesting phenomena surrounding the NoC area. They include:
(1) relationships between communities in citation networks and NoC subjects, (2) measure and visualization
of a subject’s influence score and its evolution, (3) knowledge flow among the six most popular NoC subjects
and their relationships, (4) evolution of various subjects in terms of number of publications, (5) collaboration
patterns and cross-community collaboration among the authors in NoC research, (6) interesting observation
of career lifetime and productivity among NoC researchers, and finally (7) investigation of whether or not
new authors are chasing hot subjects in NoC. All these analyses have led to a prediction of publications,
subjects, and co-authorship in NoC research in the near future, which is also presented in the paper.

INDEX TERMS Networks-on-chip, science of science, complex network
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I. INTRODUCTION

At the turn of the 21! century, it became a pressing issue that
shared bus interconnection could not keep up with the scala-
bility and bandwidth requirements essential for then system-
on-chip (SoC) designs featuring tens or even hundreds of
cores. In response, a few new interconnection architectures
and technologies were considered and emerged. Noticeably,
on-chip packet-switched micro-network of interconnects,
later coined by the academic and industry communities as
network-on-chip (NoC) architecture, stood out and has been
accepted as a viable solution to on-chip interconnection after
20 years of active research and development. More than ever,
NoC plays an even more important role in today’s CPU-
and GPU-based many-core chips (e.g., Epiphany-V has 1024
64-bit RISC cores), and particularly so, in emerging neural
network accelerators with tens or even hundreds or thousands
of cores (e.g., 400,000 AI cores exist in Celebras) that need
to communicate with each other.

Set to provide scalable, high bandwidth, and low latency
interconnection for various SoC systems, NoC actually en-
compasses a wide array of research topics and paradigms,
ranging from those inherited from traditional computer net-
working (e.g., topology, routing, etc.) to the latest ones that
are aligned with machine learning applications and emerging
technologies. Over its twenty years of timespan, the entire
area of NoC has gone through three phases and stages, as
shown in Figure 1: the start-up (2000-2007), the growth
and shakeout (2008-2013), and the mature and stable (2014-
2020), broadly measured by the numbers of publications and
new authors per year.

Over the past twenty years, a number of good survey pa-
pers covering one or a few specific aspects of NoC, including
application mapping [1]-[3], to topology design and routing
algorithms [4], to fault tolerant NoC [5], to optical NoC [6],
[7], to low power design [8], [9], NoC for QoS [10], [11],
testing [12], simulators [13], and reconfigurable network
[14], and many others, have been published. Since these
survey papers only focus on specific research subjects/topics,
by human experts and based on the authors’ own knowledge
of the subjects, these surveys did not provide an overarching
and objective view of the NoC, and the surveys did not
quite follow a data-driven analysis method to quantify the
dynamics of NoC research and make a sound prediction of
what is lying ahead.

Based on a methodology that marks a significant departure
from that was adopted by the existing NoC survey papers,
this paper instead conducts a data-driven analysis of the
evolution of publications, subjects, and co-authorships of the
NoC area from the perspective of complex network [15]. To
this end, we construct three networks, the citation network,
subject citation network, and co-authorship network, that
can represent three key elements of NoC research, namely
publications, subjects, and authors. Furthermore, we exam-
ine the network structures (e.g., network diameter, cluster
coefficient, average degree, efc.) and the dynamics of these
networks. This exercise shall not only help us quantify the
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FIGURE 1. Numbers of publications in NoC area from Y2000 to Y2020. (b)
Numbers of new authors entering the NoC area from Y2000 to Y2020. An
author is recognized as a new author in the year when his/her first publication
got published or made publicly accessible. Name ambiguity is handled by
checking the names and the affiliations altogether.

progress made in NoC, the shift of research topics over the
time, and career development of both new and established
NoC researchers, but also create an opportunity to dig out
the reasons behind these accomplishments and changes that
have happened in the past 20 years. One specific goal of this
study is to track the knowledge flow among different subjects
and how NoC research was shaped by other factors, which
include the relationship between subjects, and the collabora-
tion patterns among authors, and the authors’ preferences in
choosing specific NoC subjects.

The rest of the paper is organized as follows. Section 2
takes a glimpse of the 20 years of research on NoC. Section 3
goes on to survey the related work. In Section 4, the analysis
methodology followed in this paper is presented, followed
by the network structure and evolution of NoC publications,
NoC subjects, and co-authorship as detailed in Sections 5,
6, and 7, respectively. In these sections, we also provide the
analysis regarding the reasons that drive the formation and
evolution of the networks/data. Actually, the data and the
analyses in Sections 5 through 7 lay down the ground for
the prediction for the evolution of publications, subjects, and
co-authorship, as presented in Section 8. Finally, Section 9
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summarizes the paper.

The contributions of the paper as follows.

1) A data-driven complex network analysis is performed
to study the evolution of NoC research over its entire 20
years of existence. A longitudinal study by nature, this
study is based on the build of three complex networks,
namely citation network, subject citation network, and
co-authorship network.

2) Network structures and dynamics of the three networks
are analyzed to reveal the evolution of publications,
subjects, and author behaviors. A few interesting re-
sults about NoC area have been thus unveiled. (i) Six
subjects, i.e., topology, routing, flow control, router
design, mapping, and emerging technology have been
identified as the most influential subjects in NoC re-
search, and they are found highly related to each
other. The knowledge flow among them can be clearly
measured with the metrics defined in this study. (ii)
A few subjects, noticeably reliability, are becoming
increasingly influential as time goes by, while some
others, such as physical design, is gradually losing its
momentum. (iii) The collaboration among the authors
shows interesting motifs (sub-graphs that frequently
appear in a network), indicating different collaboration
patterns.

3) Researchers, not limited to those working in the NoC
area, can adopt this methodology, along with use of the
analysis tools developed in this study, to understand
and gauge the scientific research areas of their interest
and have the ability to make the predictions about the
future directions.

Il. TWENTY YEARS OF RESEARCH ON NOC: A REVIEW
The start-up of the NoC area was marked by a few highly
influential early works (e.g., [16], [17]), rightfully recog-
nizing the fact that interconnection infrastructure based on
conventional bus, crossbar, or point-to-point connections
could no longer keep up with the scalability, bandwidth, and
efficiency requirements as more processing cores (elements)
were integrated into the same silicon. As a viable alternative,
NoC enables efficient communication among the processors,
memory units, and IO units with data packetization and trans-
mission in a manner as similar to that in computer networks,
which was poised to provide high bandwidth, low latency,
and scalability. But since there are physical limits imposed by
material and layout, there are unique requirements for NoC in
term of size, system performance, and power consumption.
A generic NoC architecture, shown in Figure 2, is made of
blocks like tiles and links that are set to allow packetized data
to flow through. Each tile is composed by a core, a memory
unit, a network interface (NI), and a router. The routers
are connected to form a network topology. This generic
NoC architecture often in a real setting needs to include
additional features and/or be tailored to handle diversified
traffic patterns and meet the traffic demands. The NoC re-
search has been driven by three main factors, including 1)
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FIGURE 2. lllustration of a generic NoC system that has multiple routers and
links. Each processing element interfaces with its attached router through a
network interface (NI). A router typically has a number of components like
input/output buffers, routing computation unit, and switching fabric. Core is the
processor core. Mem is the local memory or L1 cache or L2 cache bank. R
refers to router.

demands of emerging applications, 2) emergency of various
architectures, and 3) emerging technologies.

(1) In the past 20 years, a myriad of new applications
have emerged, ranging from embedded systems to cloud
computing. These emerging applications can also be broadly
classified into multimedia processing, machine learning and
Al, graph-based computing, telecommunications, efc., and
they exhibit vastly different needs in terms of bandwidth
and/or latency.

(2) Different NoC architectures have different levels of
support for different traffic patterns and demands. For exam-
ple, in a cache coherent many-core system, its data traffic
relies on some coherent protocols, including read request,
write invalidate, etc., and such traffic is one-to-many in
nature. GPU, on the other hand, sees a great deal of many-to-
few-to-many (i.e., from tiles to memory controllers and back
to tiles) type of traffic. In addition, the rise in FPGA-based
Al accelerators calls for more efficient and scalable NoC to
support broadcasting, multicasting, and many-to-one types of
traffic.

(3) The last a couple of decades have witnessed great
improvements in semiconductor material and frontier tech-
nologies, including silicon photonics, wireless technologies,
transmission line, interposer, and 3D integration, which have
opened up new opportunities to build non-electrical, or wire-
less, or true 3D NoCs. There has been a hype and hope
that, 3D integration that uses through silicon vias (TSV) or
monolithic inter-layer vias (MIV) for vertical interconnection
can significantly reduce the lengths of the global wire. As a
more radical approach, wireless NoC can provide a multicast-
based interconnection without the need of wire links, which
is poised to connect large systems with extremely low la-
tency. Silicon photonics, either on chip or in package, provide
low power and high bandwidth communications for cores
or dies. Interposer-level networks have become one of the
most popular research topics in recent a few years, as chiplet
design paradigm has dominated the design landscapes. The
new chiplet-based processors that rolled out from Intel and
AMD use SERDES (serializer/deserializer) or transmission
line sitting on an interposer for data communications.

Above three research drivers actually impacted NoC re-
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search quite differently over the time. From 2000-2007,
research and development of NoC were in their start-up stage,
and the focus was mostly on the network structure design
(topology, routing, flow control, etc.), application mapping,
design space exploration and tools. All the major early works
were capped by a survey paper that was published in 2006
[18]. From 2008-2013, as NoC research hit its peak, the
dominant subjects shifted to emerging technologies, new
applications, simulators, new NoC architectures, power man-
agement, etc. Various important NoC architectures, including
dimension decomposed router [19], virtual channel (VC)
design and express VC design [20], 3D NoC [21], WiNoC
[22], [23], optical NoC [6], all came to light during this time.
Once the NoC research enters its next phase (2014-2020),
NoC for Al accelerators, and many new subjects like approx-
imate NoC, security, network on interposer in chiplet based
systems have dominated the publication and development
landscape. The timeline (history) of the NoC research and
the changing research topics will be qualitatively analyzed in
later sections.

lll. RELATED WORK

A. SURVEY PAPERS IN THE NOC AREA

Several survey papers were published, covering many aspects
of NoC research, ranging from application mapping [1]-[3],
topology design and routing algorithms [4], [18], [24], [25],
Sfault tolerant NoC [5], optical NoC [6], [7], low power design
[8], [9], NoC for QoS [10], [11], testing [12], simulators
[13], to reconfigurable network [14], etc. However, all these
survey papers are based on the domain knowledge of the
human experts (authors). They do not follow a qualitative
approach to classify and merit the exiting research merely
based on the survey contributors’ own understanding of the
subjects at hand. This paper differs from those survey papers
as we aim to provide a comprehensive view of the NoC
publications from a complex network perspective, and thus,
in a more objective manner, to reveal how the NoC evolves,
what relationships among different NoC subjects hold, and
what collaboration features we can perceive within the NoC
community by analysing the network structure and dynamics
quantitatively.

B. SCIENCE OF SCIENCE, IN THE EYES OF COMPLEX
NETWORK

Science of science studies what science is really about or
what constitutes a specific discipline. Specifically, it iden-
tifies the features or dynamics of a specific discipline of
science or the whole science, focusing on how knowledge,
publications, and scientist behaviors would evolve [15]. In
the literature, complex networks or complex systems, as a
powerful mathematical tool, have been applied to empower
data-driven analysis of science of science [26]-[30]. Of the
many complex networks that can be built, citation network
and co-authorship network are the two most commonly used
[31]-[34], while other kinds of networks, such as network of
subjects and network of keyword occurrence, can also pro-
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vide a useful perspective in studying the flow of knowledge
and evolution of a scientific area. For instance, the authors
in [35], used the conference publications in bio-informatics
to study the evolution of that area. [36] built a network of
academic conferences to track the changes of research topics
and the dissemination of scientific ideas. [37] modeled the
co-authorship network evolution, while [38] modeled the
population of the computer science community using the
DBLP dataset.

IV. ANALYSIS METHODOLOGY

Following the methods established in science of science,
we investigate how the overall properties of publications,
research subjects, and author behaviors in the NoC area have
changed over time. Figure 3 shows the analysis methodology
adopted in this paper.

« First, preparing the dataset. All the NoC related publica-
tions presented in the five top conferences (DAC, DATE,
HPCA, ISCA, and NoCS) as well as high-impact NoC
papers (being cited at least 100 times from Microsoft
Academic Search, including both journal and confer-
ence papers), are collected from the IEEE Xplore and
ACM digital libraries. We adopted 100 as the threshold
for citation count to determine if a paper is considered
as a high impact paper. The highest citation count of
an NoC paper is found around 5000, and most of the
papers understandably receive much fewer citations.
We picked up the threshold to be 100 such that the
high impact papers account for around 20% of the total
dataset, which follows the Pareto Principle or the 20/80
rule, with the assumption that the top 20% most cited
papers are the most influential ones. Microsoft has a
team working on science of science with many publi-
cations. They also released an open source dataset for
academic relationship, see https://www.microsoft.com/
en-us/research/project/microsoft-academic-graph/. We
thus use Microsoft Academic Search for convenience.
This does not exclude people from using Google
Scholar or any other similar service for the same analy-
sis and prediction purposes. DAC, DATE, HPCA, ISCA,
and NoCS are generally agreed as the most important
conferences by NoC researchers, and all the major
contributions in NoC research over the past 20 years
appeared in these conferences. We can certainly include
more papers from other conferences and journals in
the future. There are a total of 997 articles that fall
into these categories, and the bibliometric information
of all these publications, such as titles, author lists,
author affiliations, abstracts, keywords, references, and
full texts, are downloaded from the ACM and IEEE
Xplore digital libraries. As conference proceedings are
a timely medium to publish new ideas than journals,
and most influential conference papers later on are
converted/extended to appear in journal formats, the
proceedings of the flagship conferences are justifiably
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determined to allow us to grabble with the evolution of
NoC research thoroughly and timely.

o Second, building an NoC subject tree. We build a subject
tree that presents the NoC subjects in a hierarchical
manner. The tree takes NoC as the root node, and
each topic in NoC can be divided into several smaller
subtopics at the next levels, until there is no point to
divide a subtopic further. Figure 4 shows a snapshot
of the NoC subject tree, where the level 1 branches
are wireline NoC and emerging technology (including
optical, wireless, etc.). Under wireline NoC there are ap-
plication, system, networking, micro-architecture, and
circuit and physical layers. Note that usually we use
the tags at the bottom of the subject tree (leaf nodes)
to annotate articles, but emerging technology alone be-
comes a tag instead of its subtopics. The full sub-
ject tree is available at https://github.com/FCAS-SCUT/
Science_of_Science_NoC. Since this subject tree has
been checked by multiple NoC researchers, there is a
high degree of confidence of its accuracy and com-
pleteness. Terms in this subject tree are the subjects in
NoC, which serves as a dictionary for subject labeling.
That is, the text processing algorithm in Appendix uses
this dictionary to automatically label each paper for
its subject(s). Note that a paper may be affiliated with
multiple labels as it may fall into multiple subject areas.

o Third, building three complex networks and analysing
them.

1) The citation network is built based on the citation
relations between the NoC publications. Both the
network structure and dynamics are studied.

2) To get the evolution and interrelationship of sub-
jects in NoC, it is inadequate to just examine the
citations between publications. Rather, by aggre-
gating the citation relations to the subjects at dif-
ferent levels, the subject citation network needs to
be built. Again, its network structure and dynamics
are analyzed.

3) The co-authorship network is further built, to un-
derstand the behaviors of the NoC researchers,
which also contributes to our knowledge about the
evolution in NoC research.

Download Input data set > Citation network
Publications: title, Dynamics
abstract, authors, etc. +

Preprocessing

Evolution of
publications

Subject citation
A 4

Subject N network Evolution of

Database H Jabeling Dynamics subjects
Building
networks

Co-authorship
Ly network
Author behavior

Evolution of
co-authorship

FIGURE 3. The analysis methodology that is followed in this paper.

We have developed corresponding software tools including
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data processing program and analysis algorithms for the
whole process shown in Figure 3. These tools can be easily
extended to analyze the evolution of other research areas,
and the source code can be found in https://github.com/
FCAS-SCUT/Science_of_Science_NoC.

V. EVOLUTION OF PUBLICATIONS BASED ON THE NOC
TEMPORAL CITATION NETWORK

The NoC citation network is represented as a directed graph,
where each node is an NoC paper and a directed link is
inserted from node A to node B when paper A cites paper
B. The size of a node corresponds to the number of being
cited after publication, i.e., the in-degree of a node. The links
are unweighted (i.e., the weight is always set to 1) due to the
nature of a citation relationship.

A. NETWORK STRUCTURE AND DYNAMICS OF THE
NOC CITATION NETWORK

Evolution of the network structures can be visualized from
the four citation networks drawn at four milestone years,
namely Y2005, Y2010, Y2015, and Y2020 (Figure 5). A
community detection algorithm [39] is performed to examine
the relationship among the NoC publications. To reflect the
structural strength of these communities, they are color-
coded. The vertices painted with the same color belong to
the same community. Notice that there are still a few papers
that are neither cited nor citing other papers in our dataset,
such papers are hereinafter referred as isolated papers.

Table 1 summarizes the number of nodes, clustering coef-
ficient, network diameter, average degree, modularity (with
resolution =1.0), and percentage of the giant connected
branch for NoC citation networks in four milestone years.
One can see that the number of nodes in NoC citation
network increases rapidly (rising from 107 to 997), especially
from 2005 to 2015, indicating that the NoC field is evolving
and knowledge is accumulating at a fast speed. Since the
number of papers in the dataset is much smaller than the
total number of citations they have, the average degree of the
network is low (smaller than 3), and the network diameter
grows over the years (rising from 3 to 9). On the other hand,
the increase of average degree indicates that the knowledge
base in the NoC field is maturing, and more publications
in NoC area are citing articles within the NoC itself. The
modularity and clustering coefficient of the network are
always low, indicating that the citation is a weak relationship
with no clear preference. In another word, it is difficult to
form an obvious and stable community in NoC. Another
interesting phenomenon is that the giant connected branch of
the NoC citation network grows larger each year, suggesting
that there are increasingly fewer isolated nodes in the citation
network. Table 18 in Appendix further shows that, as time
goes by, small communities tend to merge into large ones,
corresponding to the growth of the NoC knowledge base.
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TABLE 1. Network parameters of the NoC citation network up to 2005, 2010, 2015, and 2020*

Percentage of

Clusterin Network Modularit the giant

Year | Nodes coefﬁcien% diameter Average degree (resolution f,O) corm%:cted
branch

2005 107 0.047 3 0.841 0.421 72.12%
2010 462 0.042 5 1.976 0.508 74.22%
2015 801 0.049 8 2.539 0.514 717.73%
2020 997 0.053 9 2.748 0.528 80.74%

* (1) The degree (the sum of in-degree and out-degree) of a node is the number of links it has to other nodes. (2) The clustering coefficient of a node is the
ratio of the number of connections within the node’s neighborhood and the number of connections for a fully connected network. (3) The diameter of a
network is the maximum distance between any two nodes in the network. (4) The modularity of a network measures the strength of division of the network
into communities (modules). Networks with high modularity have dense connections between the nodes within communities but sparse connections between
nodes in different communities. (5) In a directed graph G, if any two different vertices are mutually accessible, the graph is said to be strongly connected. The
largest strongly connected sub-graph of a directed graph G is called the giant connected branch of G.
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FIGURE 5. The NoC citation networks up to 2005, 2010, 2015, and 2020.

A close look at the early papers reveals that they mostly
cited works outside the NoC area, which means before 2010,
the NoC research benefited from the inward knowledge flow
from other areas to the NoC. For instance, the references
of [17] (the largest node in the citation network in 2005,
centering in the graph), a paper published as early as in 2002,
were drawn from the traditional areas like computer network,
digital system design, IC design, and power optimizations. In
a sharp contrast, the papers published in 2015 or later had
a lot of internal citations itself (i.e., the cited papers were
from the NoC area). Such increase of internal citations is a
clear indicator that the NoC area became more matured and
a significant amount of knowledge was created and spread
within the NoC circle. Correspondingly, the NoC citation
network became more densely connected.

Table 16 and Table 17 in the Appendix further tabulate the
top 5 most cited publications in each calendar year. One can
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see that, in the early years, [17] as one of the earliest papers in
the NoC area, ranked top one in terms of the number of being
cited. Later on, the two papers describing NoC simulators
[40] and [41] got more citations, as these simulators were
adopted by the mainstream of the researchers in the NoC
community. In a similar token, another two papers, [42] and
[43], were recognized as the milestones in NoC designs,
featuring high speed and low delay router/network designs.

B. RELATIONSHIP BETWEEN COMMUNITIES IN THE
CITATION NETWORK AND NOC SUBJECTS

A paper is more likely to be cited by those that fall into the
same subject areas, and such citation relationships thus are
generated and grabbed in the citation network. Correspond-
ingly, a paper and all the papers that cite it appear to be
“close” to each other in the citation network and they together
are likely to form a community. Based on these observations,

7
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we test whether all NoC publications in a community belong
to a single subject or not. In another word, we try to figure
out if there is a one-to-one mapping from a community to
a particular subject. Table 15 shows the subject distribution
in selected large communities in the NoC citation network.
Each of these communities has an ID generated by the
community detection algorithm. From Table 15, we have the
following observations.

1) The communities do not show a strong correspondence
with single subjects. That is, publications in a commu-
nity often do not belong to only one subject, but several
main subjects can broadly cover the community.

2) In the communities, subjects like flow control, rout-
ing, router design, topology, emerging technology, and
mapping are closely correlated. These subjects appear
together frequently and always show similar (high)
distributions, and the reason is provided in the next
section.

VI. EVOLUTION OF SUBJECTS BASED ON THE NOC
SUBJECT CITATION NETWORK

The NoC subject citation network is defined as a directed
graph, where each node represents an NoC subject, and a
directed link from node A to node B is established if a paper
that falls into subject A cites a paper in subject B. The links
of the NoC subject citation network are weighted, and the
weight of the link between nodes A and B corresponds to
the number of citations by the papers in subject A citing
those in subject B. Note that the NoC subject citation network
includes self-loops to account for self-citations. The node
size is proportional to the in-degree of each node, which
corresponds to the total number of papers being cited in that
subject.

A. NETWORK STRUCTURE AND DYNAMICS OF THE
NOC SUBJECT CITATION NETWORK

Figure 6 shows the subject citation networks created at
Y2005, Y2010, Y2015, and Y2020. Table 2 summarizes
the number of nodes, network diameter, average degree
(weighted and unweighted), and clustering coefficient for
NoC subject citation networks in four milestone years. One
can see that the number of nodes grows at a fast pace over
time (starting with 26 and rising to 81), indicating that many
new subjects emerge in the NoC field, particularly during the
early days of the NoC era. The subject networks had a shorter
network diameter (from 7 to 4), while the average degree
(rising from 3.308 to 13.272) and the clustering coefficient
(from 0.174 to 0.645) rapidly grew. All these observations
point to the fact that the NoC subjects tend to increasingly
cluster together and the knowledge flows among them are
becoming more frequent over the years.

1) Dynamics of three representative subjects

The evolution of the influence of specific subjects in the
NoC area over time is also studied, expecting to identify
the trends and measure them quantitatively. We plot the

8

changes of the influence for three typical subjects, namely
physical design, reliability, and topology in Figures 7-9.
The networks are presented in “Fruchterman Reingold” style
layout that nodes/subjects with higher weighted in-degrees
(i.e., nodes/subjects with their publications being cited more
frequently) are placed close to the center.

The influence of a subject is quantified by the percentile
rank scores of its weighted in-degrees. For example, the
weighted in-degree of physical design ranked top 10%
among all the NoC subjects up to 2005, so its influence
score is 90% (meaning it is more popular than 90% of the
NoC subjects). The greater the weighted in-degree of an NoC
subjects, the greater its influence score and the closer it is
to the center of the network. Figure 10 shows the change of
influence scores of three NoC subjects over time. One can
see that: (1) the influence score of physical design drops from
90% in 2005 to only 50% in 2020; (2) the influence score of
reliability jumps from lower than 30% to higher than 80%;
and (3) the influence score of ropology is kept relatively flat,
at around 80% or slightly higher.

The reasons behind these trends can be explained as fol-
lows. (1) Physical design was recognized as a critical issue
in the early phase of NoC development, and as such, it was
at the center of NoC research before 2005. Once it became
more matured, the research interest faded away. As so, this
subject moved towards the periphery of the NoC subject
citation network. We believe in the future this topic will draw
some attention again as the physical design may require early
floorplaning for chiplets sitting on an interposer or substrate.
(2) Moving in a direction quite opposite to physical design,
reliability in NoC has gained more attention and traction in
the research community. Performance, rather than reliability,
was the primary optimization objective in the early years of
NoC. But due to relentless increase of chip power density and
continued device minimization and wire shrinkage, which
together contribute to higher failure rates, more soft errors,
or faster aging, there has been growing concerns on NoC
reliability, which mandates more research to address these
problems. Reliability and DFT (Design for Test) will become
more important for the interconnect, circuits, and logic in the
interposer or substrate. (3) Topology holds almost the same
location (near the center) in the NoC subject citation network,
indicating that it stands the test of time of its popularity as a
main research subject. This phenomenon may be explained
by the fact that, with the emergence of new technologies
and new architecture designs, there is more space to explore
when it comes to topological design. Correspondingly, the
research community still maintains a high level of enthusiasm
for this subject. With the aforementioned analysis tools and
method, a quick and objective data-driven survey on any NoC
subject can be established. For instance, a brief survey of
NoC reliability is done by solely reviewing the papers from
our dataset.

According to the topic tree, the subject reliability can be
further divided into 3 subjects that appear as the children of
the reliability node:
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FIGURE 6. The NoC subject citation networks up to 2005, 2010, 2015, and 2020.

TABLE 2. Network parameters of the NoC subject citation networks up to 2005, 2010, 2015, and 2020

Average
Time | nodes | Clustering coefficient | Network diameter | Average degree degree

(weighted)
2005 26 0.174 7 3.308 37.308
2010 50 0.399 5 8.12 92.14
2015 70 0.518 4 11.029 91.914
2020 81 0.645 4 13.272 104.296

2005

FIGURE 7. Temporal evolution of the subject physical design through the years of 2005, 2010, 2015, and 2020. One can see that the subject physical design
gradually moves away from the center of network as time goes by.
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FIGURE 10. The change of influence scores of the three NoC subjects over
time

o First sub-subject: Fault-tolerant approaches using fault
tolerant routing or reconfigurable typologies to bypass
faulty components, or using remapping or migration to
move tasks to fault-free cores [5], [44]-[56]. Collec-
tively, the total citation number received by these papers
is 45 in our database.

e Second sub-subject: Modeling of soft errors in
routers/links or approaches to handle soft errors using
error correction link/router designs [57]-[65]. The total
citation number received by these articles is 11.

o Third sub-subject: Modeling or mitigating aging
through adaptive routing or remapping/mapping [66]—
[71]. The total citation number received by these articles
is7.

From the number of citations, it can be seen that the research
concerning fault-tolerance in NoC remains the most popular
one under reliability, as permanent faults are becoming a
serious concern these days.

10

B. DYNAMICS OF SIX MOST INFLUENTIAL AND HIGHLY
CORRELATED SUBJECTS IN NOC

From Figure 6, one can see that fopology, routing, flow
control, router design, mapping, and emerging technology
are the most influential and strongly connected subjects in
NoC. Since these six subjects also happen to have the highest
eigenvector centrality values (>0.95), as reported in Table
3, their importance in NoC design is further confirmed. For
instance, tfopology has always been the most fundamental
element of the network infrastructure, and routers are the
primitive building blocks of an NoC network. Flow control
and routing are the two key elements to improve network
performance. Application mapping has a key implication on
the system performance in NoC. In recent years, emerging
technology has been a driver for NoC research. In the follow-
ing, we will examine the relationships of these six subjects
through the lens of subject citation network.

When paper a cites paper b, we claim knowledge flows
from b to a. Note that the direction of knowledge flow is
opposite to that of the citation direction (as shown in Figure
11 (a)). Because the number of papers falling in one subject
can vary significantly from that of papers in another subject,
it can be misleading to simply use the number of citations
between subjects to represent the knowledge flows. For ex-
ample, suppose there are 100 articles in subject A and 10
in subject B, and articles in A reference 9 papers in B, while
articles in B reference 10 papers in A 10. In this case, it could
be wrong to conclude that the knowledge flow from A to B
is greater than that from B to A. In order to eliminate factors
that might lead to inaccurate knowledge flow assessments
(for example, each subject has different number of papers),
the statistical significance of each citation relationship has to
be verified with respect to a null model.

In Figure 11 (b), we illustrate the calculation method of

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3123106, IEEE Access

IEEE Access

TABLE 3. The eigenvector centrality values of a few NoC subjects

Subject Eigenvector centrality*
mapping 1
topology 0.992

flow control 0.984

emerging technology 0.970
routing 0.957

router design 0.950

modeling 0.947

deadlock 0.920

NoC for manycore 0.882
emulation and simulation/simulator 0.876
NoC for memory 0.865

*Eigenvector centrality is a measure of the influence of a node in a network.
If a node is pointed to by many other nodes, this node has a high
eigenvector centrality value. Eigenvector centrality can be computed by
following the method reported in [72]. The NoC subjects that have an
eigenvector centrality value lower than 0.86 are not included into the table.

Subject A
(citing others)

Subject B
(being cited)

——» citation

<« —— knowledge flow

()
ay
cite . » . cited
tA Lo tA
a1 Subjec as Subjec ans
ae
az
cite Subject B ag » | Subject B cited
a a4
cite Subject C Subject C cited
as ais

(b)

FIGURE 11. (a) Knowledge flow and citation flow have opposite direction. (b)
An example of measuring the knowledge flow between subjects

knowledge flow in a simple subject network with three sub-
jects A, B, and C'to illustrate the null model and statistically
significant network. Assume the papers in subjects A, B, and
C reference a1, as, and az papers, respectively. a3 through
a5 respectively represent the numbers of citations received
by papers in subjects A, B, and C. a4 through a5 are the
numbers of citations between each pair of subjects A, B, and
C respectively, for example, a5 is the number of citations
that papers in subject A cite those in subject B. The total
citation count 7, is the total number of references, given as
a1 + as + as, which is also equal to the total number of
citations received by papers in these three subjects, counted
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as a3 + a4 + a15. We thus have,
T.=a1 +as+as
=a4+ a5+ as +ar +as +ag + aip + a1 + a2 (1)
= a13 + aisa + ais

P(A — B) is defined as the possibility of a paper from
subject A cites that from B. So, in the statistically significant
network, we have:

P(AsB) =5 )

1

We then consider a null model in which the papers published
in subject X randomly select papers as their references,
regardless of which subject they belong to. Let X ;¢4 be the
subject whose papers cite those in other subject(s) and Yz ;teq
be the subject whose papers are cited by other subject(s).
Hence the probability in the null model can be written as
follows:

Pnu”(A — B) = Pr(Xciting:A) X Pr(Y::ited:B)

ai a14
= X
ar+as+as  aizt+au+as 3
_m i
T. T
The knowledge flow metric F' [73] is defined as follows.
P(A— B
F(B --» 4) = A= D) 4

Pprnull ( A= B)

B --» A indicates that the knowledge flows from B to
A. F = 1 is adopted as the critical threshold to distinguish
whether the knowledge flow from subject B to subject A is
statistically significant or not. When F' > 1, it means that
subject A is more likely to have extracted knowledge from
subject B than would be expected at random. The F' values
of the subjects in 2020 are computed in Table 4.

Figure 12 shows a sub-graph of the subject citation net-
work, and this sub-graph contains the six most influential
subjects, namely, topology, emerging technology, mapping,
flow control, router design, and routing. In the figure, each
node represents a subject and a directed link between node A
and node B is established if node A flows knowledge to B.
The size of a node is not distinguished, and the weight of an
edge corresponds to the value of F'. One can see that:

1) For each subject, the number of self-citations is much

more than that of citations across different subjects.
For example, emerging technology shows a very strong
self-citation (F' = 2.4), indicating that this subject
tends to rely on the knowledge contributed by the
publications from the same subject.

2) The knowledge flows between a pair of subjects are
symmetric, with a maximum difference of only 0.2.
The contribution of subjects A to B and that of B to
A are almost equal.

3) By removing the edges whose F' values are below
1, the six subjects can be further divided into two
communities as in Figure 12 (b). That is, emerging
technology, mapping, and topology form a community,
and so do routing, router design, and flow control.
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TABLE 4. The knowledge flow metric values (F') among the six NoC subjects

Knowledge | Emerging Flow . Router .
flow metric | technology | control Mapping design Routing | Topology
Emerging 2423 0531 0760 | 0374 | 0.689 1.134
technology
Flow 0.527 1.556 0.645 1.317 0.988 0.703
control
Mapping 0.816 0.704 2.162 0.718 0.985 1.082
5"".’” 0.568 1.131 0.775 1.828 | 0.891 0.897
esign
Routing 0.523 1.145 0.901 0.896 1.616 0.818
Topology 1.221 0.759 1.053 0.824 0.821 1.386
(2]
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ods, i.e., 2000-2007 (period 1), 2008-2013 (period 2), and indirect network
2014-2020 (period 3). The subjects may evolve, following 0
these three trends: 2000-2007 20082013 201472020
« Rising, the number of publications in one NoC subject perio ©
c

increases from period ¢ to period ¢ + 1.

o Declining, the number of publications of one subject
decreases from period 7 to period ¢ + 1.

« Stable, the number of publications of one subject re-
mains flat in two consecutive periods.

Figure 13 (a) shows the number of publications falling into

12

FIGURE 13. (a) Evolution of subjects at the top level. (b) Evolution of the
subjects under the networking layer and its child nodes. (c) Evolution of the
subjects under the topology branch. All layer hierarchies can be found in the
subject tree, see Figure 4. Each color bar represents a subject or a layer, and
the height of the bar is the number of publications belonging to it.
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the subjects at the top level (level 1) of the NoC subject tree
(see Figure 4). The trend change of a subject at any level,
in terms of number of publications, actually follows a similar
pathway. Starting from a low number, the publication number
climbs up to reach its peak, and afterwards, it goes down.
As the networking layer has always been the center of NoC
architecture, the publications in this subject have consistently
outnumbered those in other NoC subjects in each period. It
is worth noting that emerging technology soars and remains
strong in recent years, setting it as an important driving force
to push the envelope of the NoC research.

Figure 13 (b) shows the numbers of publications of the
subjects under the parent node of networking layer (level 2)
in the NoC subject tree. In the networking layer, deadlock,
modeling, flow control, and topology are the main research
subjects, while most of these subjects were seeing an upward
tick from period 1 to period 2 and their numbers declined
from period 2 to period 3 with their percentages literally
unchanged.

Figure 13 (c) shows the number of publications of the sub-
jects under the subject topology (level 3) in the NoC subject
tree. Direct network is the subject with most publications
under the topology layer, and its publication number is stable
across all three periods, while subjects application-specific
and bus declined rapidly from period 2 to period 3. 3D NoC
appeared in period 2 and kept stable up to 2020.

A closer look at the history of the conference NoCS will
enable us to better understand why NoC research reached
its peak in 2008-2013 and started to decline from 2014. The
inaugural NoCS conference was held in 2007 which was right
before the NoC research hit its peak. Between 2008 and 2013,
NoCS benefited from the uptick of NoC research and was
considered one of the main vehicle to publish/present NoC
research with a good number of publications. However, in
line with the decline of NoC research after its peak in 2013,
NoCS received smaller number of submissions, and eventu-
ally, this anemia forced NoCS to become part of ESWEEK
conference in 2017. Except for a small bounce back in terms
of the number of publications in 2020 (Figure 1), the overall
trend is that the conventional NoC subjects continue to de-
cline in their significance and popularity among researchers,
and there is continued and sustained interest on emerging
technology and new subjects like chiplet and security.

D. CONTRIBUTIONS OF THE EMERGING TECHNOLOGY
NoCs built upon emerging technologies, e.g., silicon pho-
tonics, wireless, carbon-nano-tube-based antenna, inductive
coupling between vertical layers in 3D IC, and transmis-
sion line, are being investigated with noticeable progress.
These new technologies are largely driven by a pressing
demand for much greater bandwidth efficiently, extremely
low power consumption, and superb scalability that current
interconnect technologies are hard to deliver. For instance, a
chiplet/2.5D/wafer scale system is found possible to integrate
a sea of cores or memory vaults (up to 850,000 Al cores in
Celebras wafer scale system) into one single package. Many
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Al applications exhibit heavy one-to-many traffic, mean-
while, photonics and wireless NoCs are able to genuinely
support multicast or broadcast traffic. By having an optical
NoC along with components to perform optical computing,
it is even possible to see the emergence of all-optical chip
systems with extremely low power consumption. Many of
these new technologies can benefit more than just intra-chip,
networked communications. There is a growing trend is to
build up hierarchical networks to link on-chip, inter-chiplet,
to inter-node levels together for HPC systems. Actually, quite
a few HPC systems are already using optical connections to
connect compute nodes. Silicon photonics can pave the path
to enable an all-optical interconnection network that goes
from on-chip to inter-node levels. In addition, wireless NoC
enables short distance communication among HPC compute
cards which can reduce the wiring complexity and/or cost in
HPC networks.

VIl. EVOLUTION OF THE NOC CO-AUTHORSHIP
NETWORKS AND AUTHOR BEHAVIORS

In this section, we study both the NoC co-authorship network
and the author behaviors. The co-authorship network is an
undirected network, where each node represents an author,
and an edge is established between two authors if they have
collaborated on at least one publication. The weight of a node
reflects the contribution of an author to the NoC field and is
defined as the total weighted number of articles published by
this author. Note that the contributions of authors in a paper
are inversely proportional to the order of the author list, i.e.,
the i*" author has a contribution weight of 1/i. The weight
of an edge corresponds to the number of joint publications
between the two authors.

A. NETWORK STRUCTURE AND DYNAMICS OF THE
NOC CO-AUTHORSHIP NETWORK

Figure 14 shows the NoC co-authorship networks created for
Y2005, Y2010, Y2015, and Y2020. The different communi-
ties in each of these networks are color-coded.

Table 5 shows the clustering coefficient, network diameter,
average (weighted) degree, modularity, and the percentage
of the giant connected branch of the co-authorship network.
The modularity of the network is always very high (close to
0.9), indicating the NoC co-authorship network has a very
significant community structure. That is, the NoC authors
have tendency to collaborate with peers from the same re-
search community. Different from the weak citation rela-
tionship seen in the citation network, the NoC co-authorship
networks come with much higher clustering coefficients (the
value is almost ten times that of the former), which means
that NoC researchers have relatively dense connections with
each other. Note that many of the authors in our dataset
were students at the time when they published their papers.
Majority of them left academia after graduation, and they
stopped collaborating with other authors, leading to a high
network diameter (mostly greater than 10) and low average
(weighted) degree (smaller than 5) in the NoC co-authorship
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FIGURE 14. The NoC co-authorship networks up to 2005, 2010, 2015, and 2020.

network. Either from the perspective of the increased average
degree and clustering coefficient, or from the phenomenon
of small communities merging into larger ones over the four
milestone years (further detailed in Table 18 in Appendix),
it suggests that there is frequent collaboration among the
authors.

Furthermore, we apply the method in [74] to check
whether the NoC co-authorship network is a small world
network. Let IV, k, and d be the number of nodes, average
degree, and average network diameter respectively. If a net-
work satisfies d ~ In N/, it can be regarded as a small world
network [74]. In our case, N, k, and d are 2184, 3.106, and
5.85 respectively in 2020, and In(N)/In(k) is 6.81. There-
fore, formula d =~ In(N)/In(k) holds. We hence conclude
that the NoC co-authorship network is indeed a small world
network, in agreement with most research findings. In a small
world network, most nodes are not adjacent to each other, but
the neighbors of any given node are likely to be neighbors of
each other, and most nodes can be accessed from any other
nodes with very little steps or jumps. This indicates that, the
distance between two randomly selected nodes (authors) in
this co-authorship network is very short.

B. COLLABORATION PATTERNS AND
CROSS-COMMUNITY COLLABORATION PHENOMENON

In this section, the collaborative patterns and interesting
cross-community collaborations in the co-authorship net-
work are investigated, shown in Figure 15 and Tables 6-8.

The NoC co-authorship network shows salient collabora-
tive patterns as in Figure 15. A node is referred as a small,
medium, or big node if its weight is less than 5, between 5
and 10, or greater than 10 respectively. Three collaborative
patterns are found 1) collaboration pattern A: a big node
(a person with a large number of publications), a medium
node (a person with a moderate number of publications),
and several small nodes (persons with few publications), 2)
collaboration pattern B: that consists of a medium node and
small nodes, and 3) collaboration pattern C: that involves a
mixture of several medium nodes and small nodes. Collabo-
ration pattern A corresponds to an academic group with one
prolific leader, one rising young scholar, and several students
or postdoc fellows. Collaboration pattern B is drawn from a
smaller group with one faculty member and some students,
while pattern C indicates the collaboration between research
groups of similar composition of faculty and students. Table
6 reports the numbers of the three collaborative patterns.
Note that there are 9 big nodes and 38 medium nodes in
our dataset, representing the most experienced and influential
authors in the NoC field.
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TABLE 5. Network parameters of the NoC co-authorship networks up to 2005, 2010, 2015, and 2020

Modularity Average Percentage
Nodes Clustering Network | Average . of the giant
Year . . . (resolution degree
(authors) | coefficient | diameter degree - connected
=1.0) (weighted)
branch
2005 291 0.323 5 1.621 0.896 2.029 52.55%
2010 1078 0.404 15 2.49 0.895 3.479 54.29%
2015 1753 0.410 18 3.116 0.869 4.046 51.55%
2020 2184 0.412 14 3.103 0.865 3.948 60.55%

Community 1

Community 2

L
9
*°e

o«

o L
P

(c) (C))

FIGURE 15. (a) Collaboration pattern A: a big node (a person with a large
number of publications), a medium node (a person with a moderate number of
publications), and several small nodes (persons with few publications). (b)
Collaboration pattern B: a medium node with several small nodes. (c)
Collaboration pattern C: several medium nodes with several small nodes. (d)
An example on cross-community collaborations: collaboration between two
medium nodes in two respective communities. The data are collected up to
2020.

The cross-community collaboration frequencies of differ-
ent types of nodes and edges are also measured. The cross-
community collaboration frequency of an edge is defined
as the ratio of the number of collaborations of the two end
nodes to the total number of edges of the same type in
cross-community collaborations, whereas the six edge types
are listed in Table 7. The cross-community collaboration
frequency of a node is defined as the ratio of number of its
participation in cross-community collaborations to the total
number of nodes of the same type, whereas the node types
are big, medium, and small. In Table 7, the frequency of the
cross-community collaboration between big and big nodes
is 1.57, meaning that the average number of collaborations
between two large nodes belonging to two different com-
munities is 1.57. On the other hand, as seen from Table 8§,
the cross-community collaboration frequency of big node
is 10.67, meaning that a big node collaborates 10.67 times
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TABLE 6. Counts of the three collaborative patterns

Collaboration pattern | Number
A 4
B 9
C 6

on average with authors in other communities. One can see
that: (1) The cross-community collaboration frequencies of
the edges are greater (>1.5) if their node types are medium
or big, indicating that if a big/medium node collaborates
with another big/medium node, there is a high probability
for them to cooperate multiple times. (2) The collaboration
frequency is increasing rapidly when the size of nodes grows,
indicating that a bigger node is easier to communicate with
others and plays a more important role in cross-community
collaboration than a small one.

C. AUTHOR BEHAVIORS

We study the career lifetime (the interval between the year
an author published his/her very first NoC paper and the year
he/she published his/her most recent paper). Figure 16 (a)
shows the distribution of the career lifetime of all the authors,
which follows a power law distribution (with B2 of 0.9961).
The maximum career lifetime of NoC authors is set to be20
years, which is the same as the life cycle of NoC. Note that
only a handful of authors have that long career lifetime, and
most of the authors actually have a career lifetime of only 1 or
2 years. The reason is that, these authors were students, and
they did not remain in academia after publishing a few papers
and graduated. Figure 16 (b) shows the average number of
articles published by each author per career year. One can
see that, for each author, the number of publications is 0.9 per
year on average. These authors are most productive in their
first career year, and least productive in their 19" career year.

Figure 1 (b) shows the number of new authors per year.
One can see that around 2008 to 2010, NoC reached its peak
in attracting new authors. After that fewer authors entered
this area, which can be mainly attributed to the fact that
NoC was becoming mature and fewer authors would feel
they could contribute to the study of NoC. Another possible
reason is that new topics like neural network architecture
or security were becoming more appealing, shifting away
researchers’ attention to pursue more rewarding research.
Figure 17 and Table 9 further show the subjects chosen by the
new authors for their first papers. In 2015-2016, new authors
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number of authors

TABLE 7. Cross-community collaboration frequencies for different types of edges*

Edge type Number of ' Edge number**: Cross—community
(node types of collaborations (T,) in cross-community collaboration
the two end nodes) ¢ collaborations (E) frequency (Te/E)
small small 141 127 1.11

small medium 91 80 1.14
small big 56 42 1.33
medium | medium 10 6 1.67
medium big 18 12 1.50
big big 11 7 1.57

*Two authors can collaborate multiple times, so T, > FE.
*#* Edge number is the total number of edges of the same type in our dataset.

TABLE 8. Cross-community collaboration frequencies for different types of nodes

Number of its participation Cross-community
Node Type in cross-community Node number*(N,,) collaboration
collaborations (77,) frequency (Th, /N»)
small 429 2148 0.20
medium 129 37 3.49
big 96 9 10.67

*Node number is the total number of nodes of the same type in our dataset.

lifetime distribution fit

power law fitting
lifetime distribution

were more likely to choose emerging technology and flow
control as the starting points for their careers. However, more
recently, fewer people are choosing these subjects. Instead,
network in interposer (a.k.a., chiplet systems), topology and
router design are being chosen by more new authors, and
these subjects are widely accepted as the frontiers of the NoC

107

Avser_age publication counts for each author in our dataset

25F

05F

number of publications

-0.5F

10'
career lifetime

(@)
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TABLE 11. Kendall tau rank correlation coefficient to compare the hotness
ranks of the subjects selected by the new authors and those of the previous

years.

Ranking by publications

Ranking by new authors

Kendall tau rank
correlation
coefficient

Hot subject ranking of
total publications in 2015

Hot subject ranking selected
by new authors in 2016

0.66674

Hot subject ranking of
total publications in 2016

Hot subject ranking selected
by new authors in 2017

0.66697

Hot subject ranking of
total publications in 2017

Hot subject ranking selected
by new authors in 2018

0.41194

Hot subject ranking of
total publications in 2018

Hot subject ranking selected
by new authors in 2019

0.17655

Hot subject ranking of
total publications in 2019

Hot subject ranking selected
bynew authors in 2020

0.21664

To investigate whether the newly published authors are
more likely to track the “hot” research subjects, we use the
Kendall’s tau rank correlation coefficient to estimate how the
hotness rank of subjects selected by new authors in a given
year is correlated to the rank by the hotness of subjects for
all the papers published in the same year in Table 10. Here,

FIGURE 16. (a) Career lifetime distribution, with log-log scale. (b) Average

publication counts for each al

6 8 10 12 14 16 18 20
career year

(b)

the hotness (or popularity) of a subject is measured by the
total number of publications published in that subject, or the
number of new authors entering into that subject. One can
see that, the correlation coefficients are very high. However,
when choosing their research subjects, the new authors tend
to be dragged into hot subjects in terms of the articles

uthor per career year. The bars are variation.
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FIGURE 17. The subjects chosen by the new authors.

TABLE 9. The top 5 subjects in NoC research each year between 2015 and 2020.

2015 Top 5 hot subjects t:Z;fnrfllsgy Sflow control topology router design reliability
Number of papers 11 9 7 6
. emerging power/thermal NoC for
2016 Top 5 hot subjects technology Sflow control topology management memory
Number of papers 12 10 7 6
2017 Top 5 hot subjects :er;;rfllggy topology Sflow control routing reliability
Number of papers 12 6 5 5
. emerging , NoC for ,
2018 Top 5 hot subjects technology routing memory Sflow control security
Number of papers 8 7 6 4
2019 Op > hot subjects outing outer design interposer N technology
application
Number of papers 7 6 6 4
. network in . router NoC for
2020 Top 5 hot subjects interposer topology routing design memg ry
Number of papers 9 5 5 4

TABLE 10. Kendall’s tau rank correlation coefficient* to compare the hotness
ranks of the subjects selected by the new authors and those of the same year.

Year Kendgll tau ran1.<
correlation coefficient

2015 0.61765

2016 0.62750

2017 0.86577

2018 0.70619

2019 0.75332

*Kendall’s tau rank coefficient is a non-parametric measure of relationships
between columns of ranked data. It returns a value of O to 1, where 0
indicates no relationship, 1 is a perfect relationship. A quirk of this test is
that it can also produce negative values (i.e. from -1 to 0). Kendall’s tau
rank correlation = (C' — D /C + D), where C is the number of concordant
pairs and D is the number of discordant pairs.

published in the previous year, for example, an author had
a publication in 2010 could only track hot subjects in 2009,
as he/she could not foresee the hot subjects in the same year
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2010. Table 11 further shows the Kendall tau rank correlation
coefficient by comparing the ranks of the subjects selected
by the authors and hot subject ranking of total publications
in the previous years. One can see that this correlation is
very low especially in recent years. Therefore, we conclude
that, new authors do not show obvious behaviors of tracking
hot subjects, instead, they are contributing to the hot subjects
each year.

VIIl. ENVISIONED EVOLUTION OF PUBLICATIONS,
SUBJECTS, AND CO-AUTHORSHIPS BEYOND 2020
From the analysis presented in previous sections, we are
ready to make a prediction of the evolution of publications,
subjects, and co-authorship in NoC research going forward.

1) Evolution of publications: As discussed earlier, NoC is
considered as a matured research area after 2013 and
the citation network gets more densely connected. Our
analysis has indicated that communities do not show

17

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

10.1109/ACCESS.2021.3123106, IEEE Access

a strong correspondence with a subject. These results
can be extrapolated to make the following prediction of
the NoC evolution: i) Citations among the publications
will be more frequent due to maturity of the topic. ii)
The communities will continue to belong to more than
one subject and publications will likely touch upon
more than one NoC subject. iii) The self-referencing
in NoC will become more obvious, as the NoC area
grows mature and diversified.

2) Evolution of subjects: Based on the observations pre-
sented in Section VI, we envision the following: i)
The NoC area will be matured further, but new topics
will continue to emerge and they tend to expand the
breadth of the NoC area. ii) The “hot” NoC research
subjects will have a much shorter lifespan, typically
lasting only 2-3 years. The 6 most influential subjects
(topology, routing, flow control, router design, map-
ping, and emerging technology), however, will con-
tinue to dominate the research map and keep their
popularity. iii) New topics, such as package level net-
work (a.k.a., network on interposer), security, NoC
for neural network (NN) accelerators, and emerging
technology empowered NoC (e.g., silicon photonics
and wireless NoC) will likely gain traction. Many of
the future research works are expected to span multiple
subject area. For instance, we are already witnessing
looming photonic interconnection network tailored for
connecting chiplets to build large scale neural network
(NN) accelerators. iv) Going forward, evolution of the
six most influential subjects and the emerging topics
need to take many practical issues into consideration.
For example, the topology and router of a network on
an interposer should consider the pin count constraint
of each chiplet; the network topology for applications
like an NN accelerator should be tailored to customized
its unique data flow patterns and requirements.

3) Evolution of co-authorships: Based on our analysis in
Section 7, we envision the following: i) The willing-
ness of authors to collaborate will increase, and authors
who previously collaborated will be more likely to
continue their collaboration in the near future. ii) As
the collaboration network becomes denser, there will
be fewer isolated nodes (i.e., authors who have not col-
laborated with others). iii) New and more collaboration
patterns will emerge due to the diversified interests of
the researchers. iv) New authors will contribute more
to NoC publications, especially in the hot topics.

IX. CONCLUSIONS

Between 2000 and 2020, the NoC area has gone from startup,
to growth and shakeout, to maturity. In this paper, we used
the complex network approach to visualize and quantify
NoC evolution in these 20 years. Specially, we built the
citation network, subject citation network, and co-authorship
network, and for each of them, we analyzed their respective
network structure and dynamics (evolution). The main find-
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ings of this paper are summarized as follows:

1) As time goes by, the citation network, subject citation
network, and co-authorship network have more nodes
and links, and their community structure is becoming
more salient. Communities in the citation network and
co-authorship network are merging into larger ones,
indicating that the citations and author collaborations
are becoming more frequent in NoC community.

2) Due to the strong connections among the subjects, the
communities in the citation network do not show a
strong correspondence with the subjects, i.e., publica-
tions in a community in the citation network do not
belong to only one single subject. Instead, several main
subjects can broadly characterize a community.

3) The influence scores of different NoC subjects change
over time. A few subjects, noticeably reliability, are be-
coming increasingly influential as time goes by, while
some others, such as physical design, is gradually
losing its momentum. However, with the rise of chiplet
designs, we expect physical design might enjoy revived
research enthusiasm in the near future.

4) Six subjects, i.e., topology, routing, flow control, router
design, mapping, and emerging technology were iden-
tified as the most influential NoC subjects, and they are
highly related to each other. Among them, the knowl-
edge flows between pairs of subjects are symmetric.

5) The number of publications concerning most subjects
reached maximum during 2008-2013, and declined
after 2014. However, the number of publications of
emerging technologies (e.g., optical or wireless NoCs)
is stable.

6) Author collaborations exhibit three interesting pat-
terns, as reflected in the co-authorship network. High
profile and productive researchers, shown as the big
nodes in the co-authorship network, have the highest
frequency of cross-community collaborations.

7) The NoC authors’ career lifetime follows a power law
distribution. For each author, the average number of
publications is 0.9 publications per career year. The
first career year is most productive, and the 19" year
the least.

8) New authors do not show obvious behaviors of tracking
hot subjects; instead, they are contributing to the hot
subjects each year.

Will NoC ever come back strong in the near future and
reach a second or even third peaks? This is an ongoing
question and can only be answered with continued analysis
of the trends following the proposed methodology and using
the tools created for this study. As one can readily expand
our dataset with more publications from other conferences
and leading journals and bring in additional research subjects
like memory system design, accelerators, etc. for analysis and
prediction purposes, more meaningful and influential results
shall be obtained to meet specific research and development
needs.
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Last but not least, the data analytical tools are released at
https://github.com/FCAS-SCUT/Science_of_Science_NoC,
and the website for all the data plots is available at https://
www.sci-sci.com. Researchers, not limited to those working
in the NoC area, can adopt this methodology to understand
and gauge all scientific research areas of their interest and
make sound predictions about the future.

APPENDIX.

A. THE PROPOSED SUBJECT LABELING ALGORITHM
In order to automatically select a subject or subjects for each
paper, we have developed an algorithm based on supervised
learning. Part of speech, word frequency, location (when
a word first appears in an article), external feature (word
vectored trained from glove [75]), and tf-idf are selected as
the features. SVM is used as the classification algorithm. Half
of the labeled publications are used as the training dataset,
and the rest are for inference. To improve the algorithm
performance, a synonym table is used to record the synonyms
(e.g., NoC, networks-on-chip, and network-on-chip are in-
cluded into the table and they have the same meaning). A
dictionary is also built which is composed by the leaf nodes
in the subject tree. The proposed algorithm works as follows.
It first extracts the candidate subject set by scanning the title,
abstract, keywords, and full text of a paper to match with
entries in the synonym table and the dictionary. Next, SVM
is used to choose the final subjects from the candidate set.

Three unsupervised learning (KNN-based clustering [76],

LDA [77], and textRank [78]) algorithms, and a supervised
learning algorithm are compared against the proposed sub-
ject labeling algorithm. KNN-based clustering, LDA, and
textRank can extract keywords from a document without
going through training. The supervised learning algorithm
uses SVM directly on the title, abstract, keywords, and full
text of each paper without the help of the dictionary and the
synonym table. Half of the labeled publications are reserved
for training, and the rest for inference in the supervised
learning algorithm. Tables 12 and 13 show the results of the
unsupervised and supervised learning algorithms. Generally,
these algorithms lead to unsatisfactory results for reasons
below.

« Unsupervised learning is biased to plow the keyphrases
of each paper, which are not necessarily the same as
the research subject. For example, in the case of the
paper [79], textRank outputs “SMART, SMART++, and
multi-hop”. The reason is that this article coins the name
SMART for the proposed router architecture, and the
algorithm mistakenly takes SMART as an NoC subject,
not “‘router design” as expected.

o Supervised learning also has a low precision, since there
are many sources of noise. For example, a paper on
router design that uses XY routing may be incorrectly
labeled as a paper on NoC routing.

« Our proposed scheme achieves the best performance, as
it takes advantage of the NoC subject tree and the super-
vised learning. The candidate subjects are generated by
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scanning the title, abstract, keywords, and full text first
by string matching. The supervised learning is applied
on top of the candidate subjects to minimize the impact
of noise.

TABLE 12. Results of the unsupervised learning algorithm

Without dictionar;
Method Precision | Recall F1¥Measure

KNN-based clustering 0.125 0.297 0.175
LDA 0.106 0.288 0.155
TextRank 0.110 0.253 0.153

With dictionary*
Clustering 0.134 0.318 0.188
LDA 0.114 0.306 0.165
TextRank 0.120 0.266 0.165

*The unsupervised learning with dictionary means that the results are string
matched with the dictionary and synonym table after these algorithms are
performed.

TABLE 13. Results of the supervised learning and the proposed method

Method Precision | Recall | F1-Measure
supervised learning 0.364 0.101 0.170
proposed 0.878 0.729 0.796

B. EFFICIENCY TEST OF PREDICTION MODEL

We use an autoregressive model of order n to predict the
number of papers to be published in year ¢, denoted as
X;. In this case, X; is estimated by taking into account

of the publication numbers over the preceding n years
(thnthf’rLfl’"-thfl)'

n
Xy = Zﬁithi + &
i=1
where ;s are the regression coefficients, and ¢; is the white
noise in year t. This model is trained and fitted using the
maximum likelihood estimation method [80] to minimize the
regression error. To verify the accuracy of the model, we use
the number of publications in year 2001-2019 to train the
model and measure the error of forecasting the number of
publications in 2020. The relative error is defined as

§ = | X3020 — Xa020| / X2020

where X/ is the predicted number of publications. Table
14 shows the relative errors of the prediction model. One can
see that the model produces fairly accurate predictions.

TABLE 14. The relative errors of predicting publications in different NoC
subjects in Y2020.

All Subjects 1.69%
Topology 0.48%
Routing 1.36%
Flow control 4.10%
Router design 3.27%
Mapping 2.45%
Emerging technology | 2.23%

C. SUPPLEMENTARY TABLES
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TABLE 15. The subject distribution of the communities in the NoC citation network with resolution=1. The percentage of main subjects are shown in each main

community.*
Communities Subjects
Comznsunity_id: 102 t::";zizrfll;lggy t?[g;ﬁ;;:l;l topology routing
papers 49% 18% 16% 3%

Community_id: 123 flow control routing topology | router design | reliability

383 papers 21% 18% 18% 16% 13%
Community_id: 142 mapping Sflow control routing topology modeling

247 papers 23% 21% 10% 10% 9%
Community_id:184 NoC for memory security emerging technology

35 papers 26% 23% 17%
Community_id:190 emerging technology topology routing flow control

95 papers 56% 26% 11% 9%

* If a paper touches more than one NoC subject, it will be counted more than once in the table. As a result, the sum of the percentages of different subjects
might be greater than 100%, as the case in community 190.

TABLE 16. Top five most cited papers in each calendar year between 2002 and 2020

2002 [81]

2003 [82] [17] [83] [84] [81]
2004 [17] [82] [85] [86] [87]
2005 [17] [82] [85] [86] [88]
2006 [17] [89] [90] [91] [92]
2007 [17] [93] [18] [94] [82]
2008 [95] [17] [96] [42] [97]
2009 [95] [18] [17] [98] [42]
2010 [41] [17] [43] [99] [42]
2011 [17] [41] [43] [45] [100]
2012 [41] [42] [17] [101] | [102]
2013 [41] [40] [103] [20] [42]
2014 | [104] | [105] [43] [42] [106]
2015 | [107] | [108] | [109] | [110] | [111]
2016 | [104] [40] [43] [109] | [112]
2017 | [104] | [113] | [105] | [109] [17]
2018 [40] [105] | [104] | [114] [17]
2019 | [115] | [104] | [116] [40] [40]
2020 | [117] [40] [118] | [119] | [103]

TABLE 17. Citation counts in each calendar year between 2002 and 2020 of the five most cited papers. [17] is a pioneering work in NoC. [42] is a milestone NoC
design. [43] reports an NoC used in a commercial processor chip from Intel. Two NoC simulators widely used in academia research are detailed in [40] and [41],

respectively.

20

Article
Year [17] | [42] | [43] | [40] | [41]
Total 85 46 43 39 38
2002 0 0 0 0 0
2003 1 0 0 0 0
2004 8 1 0 0 0
2005 7 1 0 0 0
2006 3 0 0 0 0
2007 13 1 0 0 0
2008 9 8 2 0 0
2009 5 5 5 1 0
2010 9 5 6 2 10
2011 8 3 7 3 7
2012 6 8 3 4 10
2013 3 4 2 5 5
2014 3 4 5 4 2
2015 1 1 2 2 1
2016 2 3 5 5 1
2017 3 0 2 2 0
2018 4 2 2 6 1
2019 0 0 1 2 1
2020 0 0 1 3 0
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TABLE 18. Main communities of the citation networks in 2005, 2010, 2015 and 2020

Year 2005 2010 2015 2020
Number of Nodes 65 462 801 997
Number of communities 24 23 19 14

ID | percentage | ID | percentage | ID | percentage | ID | percentage
1 7.32% 1 7.22% 1 13.54% 1 16.05%
2 5.42% 2 6.92% 2 11.33% 2 10.03%
3 5.22% 3 5.82% 3 7.02% 3 8.43%
4 4.71% 4 4.91% 4 6.72% 4 7.92%
5 4.31% 5 4.61% 5 5.02% 5 6.52%
6 4.01% 6 4.51% 6 4.61% 6 5.62%
7 3.91% 7 4.41% 7 3.81% 7 5.32%
8 2.61% 8 2.71% 8 3.51% 8 5.22%
9 2.61% 9 2.61% 9 3.41% 9 3.81%
10 2.41% 10 2.61% 10 3.01% 10 321%
11 2.31% 11 2.51% 11 2.61% 11 3.01%

Communities 12 2.31% 12 2.51% 12 2.41% 12 2.61%
13 2.31% 13 2.31% 13 2.31% 13 1.60%
14 2.31% 14 2.31% 14 1.40% 14 1.10%
15 2.31% 15 2.31% 15 1.20%
16 1.91% 16 1.91% 16 1.10%
17 1.91% 17 1.91% 17 1.00%
18 1.81% 18 1.91% 18 1.00%
19 1.71% 19 1.81% 19 1.00%
20 1.40% 20 1.50%
21 1.40% 21 1.40%
22 1.30% 22 1.20%
23 1.10% 23 1.20%
24 1.10%

TABLE 19. Main communities of the co-authorship networks in 2005, 2010, 2015 and 2020

Year 2005 2010 2015 2020
Number of Nodes 206 922 1642 2194
Number of communities 23 20 18 13
ID | Percentage | ID | Percentage | ID | Percentage | ID | Percentage
1 7.11% 1 7.11% 1 7.02% 1 11.76%
2 5.74% 2 5.65% 2 6.20% 2 11.08%
3 4.83% 3 4.79% 3 5.42% 3 6.93%
4 3.10% 4 4.69% 4 4.42% 4 4.97%
5 2.64% 5 3.05% 5 4.28% 5 4.97%
6 2.37% 6 3.01% 6 3.65% 6 4.65%
7 2.32% 7 2.87% 7 2.96% 7 4.56%
8 2.32% 8 2.83% 8 2.19% 8 3.65%
9 2.19% 9 2.51% 9 2.05% 9 1.96%
10 2.05% 10 2.37% 10 2.01% 10 1.96%
Communities 11 2.05% 11 2.32% 11 1.87% 11 1.69%

12 1.91% 12 2.19% 12 1.64% 12 1.32%
13 1.78% 13 1.87% 13 1.60% 13 1.05%
14 1.69% 14 1.73% 14 1.41% ~ ~

15 1.28% 15 1.60% 15 1.41% ~ ~
16 1.19% 16 1.37% 16 1.23% ~ ~
17 1.19% 17 1.19% 17 1.19% ~ ~
18 1.14% 18 1.09% 18 1.00% ~ ~
19 1.14% 19 1.05% ~ ~ ~ ~
20 1.14% 20 1.00% ~ ~ ~ ~

21 1.14% ~ ~ ~ ~ ~ ~

22 1.14% ~ ~ ~ ~ ~ ~

23 1.09% ~ ~ ~ ~ ~
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