
301

CHAPTER

In addition to the bus-based on-chip communication architecture standards
described in Chapter 3, there has been a lot of research on developing custom
bus architectures over the last several years. Such custom architectures attempt
to address the shortcomings of standard on-chip communication architectures
by utilizing new topologies and protocols to obtain improvements for common
design goals, such as performance and power. These novel topologies and proto-
cols are often customized to suit a particular application, and typically include
optimizations to meet application-specifi c design goals. Figure 8.1 shows where
the custom communication architecture selection process fi ts into a typical elec-
tronic system level (ESL) design fl ow. Once a custom on-chip communication
architecture has been selected, the next step is usually to perform an exploration
phase, to determine the protocol and topology parameters that can best meet the
design goals. In this chapter, we present some of the more signifi cant custom bus-
based on-chip communication architectures that have been proposed over the
past few years. In Section 8.1, we describe split bus architectures that are useful
for reducing bus power consumption. Section 8.2 presents serial bus architectures
that aim to reduce wire congestion and the area footprint of the on-chip commu-
nication architecture. Section 8.3 describes code division multiple access (CDMA)
based bus architectures. Section 8.4 elaborates on asynchronous bus architectures
that avoid a global clock signal for synchronization, in order to reduce power con-
sumption. Finally, Section 8.5 presents reconfi gurable bus architectures that allow
dynamically changing the bus topology and/or parameters (such as arbitration
schemes) in order to better adapt to changing traffi c conditions during applica-
tion execution and improve performance.

 8.1 SPLIT BUS ARCHITECTURES
Single shared bus-based communication architectures have the advantage of a
simple topology and low area cost. The disadvantages of shared-bus architectures

 Custom Bus-Based
On-Chip Communication
Architecture Design 8

302 CHAPTER 8 Custom Bus-Based On-Chip CA Design

include larger wire and load capacitance, which results in a correspondingly
larger power consumption as well as longer delay for data transfer (which leads to
lower bandwidth). Split or segmented bus architectures attempt to overcome this
drawback by splitting a shared bus into multiple segments. Split buses allow selec-
tive shutdown of unused bus segments, potentially saving energy. Furthermore,
segmentation increases the parallelism by permitting parallel data transfers on dif-
ferent segments, which improves performance.

For instance, the segmented bus architecture [1] proposes the insertion of buf-
fers to isolate the components on a bus. Figure 8.2 shows an example of the seg-
mented bus architecture. An advantage of such an architecture is that only part
of the bus is active at any given time. As an example, a transfer between the DSP
and X-mem components in Fig. 8.2 causes only their corresponding segments and
the buffers between them to be active, while the rest of the segments and buffers
remain inactive. This reduces the effective load and wire capacitance of the active
bus. Since the power consumption of the bus is proportional to the load capaci-
tance and length of the active bus [2], the segmented bus results in power savings.
Figure 8.3 compares the total bus power for the segmented bus [1] with a shared
bus, for a set of benchmarks. It can be seen that a segmented bus dissipates much
less power than a corresponding shared bus, since only part of the segmented
bus is active at any given time, compared to a single shared bus, for which the

Task/process
graph

Architectural
model

Implementation
model

Gate-level
model

Task/process allocation, binding, scheduling

Interface refinement,
cycle scheduling

Logic synthesis,
place and route

CA exploration
model

CA selectionCustom CA

 FIGURE 8.1

 Custom CA selection in a typical ESL design flow

303

X-MEM Y-MEM

CPUDSP Buffer Buffer
IDB_DSP IDB_CPU

ID
B

_F
E

T
C

H

IF/DEC

Buffer

 FIGURE 8.2

 A segmented bus architecture [1]
 © 1998 IEEE

Simple bus
Segmented bus

Benchmarks

FIR
0.0

2.0

P
ow

er
 n

or
m

al
iz

ed
 to

 L
M

S
_A

 (
0.

5
µm

, s
im

pl
e

bu
s)

4.0

LMS_A LMS_B g711

 FIGURE 8.3

 Total bus power comparison between segmented bus and shared bus architectures, for 0.35
micron technology [1]
 © 1998 IEEE

8.1 Split Bus Architectures

304 CHAPTER 8 Custom Bus-Based On-Chip CA Design

entire bus must be active to transfer data between any two components. Such
segmented/split architectures can be considered to be light-weight variants of tra-
ditional hierarchical shared bus architectures [3–8].

The split bus communication architecture proposed in [9, 10] is another vari-
ant of the split/segmented bus architecture. In a single shared bus, such as that
shown in Fig. 8.4 , the propagation delay between module M1 and M6 is large.
In order to improve the timing and energy consumption of the long bus, it can
be partitioned into two segments, as shown in Fig. 8.5 . A dual-port driver at the
boundary of bus1 and bus2 is responsible for relaying data between the two
buses, with the data fl ow direction being determined by two control signals en1
and en2. When en1 is high, data can be transmitted from bus1 to bus2, and when
en2 is high, data can be transmitted from bus2 to bus1. When both en1 and en2
are low, the buses are isolated from each other.

Assuming that the internal energy of dual-port drivers is negligible and their
intrinsic delay is smaller than the rest of the bus, and the energy dissipated to gener-
ate and connect control signals of the bus drivers is negligible, the split bus archi-
tecture results in energy savings compared to a simple shared bus architecture.

M1

M2 M4 M6

M3 M5

Data bus

 FIGURE 8.4

 Monolithic single shared bus architecture [9]
 © 2002 IEEE

M1

M2 M4 M6

M1

M3 M5

Bus1 Bus2

BUF1

BUF2

en2

en1

 FIGURE 8.5

 A split bus architecture [9]
 © 2002 IEEE

305

The energy savings will vary, depending on how the components are clustered on
the different segments. Table 8.1 shows the energy consumption of different com-
ponent allocations on the two segments, for a system with four modules— M1, M2,
M3 , and M4. The confi guration in which modules M1 and M2 are on one segment,
and modules M3 and M4 are on another segment results in the largest energy sav-
ings. Such a lowest energy consumption confi guration can be derived from a data
transfer probability graph, as shown in Fig. 8.6 . The components having the highest
probabilities of data transfer should be kept on the same segment, so that only that
segment of the bus architecture is active during the transfer, which saves energy.
This observation can be corroborated from the energy observations in Table 8.1 and
the probability graph in Fig. 8.6 .

 Figure 8.7 shows the results of an experiment to determine energy savings of
the split bus technique when compared to a shared bus architecture, where the
data transfer probability between any two modules is assumed to be one of four
probability distributions (normal, exponential, delta function, and uniform). The
x-axis represents different system testbenches with varying number of modules. It
can be seen that energy savings are obtained with all four data transfer probability
functions when a split bus is used. Further reduction of bus energy can be obtained
by using bus encoding and low-voltage swing signaling techniques [11, 12] .

Another variant of the split bus was proposed by Lu and Koh [13]. The high per-
formance bus architecture called SAMBA (single arbitration, multiple bus accesses)
allows multiple masters to access the bus with only a single bus arbitration grant.

M1 M2

1/81/8
1/8 1/8

1/4

1/4
M3 M4

 FIGURE 8.6

 Data transfer probabilities between modules [9]
 © 2002 IEEE

 Table 8.1 Energy consumption of various bus architectures [9]

 Architecture Energy

 BUS ! { M 1 , M2 , M3 , M4} 1

 BUS1!{ M 1 , M2} BUS2 !{ M 3 , M4} 0.75

 BUS1!{ M 1 , M3} BUS2 !{ M 2 , M4} 0.875

 BUS1!{ M 1 , M4} BUS2 !{ M 2 , M3} 0.875
 © 2002 IEEE

8.1 Split Bus Architectures

306 CHAPTER 8 Custom Bus-Based On-Chip CA Design

The split nature of the bus enables idle bus segments to be used for other pend-
ing bus transactions (in addition to the transaction permitted by the arbitration),
without introducing additional arbitration complexity. In traditional bus architec-
tures, only one master can access the bus at any given time, after it is granted
access to the bus by the arbiter. This leads to wastage of bus resources, which are
completely consumed by a single transaction on the bus. Split [3] or out-of-order
(OO) [4] transactions can overcome this bandwidth limitation, but at the cost of
increased arbitration complexity, leading to an increase in arbitration delay. The
SAMBA bus architecture attempts to overcome these drawbacks, and improve bus
bandwidth and latency response.

 Figure 8.8 shows the structure of the SAMBA bus architecture. It consists of two
separate buses, each of which is used for data transfer in a forward or backward
direction. The SAMBA bus architecture requires that the addresses of the modules
be in an increasing or decreasing order from one end of the bus to the other. The
bus transferring data from the lower address modules to the higher address modules
is called the forward bus, while the bus transferring data from the higher address
modules to the lower address modules is called the backward bus. A module is
attached to the bus through an interface unit that can communicate with other
interface units through both the forward and backward buses. Each bus operation
consists of two phases: the request phase and the response phase. The communica-
tion request is sent by the initiator to the destination module via one of the buses
in the request phase, and the response is sent by the destination on the other bus
in the response phase. Before a transaction can begin on a bus, the interface unit
of the initiator must decide whether to use the forward or backward bus, and then
request the arbiter for access to that bus. The arbiter broadcasts the winner of the
arbitration to all interface units, and it is possible that one module gains access to
the forward bus, while another gets access to the backward bus. Multiplexers are
used to combine all the signals, as shown in Fig. 8.8 .

4 6 8 10 12
Number of modules

P
ow

er
 s

av
in

g
(%

)

0

10

20

30

40

50

60

14 16 18 20

Normal
Exponential
Delta function
Uniform

 FIGURE 8.7

 Power savings for different data distribution patterns [9]
 © 2002 IEEE

307

Unlike a traditional bus architecture, a module connected to the SAMBA bus
can access the bus even if it is not an arbitration winner. As long as there are no
common bus segments in the paths of bus transactions, they can be performed
simultaneously, allowing for more parallelism in data communication. If a module
has a pending transaction for the forward bus, it can initiate the transaction if any
of the following three conditions are met:

 (i) The module wins the arbitration for the forward bus.

 (ii) The bus transaction destination of the module is not after the arbitration
winner (i.e., the address of the destination is lower than or equal to that
of the arbitration winner), and no modules before this module are per-
forming transactions with modules after it on the bus.

 (iii) The module is after the arbitration winner and no module before it per-
forms a bus transaction with a module after it.

 Figure 8.9 depicts of a scenario where simultaneous multiple accesses to a bus
occur after a single arbitration. Module 3 is the arbitration winner, and therefore
the bus transaction from modules 3 to 5 is performed. Since the destination of
the pending transaction at module 1 is module 2, which is before the arbitration
winner, it satisfi es condition (ii) above, and can therefore perform the transaction
on the bus simultaneously. The ability to perform multiple transactions in a single
cycle results in higher bandwidth and lower latency for the SAMBA bus. Com-
munication latency is further reduced because transactions can be performed
after automatic compatible transaction detection at the interface units without
waiting for bus access from the arbiter. Figures 8.10 and 8.11 show the effective

 FIGURE 8.8

 Structure of SAMBA bus architecture [13]
 © 2003 IEEE

1 2 3

Bus access
granted

4 5

 FIGURE 8.9

 Multiple bus accesses with single arbitration [13]
 © 2003 IEEE

8.1 Split Bus Architectures

308 CHAPTER 8 Custom Bus-Based On-Chip CA Design

bandwidth and average latency reduction when different SAMBA bus confi gura-
tions are compared with a traditional shared bus architecture. The x-axis shows the
number of modules in the different testbenches on which the experiments were
performed. The inter-communication interval, defi ned as the number of bus cycles
after which a new transaction is generated once the previous bus access has been
granted, is randomly generated following a Poisson distribution. Three different
SAMBA confi gurations are considered in the experiment, which are based on the
communication distance distribution. The communication distance of a bus trans-
action is defi ned as the number of interface units between its initiator and desti-
nation. The three SAMBA confi gurations have different communication distance
distributions: uniform, Poisson, and exponential. In the SAMBA-uniform confi g-
uration, a module has equal probability of generating a transaction for all other
modules. In the other two distributions, an average communication distance of
(num_of_modules/4) is also used to direct traffi c generation, where num_of_
modules is the number of modules attached to the bus. A two level TDMA/RR
(time division multiple access/round-robin) arbitration scheme is used for all four

1
8 16 24 32 40 48 56 64

8

7

6

5

4

3

2

Traditional
bus

SAMBA-
uniform

SAMBA-
Poisson

SAMBA-
exponential

 FIGURE 8.10

 Effective bandwidth for buses with different number of modules [13]
 © 2003 IEEE

16

14

12

10

8

6

4

2

0
8 16 24 32 40 48 56 64

SAMBA-
uniform

SAMBA-
Poisson

SAMBA-
exponential

 FIGURE 8.11

 Average latency reduction for buses with different number of modules [13]
 © 2003 IEEE

309

bus confi gurations that are compared, and an arbitration latency of one cycle is
assumed. For fairness of comparison, it is assumed that the traditional bus archi-
tecture has two buses that can be used independently. Therefore, when the traffi c
on those buses is high enough, the effective bandwidth is two, as shown in Fig.
8.10. From Figs. 8.10 and 8.11 it can be seen that when the SAMBA bus is used,
the effective bandwidth is improved by as much as 3.5 times, while the latency is
reduced by up to 15 times.

 8.2 SERIAL BUS ARCHITECTURES
Typical standard bus-based communication architectures [3–8, 14] have parallel-
line buses with multiple signal lines for the data and address buses. In the deep
submicron (DSM) era, coupling capacitance between adjacent signal lines leads
to signifi cant signal propagation delay and power consumption [15, 16] . Several
techniques have been proposed to reduce this coupling capacitance, includ-
ing increasing line-to-line spacing and non-uniform wire placement [17–20], bus
ordering [21], bus swizzling [22], repeater staggering [23], and skewing signal
transition timing of adjacent lines [24] (these techniques are explored in more
detail in Chapters 6 and 11). One extremely effective way of reducing coupling
capacitance is to reduce the number of physical signal lines, by coupling the data
of m signal lines onto a single line, called a serial link. Such an approach was
proposed by Ghoneima et al. [25] and Hatta et al. [26]. A parallel n line bus is con-
verted into n/m serial links, as shown in Fig. 8.12 . The reduction in the number
of bus lines results in (i) a larger interconnect pitch, which reduces the coupling
capacitance and (ii) a wider interconnect, which reduces the effective resistance,

b0

b1

b2

b3

b4

b5

b6

b7

b7

b6

b5

b4

b3

b2

b1

b0

Serializer Deserializer

 FIGURE 8.12

 8-to-2 serial bus that converts an 8-bit parallel bus into 2 serial links (n = 8, m = 4) [25]
 © 2005 IEEE

8.2 Serial Bus Architectures

310 CHAPTER 8 Custom Bus-Based On-Chip CA Design

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5
1 2 4

m
8

130 nm
100 nm

70 nm
50 nm
35 nm
25 nm

T
PA

(m
)

T
PA

(1
)

 FIGURE 8.13

 Relative throughput per unit area of a 64 to (64/m) serial link bus vs. degree of
multiplexing m [25]
 © 2005 IEEE

leading to a decrease in interconnect delay and energy consumption. A signifi cant
improvement in energy consumption can be obtained by carefully selecting the
number of serial links.

 Figure 8.13 shows the throughput per unit area of a 64 to (64/ m) serial link
bus, TPA(m), normalized to the throughput per unit area of a 64-bit bus, TPA(1),
and plotted as a function of the degree of multiplexing m. The technology scal-
ing parameters were obtained from [27]. Multiplexing bus lines to create serial
links results in an increase in line spacing and width (if the bus area remains con-
stant), which reduces the line resistivity and capacitance, leading to an improve-
ment in line bit rate. However, multiplexing also reduces the number of bus
lines transferring data, which imposes a throughput penalty. Thus an optimal
degree of multiplexing must exist, and is shown to have a value of 2 from Fig.
8.13. The bus energy reduction obtained for this degree of multiplexing (m ! 2)
for a 64- to 32-bit serial link is shown in Fig. 8.14 . The energy reduction numbers
take into account the overhead of both the driving and multiplexing circuitry. An
energy reduction of up to 31.42% is obtained for the 50-nm CMOS (complemen-
tary metal-oxide semiconductor) technology node and this energy reduction is
expected to be more pronounced with further technology scaling, as shown in
the fi gure. The drawback of such a scheme is its increased latency response and a
performance overhead for serializing and de-serializing communication data.

 8.3 CDMA-BASED BUS ARCHITECTURES
Typically, in standard bus-based communication architectures [3–8, 14] , the physi-
cal interconnect resources are shared in the time domain. A bus inherently uses a

311

variant of TDMA to reuse expensive on-chip wires for multiple transactions that
occur at different points of time. In contrast, CDMA is a spread spectrum tech-
nique that allows simultaneous use of the on-chip wires by multiple data transmis-
sion fl ows [28, 29] . It is based on the principle of codeword orthogonality, which
avoids cross-correlation of codewords and allows perfect separation of data bits
modulated with different codewords. In such a CDMA scheme, a transmitter on
the bus modulates each of its transmitted bits with a spreading code before trans-
mission on the bus, as shown in Fig. 8.15(a) . On the bus, multiple transmissions
can exist simultaneously as a multi-level signal. At the receiver ’s end, the signal is
correlated with the same spreading code that was used by the transmitter. Since
spreading codes are orthogonal, the original data that was transmitted can be
retrieved. Figure 8.15(b) shows the Walsh–Hadamard spreading code [29] that is
widely used in the communication domain. In CDMA, these spreading codes con-
vert (or spread) each source data bit into k “ chips ” (which are user-specifi c fi xed
patterns), so that the spreading data rate (called chip rate) is k times the source
bit rate. In a channel with two concurrent CDMA links, a 2-bit Walsh code is used
and a data bit will be expanded into two “ chips. ” Two clock cycles are needed to
receive 1 bit of data if the receiver can receive one “ chip ” per clock cycle [30].

A mixed-mode bus architecture called CT-Bus was proposed by Lai et al. [30],
which integrates CDMA and TDMA techniques in a hierarchical structure. The CT-
Bus supports a fi xed number of CDMA subchannels that are separated by differ-
ent spreading codes. Two or more of these subchannels can be grouped into a
subchannel group. Figure 8.16 shows the CT-Bus architecture having six subchan-
nels, grouped into three different subchannel groups. DF1 to DF4 are data fl ows
that will utilize the bus, and need to be assigned to different subchannel groups.
Because of the channel isolation feature of the CDMA scheme, data fl ows in

50

60

40

30

20

10

0
130 100 70 50

Technology (nm)

35 25

∆E
 (

2)
E

 (
1)

%

 FIGURE 8.14

 Bus energy reduction of a 64–32 serial link (m ! 2) compared to a conventional 64-bit
parallel line bus (m ! 1) [25]
 © 2005 IEEE

8.3 CDMA-Based Bus Architectures

312 CHAPTER 8 Custom Bus-Based On-Chip CA Design

Code-domain

Data flows

DF1
DF2
DF3

DF4

Time-domain

Sub-channel
group

Clock cycle CDMA sub-channels with
different spreading codes

 FIGURE 8.16

 Architecture of CT-Bus (with three CDMA subchannel groups) [30]
 © 2004 IEEE

 FIGURE 8.15

 (a) CDMA-based interconnect (b) modulation of data and spreading code [30]
 © 2004 IEEE

Code A

Out 2

DeCode
C

In 2 Out 4

Code C

In 4
In

 1

O
ut

 1

C
od

e
B

O
ut

 3

In
 3

D
eC

od
e

B

D
eC

od
e

D
C

od
e

D

DeCode
A

Merged multi-level
signal

(a)

Data
01

1

"1

#1

0 1 0
Walsh
code

Modulated
data

(b)

different subchannel groups are isolated and do not impact each other. Within
each CDMA subchannel group, data fl ows are assigned different TDMA times-
lots. The subchannel groups can optionally use other arbitration schemes such as
round-robin (RR) or fi xed-priority (FP), which were described earlier in Chapter 2.
The number of CDMA subchannels and subchannel groups are also confi gurable.

 Figure 8.17 shows the latencies of two traffi c fl ows, DF3 and DF4, on a TDMA
bus and on the CT-Bus, from a multimedia mobile phone case study that was simu-
lated for a period of 1 second (x-axis). The DF3 and DF4 data fl ow latencies in the
TDMA bus are impacted by the bursty traffi c from other data fl ows. In contrast,
due to the channel isolation feature of the CT-Bus, the latencies for the DF3 and
DF4 data fl ows are very predictable and well controlled, after appropriate assign-
ment to separate subchannel groups.

313

An interesting discussion on CDMA and other advanced interconnects, such as
frequency division multiple access (FDMA), was presented by Chang [31]. FDMA
interconnects allow sharing of bus lines by assigning different data fl ows to differ-
ent frequency channels. Data fl ows assigned to different frequency channels can
communicate concurrently with virtually no interference, provided that undesired
frequency channels are fi ltered out at the destination. The FDMA and CDMA can
also be combined into a hybrid multi-carrier CDMA scheme, where concurrent
data fl ows are possible by assigning appropriate codes and frequencies to each
data fl ow pair. Such a multi-carrier CDMA scheme can have the highest aggregate
data rate when compared to TDMA, CDMA, or FDMA interconnects, due to the
increased bandwidth made available through the use of more than one frequency
channel. However, the overhead of the modulation and demodulation transceiv-
ers at the interfaces of the communicating modules needs to be further analyzed,
before CDMA-based interconnects can be considered commercially viable as
on-chip communication architectures.

 8.4 ASYNCHRONOUS BUS ARCHITECTURES
Asynchronous buses are implemented using clockless circuits, that is, they do not
make use of a global clock signal for synchronization. Instead, synchronization
occurs using additional handshake signals between transfer phases. Since the global
clock generator and distributor contributes to a signifi cant chunk of the on-chip
bus power consumption, the clockless asynchronous buses have lower power con-
sumption compared to traditional synchronous buses. Asynchronous buses also
have another important advantage—resilience to clock skew even as the number of
IPs (components) connected to the bus increases [32]. Performing long range com-
munication across the chip using a widely distributed clock is diffi cult especially at

0.35

La
te

nc
y

(s
ec

)
0.3

0.25

0.2

0.15

0.1

0.05

0
0

Data arrival time (sec)

DF4 in TDMA bus

DF3 in CT-Bus

0.0
6

0.1
2

0.1
8

0.2
4 0.3 0.3

6
0.4

2
0.4

8
0.5

4 0.6 0.6
6

0.7
2

0.7
8

0.8
4 0.9 0.9

6

DF3 in TDMA bus

DF4 in CT-Bus

 FIGURE 8.17

 Latencies of DF3 and DF4 data traffic flows from multimedia mobile phone system case
study [30]
 © 2004 IEEE

8.4 Asynchronous Bus Architectures

314 CHAPTER 8 Custom Bus-Based On-Chip CA Design

high frequencies where the effect of clock skew usually leads to slower and wider
interconnects (Chapter 11 discusses on-chip clock networks in more detail).

An asynchronous bus architecture called MARBLE (Manchester AsynchRonous
Bus for Low Energy) was proposed by Bainbridge and Furber [33, 34] for reduc-
ing on-chip bus architecture power consumption. It consists of address and data
channels, and exploits pipelining of the arbitration, address, and data phases, just
like in traditional synchronous bus architectures. However, due to its asynchronous
nature, there is a lack of synchronization between these phases, which introduces
problems in the control of bus handover between initiators. For instance, during
an address phase, the bus is occupied until the slave accepts the address and com-
pletes the handshake. A similar scenario is repeated for the data channel in the sub-
sequent data phase. The extent of handshaking in an asynchronous bus is typically
more involved compared to that for a synchronous bus and is an undesirable over-
head. This overhead can be overcome to an extent by the introduction of latches at
the component ports, as shown in Fig. 8.18 . This allows, for instance, the address
packet n to be held in the latch at the target, freeing up the address channel for the
initiator, which can now send packet n " 1. These latches thus decouple the bus
from the components, and free them up for subsequent transfers.

Two separate arbiters are used in MARBLE: one for the address channel and the
other for the data channel. The bus utilizes centralized decoding and arbitration. It
also supports spatial locality optimizations (implemented via dedicated signals)

Latch

Latch

Latch

A
dd

re
ss

 b
us

Target

Initiator

Target interface

Initiator interface

A
dd

re
ss

W
rit

e

R
ea

d

A
dd

re
ss

W
rit

e

R
ea

d

D
at

a
bu

s

 FIGURE 8.18

 Decoupling the bus from components using latches in MARBLE [33]
 © 1998 IEEE

315

that indicate cache line fetches and DMA transfers. Finally, MARBLE supports burst
mode and in-order split transactions. All these features, coupled with its inherent
asynchronous behavior result in a bus architecture that has low latency and zero
quiescent state power consumption. Two drawbacks of using an asynchronous
bus like MARBLE are the additional hardware logic overhead at the module inter-
faces, and the additional bus lines needed for handshaking.

A high performance asynchronous bus, capable of multiple issue (i.e., allowing
each master to issue another transaction before the response of a previous trans-
action arrives), and in-order as well as OO transaction completion was presented
by Jung et al. [35]. A customized layered architecture is used for the proposed
asynchronous bus in order to alleviate increasing system complexity and enable
optimizations. This layered architecture is shown in Fig. 8.19 . The physical, data
link, and transport layers are mapped to the interfaces of the IPs connected to
the bus. The physical layer handles data encoding, fi ltering, and driving functions.
The data link layer is concerned with fl ow and access controls. The transport layer
manages burst and split transactions, multiple issue, and in-order/out-of-order trans-
action completion. An asynchronous handshake protocol with two-phase signaling
and data insensitive (DI) encoding is used for robust and high speed data transfers
on the bus [35], while four-phase signaling and bundled data transfers [35] are
used at the IP interfaces for high performance and low complexity. Two asyn-
chronous buses are proposed: (i) MI-OCB, a multiple issue on-chip bus support-
ing in-order transaction completion and (ii) MO-OCB, a multiple issue on-chip
bus supporting OO transaction completion. Experimental results for the perfor-
mance and power dissipation of these buses, when compared to a single issue
on-chip asynchronous bus (SI-OCB) are shown in Figs. 8.20 and 8.21 , respectively.
The three asynchronous buses were implemented with a 0.25 !m CMOS process

Asynchronous
wrapper

Transport layer

Master IP
(synchronous IP)

Lo
ca

l s
yn

ch
ro

no
us

m
od

ul
e

(L
S

 m
od

ul
e)

Data link layer

Physical layer

Asynchronous on-chip bus (shared medium)

G
lo

ba
l a

sy
nc

hr
on

ou
s

in
te

rc
on

ne
ct

 m
od

ul
e

(G
A

I m
od

ul
e)

M
as

te
r

in
te

rf
ac

e
(M

I)

Asynchronous
wrapper

Transport layer

Slave IP
(synchronous IP)

Data link layer

Physical layer S
la

ve
 in

te
rf

ac
e

(S
I)

ALI

 FIGURE 8.19

 Layers of asynchronous bus architecture [35]
 © 2005 ACM Press

8.4 Asynchronous Bus Architectures

316 CHAPTER 8 Custom Bus-Based On-Chip CA Design

and simulation results were obtained with Synopsys NanoSim [67] at the transis-
tor level, using the pre-layout netlist. The testbench consists of 12 IPs (4 masters
and 8 slaves), with each master communicating with the slaves with the same
probability. The assumptions are that the delay of all the asynchronous modules
is 0, and that the ratio of the non-bus transfer time to the total transfer time per
synchronous IP is also 0. The testbench workload comprises of a total of 4800
transactions. From Fig. 8.20(a) , it can be seen that the throughputs of MI-OCB and
MO-OCB are 31.3% and 34.3% more than for SI-OCB. The throughput of MI-OCB
is lower than that of MO-OCB because no reorder buffers and related hardware
controllers are needed in MO-OCB (it is the responsibility of the master IP to han-
dle rearrangement of responses in MO-OCB). The effect of number of issues on
throughputs of MI-OCB and MO-OCB is shown in Fig. 8.20(b) . The value of 1 for
the number of issues represents the throughput of SI-OCB. It can be seen that the
throughput is saturated when the number of issues is greater than 4.

 Figure 8.21(a) shows the energy consumption of the three asynchronous
bus architectures. MI-OCB and MO-OCB consume 6.76% and 3.98% more energy,
respectively, than SI-OCB. The energy consumption per data transaction for the
three asynchronous buses as a function of the number of issues is shown in
Fig. 8.21(b) . The value of 1 for the number of issues represents SI-OCB. With an
increase in number of issues, energy consumption increases proportionally, since
the hardware complexity of the reorder buffer increases linearly.

An asynchronous crossbar bus architecture called NEXUS was proposed by
Lines [36]. NEXUS is based on the Quasi-Delay-Insensitive (QDI) timing model
 [37] requiring that the circuit functions correctly regardless of the delays of all
gates or most wires. This conservative model forbids all forms of timing races,
glitches, delay assumptions and clocks, and can work robustly over delay varia-
tions caused by power supply drop, in-die variations, crosstalk, and local heating.
In such a QDI system, a separate wire cannot be used to indicate the validity of
the data wire because one cannot make an assumption about the relative delay of
the wires. Instead, the data and validity are mixed onto two wires. Together with

 FIGURE 8.20

 Simulation results for performance: (a) throughputs (b) throughputs of MI-OCB and MO-OCB
as a function of the number of issues [35]
 © 2005 ACM Press

2.2

T
hr

ou
gh

pu
t (

G
bi

t/s
)

2.0

1.8

1.6

1.4

1.2
SI-OCB MI-OCB MO

(a)

T
hr

ou
gh

pu
t (

G
bi

t/s
)

2.2

2.0

1.8

1.6

1.4

2 4 6

The number of issues

8 10 12 14 16 180

MI-OCB

MO-OCB

(b)

317

a backward going acknowledge wire for fl ow control, these wires form an asyn-
chronous channel. When both the data wires are 0, the channel is neutral and no
data is present. When an initiator must send a bit, either the fi rst or the second
data wire is raised to send a logical 0 or 1. Once the receiver has received and
stored the data, the receiver raises the acknowledge signal. Eventually, the sender
puts the data wires back to neutral, after which the receiver lowers the acknowl-
edge signal. This is called the four-phase dual rail handshake, and it is used in the
asynchronous buses in NEXUS.

The NEXUS crossbar employs clock domain converters to bridge the asynchro-
nous interconnect with the synchronous modules in the system. Figure 8.22 shows a
decomposition of the NEXUS crossbar, which can support up to 16 modules. Data is
transferred in bursts that cannot be fragmented, interleaved or dropped (i.e., atomic
bursts). Each burst contains a variable number of words (NEXUS uses a 36-bit data
path) terminated by a tail bit, and a 4-bit TO/FROM signaling to route the data to

0.21
SI-OCB MI-OCB MO-OCB

0.22

0.23

E
ne

rg
y

(n
J)

0.24

0.25

0.26

(a)

 FIGURE 8.21

 Simulation results for energy consumption: (a) energy consumption per data transaction
(b) energy consumption per data transaction of MI-OCB and MO-OCB as a function of the
number of issues [35]
 © 2005 ACM Press

E
ne

rg
y

(n
J)

The number of issues

0.27

0.26

0.25

0.24

0.23

0.22

0.21
0 2 4 6 8 10 12 14 16 18

MI-OCB
MO-OCB

(b)

Data (36)

Tail (1)

Crossbar

Repeat

Input
control

Repeat

Output
control

To (4)

.

.

.

.
.
.

Data (36)

Tail (1)
.

16.

.
256.

.
16.

.
16.

.
16.

.
16.

.
16.

From (4)

Request

 FIGURE 8.22

 NEXUS crossbar decomposition [36]
 © 2003 IEEE

8.4 Asynchronous Bus Architectures

318 CHAPTER 8 Custom Bus-Based On-Chip CA Design

the appropriate destination. The largest part of the crossbar is its data path, which
MUXes all input data channels to the output data channels. It is controlled by a split
channel for each input which specifi es which output to send the burst to. A merge
control channel is also required at the output to indicate which input to receive the
burst from. The split control comes from the input control block, while the merge
control comes from the output control block, as shown in the fi gure. In between
the input/output control and the data path are repeat circuits that replicate the
same split/merge control until a tail bit of 1 passes through the link.

The 16-port, 36-bit NEXUS crossbar with arbitration and fl ow control, pipe-
lined repeaters to communicate over long wires, and clock domain converters to
connect to synchronous modules was fabricated for a 130-nm CMOS process and
shown to reach frequencies of 1.35 GHz with a 780 Gb/s cross-section bandwidth.
The area footprint of a typical NEXUS system with all 16 ports used, and an aver-
age of two pipelined repeaters per link was reported to be 4.15 mm 2, which is a
small and relatively reasonable fraction of the total chip area.

 8.5 DYNAMICALLY RECONFIGURABLE BUS ARCHITECTURES
Typically, once the topology and values for communication parameters such as
arbitration schemes, bus clock frequencies, etc. are decided (after an exploration
phase) for a bus-based communication architecture, they remain fi xed for the
entire lifetime of the System on-chip (SoC) design. Dynamically reconfi gurable
bus architectures have the ability to modify certain parameters and even the bus
architecture topology dynamically during system execution. Such an ability for
reconfi guration allows the communication architecture to better adapt to chang-
ing traffi c patterns and needs of the system during execution, and can result in
better optimization of design goals, such as power and performance. We fi rst pre-
sent research that has looked at dynamic bus parameter reconfi guration, followed
by research efforts on dynamic bus topology reconfi guration.

 8.5.1 Dynamic Bus Architecture Parameter Reconfiguration
On-chip communication architecture standards such as AMBA [3, 14] , IBM
CoreConnect [4] and Sonics Smart Interconnect [6] provide limited support for
dynamically reconfi guring their parameters, to adapt to changing application
requirements at runtime [38]. For instance, Sonics Smart Interconnect allows soft-
ware programmable arbitration and bandwidth allocation by dynamically varying
TDMA slot allocation among components. Variable-length burst sizes and software
programmable arbitration priorities are supported in AMBA and CoreConnect. An
additional degree of confi gurability is provided in CoreConnect, by allowing each
bus master to indicate a desired priority to the arbiter for each bus request.

 8.5.1.1 Communication Architecture Tuners
Lahiri et al. proposed communication architecture tuners (CAT) [39, 40] to adapt
on-chip communication architecture parameters (mainly arbitration priority) to the
varying communication needs of the system and the varying nature of data being
communicated. Figure 8.23 shows an example of a CAT-based communication

319

architecture for a TCP system from a network interface card. CATs are added to every
master in the system and the arbiter and component interfaces are enhanced to han-
dle CAT operation. Every time a communication request is generated by a compo-
nent, its corresponding CAT is notifi ed. The CAT also monitors the details of the data
being communicated and the state of the component. For the system shown in Fig.
8.23, the CAT observes the packet size and deadline from the header of the packet
being processed by the component, and groups communication requests based on
the size and deadline of the packet being processed. The CAT then determines an
appropriate arbitration priority value for the group of communication requests. Such
a CAT-based communication architecture was able to dynamically adjust priorities
and meet all the packet deadlines for the TCP example shown in Fig. 8.23 . Whereas
the traditional static priority assignment failed to meet the deadlines.

A more detailed view of the CAT module is shown in Fig. 8.24 . CAT consists
of a partition detector and a parameter generator circuit that generates arbitra-
tion priority values during system execution. A communication partition is a sub-
set of the transactions generated by a component during execution. The partition
detector circuit monitors and analyzes information generated by the component,
such as transaction initiation requests, indications of importance of the data being
processed, and tracer tokens. A component is enhanced to generate tracer tokens
purely for the purpose of the CAT, to indicate specifi c operations to the CAT that
the component is executing. The partition detector uses this information to iden-
tify the start and end of a sequence of consecutive communication transactions
belonging to a partition. The parameter generator circuits generate values for com-
munication arbitration priority based on the partition ID generated by the parti-
tion detector circuit (and other application specifi c data properties specifi ed by
the system designer). The generated value for the priority is sent to the arbiters
and controllers in the communication architecture, to change its behavior.

 Figure 8.25 shows the overall methodology for designing CAT-based communica-
tion architectures. In the fi rst step, a performance analysis of the system execution
traces for the partitioned/mapped system is performed, as described in [41], in order
to obtain information and statistics for use in later steps. The trace-driven performance
analysis technique used in [41] is considered comparable in accuracy to complete

CHECKSUMIP_CHECKMIPS
R3000

CAT
CAT

CAT

Memory
Optimized

arbiter

 FIGURE 8.23

 CAT-based communication architecture for a TCP system example [39, 40]
 © 2004 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

320 CHAPTER 8 Custom Bus-Based On-Chip CA Design

CAT

P2P1

Data and
control
signals

Data
properties

(size,
deadline,

etc.)

Bus interface

To communication architecture

Parameters

Partition ID

Priority
generator

Burst size
generator

Param
n

Comm.
requests

Identifiers

cnt $ n4

cnt $ n1

e1
e1

e2
e3

e2 " e3

cnt $ n2
cnt $ n3

Component

 FIGURE 8.24

 Detailed view of the CAT [39, 40]
 © 2004 IEEE

1 2 3 4

5

6

CAGAnalyze system,
create communication
analysis graph

Partition
communication

instances

Improved
performance?

Re-analyze system,
re-compute
performance metrics

S
ys

te
m

 w
ith

 n
ew

co
m

m
un

ic
at

io
n

ar
ch

ite
ct

ur
e

pr
ot

oc
ol

s

Synthesize CATs
to realize optimized

protocols

Optimized CAT-based system communication
architecture

Evaluate
cluster

statistics

Assign
parameter
values to
clusters

Inputs:
partitioned/
mapped system,
communication architecture
topology, input traces,
performance metrics

Partitions/
clusters

 FIGURE 8.25

 Methodology for designing CAT-based communication architectures [39, 40]
 © 2004 IEEE

321

system simulation, while being more effi cient to employ in an iterative manner. The
output of this analysis is a communication analysis graph (CAG), which is a compact
representation of the system ’s execution for the given input traces. The vertices of this
graph represent clusters of computation and abstract communications performed by
the components during execution. The edges of the graph represent dependencies
between the various computations and communications. The CAG can be quickly ana-
lyzed to obtain various performance statistics. In Step 2, the communication vertices
in the CAG are grouped into a number of partitions. Each partition consists of events
having similar communication requirements. In Step 3, various cluster statistics are
evaluated, based on which arbitration priority values are assigned to the partitions in
Step 4. Step 5 re-evaluates system performance for the new priority value assignments.
If there is an improvement in performance, Steps 1–5 are repeated, till no further per-
formance improvement can be achieved. Finally, Step 6 generates the CAT hardware
to realize the optimized protocol generated in the previous steps.

Experimental studies were performed to compare an enhanced CAT-based com-
munication architecture with conventional communication architectures, with static
arbitration priority assignment. Four system testbenches were considered for the
comparison study: (i) TCP/IP, a four component, single shared bus system shown
in Fig. 8.23 , (ii) SYS, a system with four components accessing a shared memory on
a single shared bus, (iii) ATM, a packet forwarding unit of an ATM switch that con-
sists of fi ve components accessing a dual-port memory, over a single shared bus, and
(iv) BRDG, a hierarchical shared bus-based system with two buses connected via a
bridge, and six components, including two shared memories. Table 8.2 shows the
performance benefi ts of using a CAT-based approach over a static arbitration pri-
ority-based conventional bus architecture. The performance objective for the TCP/
IP, SYS, and ATM systems is to minimize the number of missed deadlines. For the
BRDG system, each transaction is assigned a weight, and the overall performance
of the system is measured using a weighted mean of the execution times of all the

 Table 8.2 Performance comparison of a CAT-based architecture with a
conventional static priority-based architecture [39, 40]

Example
system

 Performance
metric

Input
trace

 Static
protocol-
based
architecture

CAT-
based
architecture Improvement

 TCP/IP Missed
deadlines

 20 packets 10 0 –

 SYS Missed
deadlines

 573
transactions

 413 17 24.3

ATM Missed
deadlines

 169
packets

 40 16 2.5

BRDG Average
cycles

 10,000
cycles

304.72 254.1 1.2

 © 2004 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

322 CHAPTER 8 Custom Bus-Based On-Chip CA Design

bus transactions. The objective for this system is to minimize the weighted aver-
age processing time. Column 4 reports the performance of the static priority-based
conventional bus architecture, while column 5 reports the results of the CAT-based
communication architecture. The CAT-based architecture uses information such as
weights on communication requests and deadlines to provide a more fl exible and
higher performance communication infrastructure.

Since this methodology is dependent on performance evaluation on execution
traces, it is important to determine what infl uence the choice of input traces has on
the performance of the CAT-based communication architecture. For this purpose,
the performance of the CAT-based architecture and the conventional static priority
bus architecture are compared for the SYS system testbench, for 10 different input
traces (that present comparable workloads to the communication architecture),
generated using random distributions for the timing, performance requirements, and
size of the communication requests. Table 8.3 compares the fraction of deadlines
met by the CAT-based architecture and the conventional static priority bus architec-
ture. It can be seen that the performance gain for the CAT-based architecture over
the conventional architecture is consistent across the traces, meeting 94.66% of the
deadlines on an average. It is also clear that the performance advantage provided
by CATs are relatively immune to the exact sequence and timing of input stimuli
experienced by the system, because CATs are not tuned to the exact arrival times of
communication requests, or packet sizes, and can therefore effectively track changes
in deadlines and control-fl ow, which can impact performance.

 Figure 8.26 shows an experiment comparing the performance of the CAT-based
architecture with a static priority assignment based conventional bus architec-
ture, for the SYS example, for 12 different input traces that present widely varying
workloads to the communication architecture. Again, it can be seen from the fi gure

 Table 8.3 Effect of varying input traces (while maintaining comparable
workloads) on the performance of CAT-based architecture [39, 40]

 Deadlines Met (%)

 Input trace Static protocol-based architecture CAT-based architecture

 T-6-0 13.06 94.62

 T-6-1 12.86 93.47

 T-6-2 12.06 93.47

 T-6-3 11.9 94.1

 T-6-4 10.64 95.48

 T-6-5 11.62 94.08

 T-6-6 11.24 96.89

 T-6-7 13.3 95.07

 T-6-8 12.17 94.47

 T-6-9 14.76 94.55
 © 2004 IEEE

323

that the CAT-based architecture provides better performance than the conventional
bus architecture. The extent of the performance improvement varies, depending
on the workload imposed by the trace. The benefi t of an adaptive communication
architecture like the CAT-based architecture is more pronounced for moderate to
high workloads (e.g., T-3 to T-9). For low workloads, both the conventional and
CAT-based architectures are capable of meeting most of the deadlines, whereas for
very high workloads, neither architecture can meet the deadlines. Consequently,
for very low or very high workloads, the gains for the CAT-based architecture are
comparatively smaller.

 8.5.1.2 LOTTERYBUS
Lahiri et al. also proposed LOTTERYBUS [42, 43] to overcome the shortcomings
of existing arbitration schemes, which can be inadequate under certain circum-
stances. For instance, the static priority scheme can lead to starvation of low prior-
ity masters under heavy traffi c loads (i.e., the masters with low priority are rarely
granted access to the bus, because of frequent high priority master transfers). On
the other hand, the TDMA scheme provides a fairer distribution of bus bandwidth
that can overcome starvation scenarios, but can lead to high transfer latencies
due to the lack of fl exibility in the static TDMA slot reservation. The LOTTERYBUS
communication architecture attempts to provide effective bandwidth guarantees,
while ensuring low latencies for bursty traffi c with real-time latency constraints.
LOTTERYBUS introduces a randomized arbitration algorithm implemented
in a centralized lottery manager for each shared bus in an SoC. The lottery

T-0
0

10

20

30

40

50

D
ea

dl
in

es
 m

et
 (

%
)

60

70

80

90

100

T-1 T-2 T-3 T-4 T-5
System input traces (increasing workload)

T-6 T-7 T-8 T-9 T-10 T-11

CAT-based architecture Static protocol-based architecture

 FIGURE 8.26

 Performance comparison for CAT-based architecture for varying input traces (having widely
different workloads) [39, 40]
 © 2004 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

324 CHAPTER 8 Custom Bus-Based On-Chip CA Design

manager receives requests from one or more masters on the bus, each of which
is (statically or dynamically) assigned a number of lottery tickets, as shown in Fig.
8.27 . The manager probabilistically chooses one of the masters as the winner and
grants it access to the bus. While multiple word (burst) transfers are allowed, a
maximum transfer size ensures that none of the masters monopolizes the bus for
extended periods at a time.

The principle of the LOTTERYBUS operation can be explained as follows. Let
C 1 , C 2 , …, C n be the set of masters on the bus. Let the number of tickets held by a
master be t 1 , t 2 , …, t n, and at any cycle. In addition, let the set of pending requests
at any cycle be represented by r1, r 2, …, r n, where ri = 1 if master Ci has a pend-
ing request (and ri = 0 otherwise). Then the probability that master Ci gets access
to the bus is given by:

P
r t

r t
i

i i

j jj

n
()C !

!

⋅

⋅∑ 1

To decide on the arbitration winner, the lottery manager uses the notion of a
lottery [68], and fi rst examines the total number of tickets possessed by contend-
ing masters, given by r tj jj

n ⋅∑ !1
 . It then generates a random number (or picks a

winning lottery) from the range [0, rjj

n∑ !1
 % tj)

1 to determine which master to
grant the bus to. If the number falls in the range [0, r 1 · t 1), the bus is granted to
master C 1. If it falls in the range [r1 · t1, r 1 · t1 + r2 · t2), it is granted to compo-
nent C 2, and so on. For example, in Fig. 8.28 , masters C 1 , C 2 , C 3 , and C 4 are
assigned 1, 2, 3, and 4 lottery tickets, respectively. In the bus cycle shown, only
C 1, C 3, and C4 have pending requests, and hence the number of current tickets is

r tj jj

n ⋅∑ !
! " " !

1
1 3 4 8. The random number generator generates a number in

the range [0, 8) that happens to be 5, which lies between r 1 · t 1 " r 2 · t 2 " r 3 · t 3 ! 4,

Bus I/F
SoC

Comp4

Bus I/F
SoC

Comp3

Bus I/F
SoC

Comp2

Bus I/F
SoC

Comp1

Lottery
manager

Tickets 3Tickets 1

Tickets 2 Tickets 4

Gnt1 Gnt2 Gnt3 Gnt4
Shared
system

bus

 FIGURE 8.27

 LOTTERYBUS communication architecture [42, 43]
 © 2006 IEEE

 1 This set [a, b) includes all the integers between a and b, inclusive of a but not b.

325

and r 1 · t 1 " r 2 · t 2 " r 3 · t 3 " r 4 · t 4 ! 8. Therefore, the bus is granted to master C 4.
LOTTERYBUS addresses the problem of a low priority master not being able to
access the bus for extended periods of time, since the probability p that a compo-
nent with t tickets is able to access the bus within n lottery drawings is given by
the 1 # (t/T)n, which converges rapidly to 1, ensuring that no master is starved.

As mentioned earlier, tickets in the LOTTERYBUS architecture can be assigned
to masters either statically or dynamically. The dynamic ticket assignment case
is of particular interest, since it allows better adaptation to changing traffi c and

Comparison
and grant
generation
hardware

R mod T

T

R

Adder
tree

B
it-w

ise A
N

D

Modulo hardware

gnt [1]r1t1r1t1
r1

r2

r3

r4

t1

t2
t3

t4

4

4

4

4

r2t2

r3t3

r4t4

r1t1"r2t2

r1t1"r2t2"r3t3

r1t1"r2t2"r3t3"r4t4

2n 222120... ...

gnt [2]

gnt [3]

gnt [4]

Random number generator

 FIGURE 8.29

 Lottery manager for dynamic LOTTERYBUS architecture [42, 43]
 © 2006 IEEE

T[0]!C1

C1

C2

C3

C4

T[1]!C3

T[2]!C3

T[3]!C3

T[4]!C4

T[5]!C4

T[6]!C4

T[7]!C4

T[8]!XX

T[9]!XX

Rand [0,8]!5
Lottery

manager

Request mapTicket
assignment

Gnt C4

1

2

3

4

1

0

1

1

 FIGURE 8.28

 Example of lottery to determine arbitration winner in LOTTERYBUS [42, 43]
 © 2006 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

326 CHAPTER 8 Custom Bus-Based On-Chip CA Design

performance requirements. Figure 8.29 shows the lottery manager for the
LOTTERYBUS architecture with dynamic ticket assignment. The inputs to the lottery
manager are the master request lines (r 1,r2,r 3,r 4) and the number of tickets currently
possessed by each master. At each lottery, the partial sum r tj jj

i ⋅∑ !1
 must be cal-

culated for each master Ci (unlike in the static case, where the partial sum values
are fi xed and can be stored in a lookup table). For C 4, this yields the total range, or
the sum of the number of tickets held by all masters. The fi nal result, T ! r 1 · t 1 "
r 2 · t 2 " r 3 · t 3 " r 4 · t 4 defi nes the range in which the random number to be gen-
erated must lie. Modulo hardware arithmetic is used to generate the random num-
ber in the range [0, T). The random number is then compared in parallel against
all four partial sums using comparators, and a grant signal is generated for the
appropriate winning master, using the output range analysis described earlier.

The performance of LOTTERYBUS was studied through several experiments.
A simple four master, four slave shared bus system testbench was used [44], with
the masters connected to parameterized traffi c generators. All the system compo-
nents were specifi ed in Esterel and C, from which PTOLEMY [45] simulation mod-
els were generated using POLIS [46]. PTOLEMY was used for schematic capture
and HW/SW co-simulation.

The fi rst experiment examined the ability of LOTTERYBUS to proportionally
allocate bandwidth under different classes of communication traffi c. Figure 8.30
shows the results of this experiment, with the x-axis depicting nine different com-
munication traffi c classes and the y-axis depicting the fraction of the total bus
bandwidth allocated to masters. It can be seen that for traffi c classes with high
bus utilization, the bandwidth allocated closely follows the assignment of lottery
tickets. Tickets were assigned in the ratio 1:2:3:4 and for the traffi c classes T4,
T5, T7, T8, and T9, the bandwidth allocated is in the ratio of 1.15:2.09:2.96:3.83.
However, for cases when the bus is partially un-utilized (e.g., T3, T6), the band-
width allocation does not follow ticket assignment and is roughly the same for all
components. This is because due to the sparse nature of communication in these
classes, immediate grants are issued to most requests. These results show that
LOTTERYBUS is capable of providing effi cient control over bus bandwidth alloca-
tion for a variety of traffi c classes and a varying level of bus utilization.

100
90
80
70
60
50
40
30

B
an

dw
id

th
 fr

ac
tio

n
(%

)

20
10
0

T1 T9T8T7T6T5T4T3T2
Communication traffic classes

X
4
3
2
1

 FIGURE 8.30

 Bandwidth allocation of LOTTERYBUS for different communication traffic classes [42, 43]
 © 2006 IEEE

327

 Figure 8.31 compares the latency of the TDMA and LOTTERYBUS architec-
tures over six different communication traffi c classes. The x-axis depicts different
traffi c classes, while the y-axis depicts timeslots (Fig. 8.31(a)) and lottery tickets
(Fig. 8.31(b)) assigned to the masters. The z-axis depicts the average communication
latency per word. It can be seen from the fi gures that LOTTERYBUS exhibits bet-
ter latency behavior than the TDMA architecture for a wide range of traffi c classes.
Most importantly, the communication latency for high priority masters varies sig-
nifi cantly for the TDMA architecture (1.65 to 20.5 cycles per word), because the
latency of communication in TDMA is highly sensitive to the timing wheel posi-
tion (i.e., which master ’s slot currently has access to the bus) when the request
arrives. The LOTTERYBUS architecture does not exhibit this phenomenon and
ensures low latencies for high priority masters.

The experimental results thus show that LOTTEYRBUS is able to simultane-
ously provide low latencies for high priority traffi c, while at the same time pro-
viding proportional bandwidth guarantees. The LOTTERYBUS architecture was
implemented on top of the AMBA AHB architecture [3] and synthesized using the
Synopsys Design Compiler [47] for a 0.15 !m CMOS cell library from NEC [48].
A communication architecture area increase of 16% for the static LOTTERYBUS
and 24% for the dynamic LOTTERYBUS architecture was observed over the static
priority-based communication architecture area. The critical path of the static pri-
ority-based architecture was observed to be 1.68 ns, enabling, at least theoretically,
bus speeds up to 595 MHz. This critical path delay was unchanged for the static
LOTTERYBUS architecture. The critical path delay for the arbiter in the dynamic
LOTTERYBUS architecture was measured to be 1.92 ns, which is a 14% increase in
the critical path of the overall communication architecture. With current technol-
ogy scaling trends, such a logic delay will play a decreasing role compared to the
global wire delay in determining overall communication architecture clock fre-
quency [15], making the deployment of dynamic LOTTERYBUS architecture more
feasible in future designs. The authors did not provide any information about the
power dissipation overhead of the additional circuits, which is also a critical fac-
tor in considering such schemes for deployment.

35

30

25

20

A
ve

ra
ge

 la
te

nc
y

(b
us

 c
yc

le
s/

w
or

d)

15

10

5

0
T1 T2 T3 T4

Communication traffic classes

T5 T6
4

3
2

35

30

25

20

A
ve

ra
ge

 la
te

nc
y

(b
us

 c
yc

le
s/

w
or

d)

15

10

5

0
T1 T2 T3 T4

Communication traffic classes

Time
slots

Lottery tickets

T5 T6
4

3
2

1 1

(a) (b)

 FIGURE 8.31

 Communication latencies over different communication traffic classes for (a) TDMA and (b)
LOTTERYBUS [42, 43]
 © 2006 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

328 CHAPTER 8 Custom Bus-Based On-Chip CA Design

 8.5.1.3 Other Dynamic Parameter Adaptation Schemes
A derivative statistic-based dynamic lottery arbitration scheme was proposed by
Zhang [49], which additionally makes use of the arbitration history record to deter-
mine the priority of the masters for the next arbitration grant. This implies that the
priority of master A is higher than that of master B if master A was granted bus
access more than master B during the last L times arbitration was performed. Each
master has M registers to store their history record for the number of times it was
granted bus access during the last L times arbitration was performed. The value of
L is also stored in a register. In contrast to the lottery manager in LOTTERYBUS, the
lottery manager issues tickets based on the values of the history record registers
and the initial ticket registers. Results of experiments showed that the proposed
statistic-based lottery scheme provided superior performance compared to the lot-
tery-based scheme in LOTTERYBUS. However, no experiments were performed by
the authors to determine the additional area overhead or timing impact of the his-
tory-based ticket generation. It was also not shown whether the statistic-based lot-
tery scheme provides low latencies for high priority traffi c, while at the same time
providing proportional bandwidth guarantees, like LOTTERYBUS.

A dynamic fraction control bus architecture was proposed by Wang and
Bayoumi [50] to provide similar benefi ts as LOTTERYBUS, but with lower system
cost and design complexity. Additionally, since arbitration in LOTTERYBUS is based
on probability, it becomes hard to implement accurate control over the bus band-
width allocation for applications. In the proposed fraction control bus, bandwidth
fractions are assigned to master components based on their communication require-
ments. The greater the fraction value, the greater the priority. Figure 8.32 shows
the architecture of the fraction bus arbiter and decoder. The decoder is responsible
for granting bus access to masters or produce chip select signals for comparators,
based on master requests. The fraction calculator calculates the real-time bandwidth
fraction for each master. The assigned fraction values for the masters are stored in a
Lookup Table (LUT). Comparators perform fraction comparison and grant access to
the master that satisfi es arbitration conditions. The proposed fraction control bus can

R1
R2
R3
R4

Decoder
G1

G2

G3

G4

Fraction
calculator

LUT

 FIGURE 8.32

 Architecture of the fraction bus arbiter and decoder [50]
 © 2005 IEEE

329

be implemented statically or dynamically. In the static fraction control bus (SFCB),
the fractions assigned to the masters are fi xed. In the dynamic fraction control bus
(DFCB), the fractions are initially set to a fi xed value, and are thereafter continuously
tuned to adapt to communication circumstances dynamically. The assigned band-
width fraction for a master can be increased if it has pending requests more than
a threshold value. In such a case, the master can borrow the bandwidth fractions
from other masters temporarily, till the number of pending requests drops below the
threshold value. Both the threshold value and the amount of bandwidth that can be
borrowed are confi gurable by the designer.

Several experiments were performed to determine the effectiveness of the
fraction control bus over LOTTERYBUS and conventional static priority bus archi-
tectures. Table 8.4 compares the gate count and achievable bus speed for the imple-
mentations of the static priority bus architecture, the LOTTERYBUS architecture and
the static (SFCB) and dynamic (DFCB) fraction control bus architectures. The imple-
mentations were mapped onto the Xilinx Vertex2Pro FPGA. It can be seen from the
table that the proposed fraction control bus architectures have lower area and delay
compared to LOTTERYBUS. To evaluate and compare the performance of the fraction
control bus, a four master subsystem for the cell forwarding unit of an ATM switch
[51] was considered. Four versions of the system were implemented, with: (i) the
static priority bus, with priorities 4, 3, 2, 1; (ii) LOTTERYBUS, with lottery numbers
1:1:4:6; and (iii), (iv) SFCB and DFCB architectures, with fractions 15%:15%:60%:10%.
Table 8.5 shows the results of this experiment. For the static priority bus, the com-
munication latency of the master with the highest priority is the lowest, but the
bandwidth fraction for the masters with low priorities is extremely low, due to star-
vation. The fraction control buses (SFCB and DFCB) have lower system cost while

 Table 8.4 Design complexity and achievable bus speed comparison [50]

 Gate counts Delay (ns) Max speed (MHz)

 Priority 86 2.707 369.41

 LotteryBus 152 3.276 305.72

 SFCB 104 2.987 334.89

 DFCB 134 3.113 321.23
 © 2005 IEEE

 Table 8.5 Performance comparison for ATM switch example [50]

 Port4 latency
(cycles)

 Port4 BW
(%)

 Port3 BW
(%)

 Port2 BW
(%)

 Port1 BW
(%)

 Priority 1.39 9.56 60.6 29.83 0.01

 Lottery 1.4 9.32 63.6 15.15 11.93

 SFCB 1.42 10.32 60.4 14.64 14.64

 DFCB 1.46 9.74 58.25 16.34 15.67
 © 2005 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

330 CHAPTER 8 Custom Bus-Based On-Chip CA Design

maintaining comparable communication latencies, with LOTTERYBUS. SFCB and
DFCB can also be seen to have a more accurate control over the allocation of band-
width fractions, than other buses.

A time-division-based bus architecture which dynamically allocates TDMA
timeslots (dTDMA), was proposed by Richardson et al. [52]. In dTDMA, the bus
arbiter dynamically grows or shrinks the number of timeslots to match the num-
ber of active transmitters, as shown in Fig. 8.33 . When a master needs to transmit
data on the bus, it asserts its active signal to the arbiter, to request a timeslot. The
arbiter uses a number of techniques to decide on a timeslot assignment for each
master and produces a new confi guration for each active transmitter and receiver
before the beginning of the next clock cycle. On the next clock edge, the timeslot
confi guration data is loaded by the transmitters and receivers, and normal opera-
tion is continued. When a master fi nishes transmitting, it de-asserts its active signal,
following which the arbiter de-allocates its timeslot in the same manner as it allo-
cated it (Fig. 8.33). Such a dynamic timeslot assignment produces the most effi -
cient timeslot allocation without any slot wastage. The only overhead is the one
cycle initial communication delay when a timeslot is allocated. Various methods
can be used to assign timeslot, including (but not limited to) methods based on
the status of the transmit buffers or the length of the wait time.

The address mapped dTDMA bus architecture has several advantages over stan-
dard bus architectures such as AMBA [3]. Because of its memory-oriented design,
AMBA imposes certain restrictions on the nature of addressing behavior. In addi-
tion to a 1kB address boundary on sequential transfers, a new transaction must be
initiated if the next address is not an increment of the previous (i.e., a non-sequen-
tial access). These restrictions result in repeated arbitration overhead. For instance,
a long transmission crossing the 1kB boundary must re-arbitrate, at the risk of los-
ing bus ownership. Such re-arbitration can waste several cycles and add a signifi -
cant overhead. To overcome these drawbacks during data streaming, the dTDMA
bus architecture is transaction-less and address mapped, with each component on
the bus being assigned a unique identifi er. The dTDMA bus only requires re-arbi-
tration when the destination of the data stream transfer changes. In contrast, for
AMBA, transfer requests that are not sequential or that cross the 1kB boundary,
require arbitration even if the destination of the transfer remains the same.

C D B AB AB AAA C DC D B A

dTDMA bus clock

Remove one
timeslot

(3 timeslots)

B done
(sending last

packet)

Add two extra
timeslots

(4 timeslots)

Add extra
timeslot

(2 timeslots)

Req. C
Req. D

Req. BReq. A
1 timeslot

 FIGURE 8.33

 Dynamic timeslot allocation example [52]
 © 2006 IEEE

331

A simple comparison between AMBA and dTDMA is shown in Fig. 8.34 . In this
example, master A requests access to the bus at clock T1, followed by a request
from master B at clock T2. The AMBA arbiter does not grant access to master A
before clock T3, whereas the dTDMA arbiter issues the new timeslot confi guration
before the end of clock T1. Data transmission for AMBA commences at T5, since
T4 is dedicated to the address phase of the transaction. In dTDMA, data transmis-
sion commences earlier, at T2. Master B has to wait fi ve cycles from request to
data transfer in AMBA, but only one cycle in dTDMA. In the example, the dTDMA
bus architecture completes the transmission of two words from each master three
cycles before the AMBA bus does.

An attractive quality of dTDMA is its predictable latencies, since a component
is guaranteed to wait no longer than the number of active transmitters. In con-
trast, in the AMBA bus, a master may need to wait for an indeterminate amount of
time before being granted access to the bus. The transaction-less, address-mapped
dTDMA bus also requires fewer arbitrations compared to AMBA, and needs fewer
cycles for the arbitration process, which improves overall performance.

T0

Bus clock

Req. A

Req. B

Grant A

Grant B

Addr. bus

Data bus

Time slot
config.

AMBA

dTDMA

dTDMA only

dTDMA only

dTDMA
finishes 3 cycles

dTDMA bus

T1 T2 T3 T4 T5 T6 T7 T8 T9

A1 A2 B1 B2

Data
(A1)

Data
(A1)

Data
(A2)

Data
(A2)

Data
(B1)

Data
(B1)

Data
(B2)

Data
(B2)

0 TS 1 TS 2 TS 1 TS 0 TS

AMBA
finishes

 FIGURE 8.34

 A simple two-component transfer on dTDMA and AMBA [52]
 © 2006 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

332 CHAPTER 8 Custom Bus-Based On-Chip CA Design

 8.5.2 Dynamic Bus Architecture Topology Reconfiguration
In addition to dynamically confi guring bus architecture protocol parameters such as
arbitration schemes and burst sizes, it is also possible to change the topology of the
bus architecture dynamically. Sekar et al. [51] proposed the FLEXBUS architecture,
which is a high performance on-chip bus architecture with a dynamically confi gu-
rable topology that can be implemented on top of an existing standard communica-
tion architecture such as AMBA AHB [3]. FLEXBUS is capable of detecting runtime
variations in communication traffi c, and adapting the topology of the communica-
tion architecture in two ways: (i) dynamic bridge bypass, which enables bus topol-
ogy customizations via runtime fusing and splitting of bus segments and (ii) dynamic
component re-mapping, which allows runtime switching of components from one
bus segment to another. The key challenges of such an approach are maintaining
compatibility with existing bus standards, minimizing the timing impact, minimizing
the logic and wiring complexity, and providing low reconfi guration overhead.

The hardware required to support dynamic bridge bypass is shown in Fig.
8.35 , for a system consisting of two AMBA AHB bus segments: AHB1, containing
two masters and one slave; and AHB2, containing one master and one slave. This
system can be operated in a single shared bus mode or a multiple bus mode by
disabling or enabling the bridge bypass with the confi g_select signal. In the mul-
tiple bus mode, the signals shown by dotted lines are inactive, and the two bus
segments operate concurrently, with the two arbiters resolving confl icts on each
of the segment and transactions between the two segments passing through the
bridge. In the single shared bus mode, confi g_select !! 1, which results in the
bridge being bypassed and the signals shown with dotted lines being activated. In
this mode, multiplexers are used to bypass the bridge logic and directly route data
between the components in a single cycle.

Reconfiguration
unit

Arbiter1

Decoder1

M1

S2

M3

M2

S1

Decoder2

Arbiter2
(Virtual
master)

select_S1

reconfigure

OK

reconfigure

OK

Config_select

grant_M2
busreq_M2

busreq_M1

busreq_AHB2

busreq_BRG
lock_M2

lock_AHB2

lock_BRG
lock_M1

address,
control, wdata address,

control, wdata

ready,
response, rdata ready,

response, rdata

AHB1 AHB2
Bridge
ready

Slv I/F Mst I/F

select
BRG

grant_M1

busreq_M3
lock_M3

select_S2

grant_M3grant_AHB2

grant_BRG

 FIGURE 8.35

 Dynamic bridge bypass hardware in FLEXBUS [51]
 © 2005 IEEE

333

Arbitration in a single bus mode only grants one master access to the bus,
whereas in multiple bus mode more than one master can have transactions
executing in parallel. The arbitration mechanism of the multiple bus mode is
adapted to meet the requirements of the single bus mode in FLEXBUS. This is
done by using a distributed arbitration mechanism in the single bus mode, in
which one of the arbiters acts as a virtual master that is regulated by the other
arbiter. For example, in Fig. 8.35 , if Arbiter2 receives a transfer request from a
master on AHB2, it immediately sends a request to Arbiter1 using busreq_AHB2
and lock_AHB2 signals. Arbiter1 arbitrates from the requests received on AHB1,
as well as the requests from the virtual master. In parallel, to reduce arbitration
latency, Arbiter2 arbitrates among its received requests. However, it grants AHB2
to its selected master only after receiving the grant_AHB2 signal from Arbiter1,
thus ensuring that only one master gets access to the bus in the single bus mode.

The reconfi guration unit (Fig. 8.35) selects the bus confi guration at runtime,
and ensures correct operation of the system when switching between the two
confi gurations. The worst case overhead of bus reconfi guration for the two bus seg-
ment AMBA system is 17 clock cycles, assuming a single cycle slave response and
that the bus is not locked. The runtime reconfi guration policy used in FLEXBUS can
be described as follows: at runtime, the system observes the number of transac-
tions on each local bus segment, as well as transactions between bus segments, for
a time period T. Assuming that the average number of cycles required for a local
transaction, and a cross-bridge transaction are known, the reconfi guration unit cal-
culates the time required to process traffi c for the single bus mode and the multi-
ple bus mode. If the time taken to process the traffi c for the single bus mode is less
than the time for the multiple bus mode, the reconfi guration unit selects the single
bus mode. Otherwise, the multiple bus mode is selected. The confi guration time
period T must be carefully set by the designer. A smaller value for T can result in a
system more responsive to variations in traffi c conditions, but if the traffi c charac-
teristics change rapidly, it can result in frequent switching between the confi gura-
tions, and performance degradation due to the large reconfi guration overhead.

The hardware required to implement dynamic component re-mapping is shown
in Fig. 8.36 , which illustrates a two segment AMBA AHB architecture in which mas-
ter M2 and slave S2 can be dynamically mapped to either AHB1 or AHB2. The sig-
nals confi g_select_M2 and confi g_select_S2 are used to select the mapping of M2
and S2, respectively. The signals of the re-mappable master or slave are connected to
both buses, but the switch logic in SWITCH_M and SWITCH_S activates the signals
for only one of the buses at a time, depending on the confi guration chosen. The arbi-
ters do not require any change when re-mapping components since master requests
are only sent to the arbiter on the bus to which a master is connected. However, the
decoders on the two bus segments need to be reconfi gured to generate the correct
signal for the re-mappable slave. The Remap unit (Fig. 8.36) is responsible for gener-
ating the signals to select the master and slave mapping confi gurations. Monitoring
strategies, similar to the ones used for the dynamic bridge bypass can be used to
determine when to remap the re-mappable masters and slaves.

Experimental studies were performed to evaluate the usefulness of the
FLEXBUS approach. The AMBA AHB RTL description from the Synopsys

8.5 Dynamically Reconfi gurable Bus Architectures

334 CHAPTER 8 Custom Bus-Based On-Chip CA Design

Designware [53] library was enhanced with the additional hardware descriptions
needed to implement FLEXBUS. A system with eight masters (traffi c generators)
and eight slaves was used as a testbench. The fi rst experiment explored the area
and timing characteristics of the FLEXBUS implementation for a dynamic bridge
bypass, and compared the results with those for a single shared bus architec-
ture, and a multiple shared bus architecture. Table 8.6 shows the results from the
experiment, for an implementation in the 0.13 !m CMOS process technology [54].
FLEXBUS incurs a small delay penalty compared to statically confi gured architec-
tures, due to the additional wiring and logic delay. For FLEXBUS, the critical path
delay in the multiple bus mode is smaller than in the single bus mode since many
of the long paths present in the single bus mode are not used in the multiple
bus mode. The static multiple bus architecture has a smaller delay than the single
shared bus due to less bus loading and shorter wire lengths.

Next, an experiment was performed to analyze the performance of FLEXBUS
under a synthetic traffi c profi le [51]. Figure 8.37 plots the cumulative latency for
the different architectures. It can be seen that FLEXBUS successfully adapts to fre-
quent changes in traffi c characteristics, to achieve performance improvements over
the static single shared bus (21.3%) and multiple shared bus (17.5%) architectures.
Finally, the performance of FLEXBUS and conventional architectures was compared
for an IEEE 802.11 MAC (Message Authentication Code) processor-based SoC sub-
system. All the buses were operated at 200 MHz. Table 8.7 shows the average time

Remap
Unit

config_select_M2

lock_M2

busreq_M2
grant_M2

busreq_M2

busreq_M3

grant_M2

lock_M2

SWITCH_M

Decoder1 Decoder2

S1 S3

Arbiter2

M2

Arbiter1

grant_M1
busreq_M1

lock_M1

M1 M3

S2

address,
control, wdata

address,
control, wdata

ready,
response, rdata

ready,
response, rdata

select S1 select S3

config_select_S2

AHB1 AHB2select S2 select S2

SWITCH_S

select
BRG

select
BRG

BRG

Mst
I/F

Slv
I/F

Slv
I/F

Mst
I/F

busreq_BRG
lock_BRG
grant_BRG

busreq_BRG
lock_BRG lock_M3
grant_BRG

grant_M3

 FIGURE 8.36

 Dynamic component re-mapping hardware in FLEXBUS [51]
 © 2005 IEEE

335

 Table 8.6 FLEXBUS hardware implementation results [51]

 Bus architecture Area (sq. mm) Delay (ns) Frequency (MHz)

 Single shared bus 82.12 4.59 218

 Multiple bus 84.27 3.79 264

 FLEXBUS (single bus mode)
82.66

4.72 212

 FLEXBUS (multiple bus mode) 3.93 254
 © 2005 IEEE

35

Single shared bus FLEXBUSMultiple bus

30

25

20

15

10

5

0
0 500 1000 1500

Amount of data transferred (bytes)

C
um

ul
at

iv
e

la
te

nc
y

(µ
s)

2000 2500 3000

 FIGURE 8.37

 Cumulative frequency for different bus architecture, under synthetic traffic profiles [51]
 © 2005 IEEE

 Table 8.7 Performance of 802.11 MAC processor-based SoC subsystem for
different communication architectures [51]

Bus architecture Computation time (ns) Data transfer time (ns) Total time (ns)

 Single shared bus 42,480 – 42,480

 Multiple bus 26,905 12,800 39,705

 FLEXBUS (bridge
by-pass)

 27,025 5,290 32,315

 FLEXBUS
(component
re-mapping)

 27,010 5,270 32,280

 Ideally
reconfigurable
bus

 26,905 5,120 32,025

 © 2005 IEEE

8.5 Dynamically Reconfi gurable Bus Architectures

336 CHAPTER 8 Custom Bus-Based On-Chip CA Design

taken to process a single frame of size 1 kB, for different bus architectures. It can
be seen that the times required by both variants of the FLEXBUS architecture are
smaller compared to conventional architectures. FLEXBUS and its reconfi guration
policies are also seen to perform close to the ideal case, which assumes no recon-
fi guration overhead, and an ideal reconfi guration policy having full knowledge of
future bus traffi c.

 8.6 SUMMARY
In this chapter, we presented custom bus-based communication architectures that
attempt to overcome limitations of commercially available standard bus-based
communication architectures, and improve system design goals such as power
consumption and performance. We fi rst looked at split/segmented bus architec-
tures that split a long interconnect into segments in order to reduce the wire
delay, capacitive load and consequently power consumption, as well as increase
parallelism during data communication. Serial bus architectures reduce the num-
ber of wires connecting components, compared to conventional parallel bus
architectures. This reduces coupling capacitance between wires, which reduces
signal propagation delay and also reduces power consumption because of the
reduced capacitance. CDMA-based bus architectures allow multiple transmitters
to send data on a shared medium simultaneously, which can reduce traffi c con-
fl icts and consequently communication latency. Asynchronous bus architectures,
unlike conventional commercial bus architectures that are primarily synchronous,
do not use a global clock signal for synchronization. Since the global clock con-
sumes a signifi cant amount of power, asynchronous bus architectures have lower
power consumption. Finally, dynamically reconfi gurable bus architectures allow
the topology and/or protocol parameters such as arbitration schemes to dynami-
cally change and adapt to changing traffi c profi les and data characteristics, in
order to improve performance.

 FURTHER READING
Very early work in the area of custom bus architecture design resulted in a synchro-
nous, high performance, split and burst transaction capable, pipelined, shared bus
called the HiPi+ bus [55], which extended an even earlier work that proposed the
high performance HiPi bus [56]. The concepts proposed in the work were a pre-
cursor to the enhancements that followed in several commercial on-chip bus archi-
tectures. Several works have proposed using custom circuit techniques [57–63]
to improve the performance of hierarchical and crossbar bus-based conventional
communication architectures such as AMBA AHB/AXI. A performance analysis of
commonly used arbitration schemes was presented in [64], and custom variations
on existing arbitration schemes, such as the direct mapped slot allocation TDMA
[65], have been proposed to improve the performance of bus architectures. A cus-
tom wrapper-based bus (NECoBUS) [66] was proposed to reduce the latency of

337

wrappers in wrapper-based bus architectures. NECoBUS employs several latency
reduction techniques such as retry encapsulation, write-buffer switching, early bus
requests, and converter-based multiple bit-width connections to remove the latency
penalty induced in the conventional wrapper-based bus design.

 REFERENCES
 [1] Y. Zhang, W. Ye and M. J. Irwin, “An alternative architecture for on-chip global interconnect:

Segmented bus power modeling, ” in Proceedings of Thirty-Second Asilomar Conference
on Signals, Systems & Computers , 1998, pp. 1062–1065.

 [2] Y. Zhang, R. Y. Chen, W. YE and M. J. Irwin, “System Level Interconnect Modeling, ”Proceedings
of the International ASIC Conference , September 1998, pp. 289–293.

 [3] ARM AMBA Specifi cation and Multi layer AHB Specifi cation (rev2.0), http://www.arm.com ,
2001.

 [4] IBM CoreConnect Specifi cation, http://www.ibm.com/chips/techlib/techlib.nsf/product
families/CoreConnect_Bus_Architecture .

 [5] “ STBus Communication System: Concepts and Defi nitions, ” Reference Guide, STMicro
Electronics, May 2003.

 [6] Sonics SMART Interconnect, http://www.sonicsinc.com .

 [7] WISHBONE specifi cation, http://www.opencores.org/wishbone .

 [8] Altera AVALON Interface Specifi cation, April 2006, http://www.altera.com/ .

 [9] R. Cheng-Ta Hsieh and M. Pedram , “Architectural energy optimization by bus splitting ,” in
Proceedings of IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 21 , No. 4 , April 2002 , pp. 408 – 414 .

 [10] R. Lu and C.-K. Koh, “A high performance bus communication architecture through bus
splitting, ” in Proceedings of the Asia and South Pacifi c Design Automation Conference
(ASP-DAC) , 2004, pp. 751–755.

 [11] J. Rabaey and M. Pedram , Low Power Design Methodologies , Kluwer Academic Publishers ,
 Norwell, MA , 1996 .

 [12] E. Macii , M. Pedram and F. Somenzi , “ High-level power modeling, estimation and optimiza-
tion,” IEEE Transactions on Computer Aided Design , Vol. 17 , Nov. 1998 , pp. 1061 – 1079 .

 [13] R. Lu and C.-K. Koh, “SAMBA-bus: A high performance bus architecture for system-on-chips, ”
in Proceedings of International Conference on Computer Aided Design, (ICCAD), 2003,
pp. 8–12.

 [14] ARM AMBA 3.0 AXI Specifi cation www.arm.com/armtech/AXI .

 [15] R. Ho , K. W. Mai and M. A. Horowitz , “ The Future of Wires ,” in Proceedings of the IEEE , Vol.
 89 , April 2001 .

 [16] Semiconductor Industry Association, International Technology Roadmap for Semi-conduc-
tors, 2003.

 [17] P. Saxena and C. Liu , “A postprocessing algorithm for crosstalk-driven wire perturbation ,”
 IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems , April
2000 , pp. 691 – 702 .

 [18] L. Macchiarulo , E. Macii and M. Poncino , “ Wire placement for crosstalk energy minimiza-
tion in address buses ,” in Proceedings of Design, Automation and Test in Europe (DATE) ,
 March 2002 , pp. 158 – 162 .

References

338 CHAPTER 8 Custom Bus-Based On-Chip CA Design

 [19] J. Cong , L. He , C.-K. Koh and Z. Pan , “ Interconnect Sizing and Spacing with Consideration
of Coupling Capacitance ,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems , Vol. 20 , No. 9 , September 2001 , pp. 1164 – 1169 .

 [20] E. Macii , M. Poncino and S. Salerno , “ Combining wire swapping and spacing for low-power
deep-submicron buses ,” in Proceedings of the IEEE Great Lakes Symposium on VLSI (GLS-
VLSI) , April 2003 , pp. 198 – 202 .

 [21] P. Gupta and A. Kahng, “Wire swizzling to reduce delay uncertainty due to capacitive cou-
pling, ” in Proceedings of the International Conference on VLSI Design (VLSID), January
2004.

 [22] Y. Shin and T. Sakurai, “Coupling-driven bus design for low-power application-specifi c sys-
tems, ” in Proceedings of Annual ACM/IEEE Design Automation Conference (DAC), 2001,
pp. 750–753.

 [23] A. B. Kahng et al. , “ Interconnect Tuning Strategies for High Performance ICs ,” in Proceedings
of Design, Automation and Test in Europe (DATE) , 1998 , pp. 471 – 478 .

 [24] K. Hirose and H. Yasuura , “A bus delay reduction technique considering crosstalk ,” in
 Proceedings of Design, Automation and Test in Europe (DATE) , 2000 , pp. 441 – 445 .

 [25] M. Ghoneima, Y. Ismail, M. Khellah, J. Tschanz and V. De, “Serial-link bus: a low-power
on-chip bus architecture, ” IEEE/ACM International Conference on Computer-Aided
Design (ICCAD) , 2005, pp. 541–546.

 [26] N. Hatta , N. Demus Barli , C. Iwama , L. Dinh Hung , D. Tashiro , S. Sakai and H. Tanaka , “ Bus seri-
alization for reducing power consumption ,” IPSJ Transactions on Advanced Computing
Systems , Vol. 47 , No. 3 , 2006 , pp. 49 – 57 .

 [27] W. Steinhoegl et al., “Scaling laws for the resistivity increase of sub-100 nm interconnects, ”
International Conference on Simulation of Semiconductor Processes and Devices
(SISPAD) , September 2003, pp. 27–30.

 [28] M. Frank Chang et al. , “ RF/wireless interconnect for inter- and intra-chip communications ,”
 in Proceedings of the IEEE , Vol. 89 , No. 4 , 2001 , pp. 456 – 466 .

 [29] J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, Artech House Publish,
1998. ISBN: 0-89006-990-5.

 [30] B.-C. C. Lai, P. Schaumont and I. Verbauwhede, “CT-bus: a heterogeneous CDMA/TDMA bus
for future SOC, ” in Proceedings of the Thirty-Eighth Asilomar Conference on Signals,
Systems and Computers , 2004, pp. 1868–1872.

 [31] M. F. Chang, “CDMA/FDMA-interconnects for future ULSI communications, ” IEEE/ACM
International Conference on Computer-Aided Design (ICCAD) , 2005, pp. 975–978.

 [32] E.-G. Jung , B.-S. Choi and D.-I. Lee , “ High performance asynchronous bus for SoC ,” in
Proceedings IEEE International Symposium on Circuits and Systems (ISCAS) , 2003 , pp.
 505 – 508 .

 [33] W. J. Bainbridge and S. B. Furber , “Asynchronous macrocell interconnect using MARBLE ,” in
 Proceedings of Fourth International Symposium on Advanced Research in Asynchronous
Circuits and Systems , 1998 , pp. 122 – 132 .

 [34] W. J. Bainbridge, “Asynchronous system-on-chip interconnect, ” Ph.D. Thesis, University of
Manchester, March 2000.

 [35] E. Jung, J. Lee, S. Kwak, K. Jhang, J. Lee and D. Har, “High performance asynchronous on-chip
bus with multiple issue and out-of-order/in-order completion, ” in Proceedings of the 15th
ACM Great Lakes Symposium on VLSI (GLS-VSLI) , 2005, pp. 152–155.

 [36] A. Lines , “ Nexus: An asynchronous crossbar interconnect for synchronous system-on-chip
designs,” in Proceedings of 11th Symposium on High Performance Interconnects , 2003 ,
pp. 2 – 9 .

339

 [37] A. J. Martin, “The limitations to delay-insensitivity in asynchronous circuits, ” Sixth MIT
Conference on Advanced Research in VLSI, MIT Press, 1990.

 [38] K. Sekar, K. Lahiri and S. Dey, “ Confi gurable platforms with dynamic platform management:
An effi cient alternative to application-specifi c system-on-chips, ” in Proceedings of 17th
International Conference on VLSI Design (VLSID) , 2004, pp. 307–315.

 [39] K. Lahiri, A. Raghunathan, G. Lakshminarayana and S. Dey, “Communication architecture tun-
ers: a methodology for the design of high-performance communication architectures for
systems-on-chips, ” in Proceedings of the Conference on Design Automation (DAC), 2000,
pp. 513–518.

 [40] K. Lahiri , A. Raghunathan , G. Lakshminarayana and S. Dey , “ Design of high-performance sys-
tem-on-chips using communication architecture tuners ,” IEEE Transactions on CAD of
Integrated Circuits and Systems , Vol. 23 , No. 5 , May 2004 , pp. 620 – 636 .

 [41] K. Lahiri, A. Raghunathan and S. Dey, “Fast performance analysis of bus-based system-on-chip
communication architectures, ” in Proceedings of International Conference Computer-
Aided Design (ICCAD) , November 1999, pp. 566–572.

 [42] K. Lahiri, A. Raghunathan and G. Lakshminarayana, “LOTTERYBUS: A new high-performance
communication architecture for system-on-chip designs, ” in Proceedings of the Conference
on Design Automation (DAC) , 2001, pp. 15–20.

 [43] K. Lahiri , A. Raghunathan and G. Lakshminarayana , “ The LOTTERYBUS on-chip communica-
tion architecture ,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems , Vol.
 14 , No. 6 , June 2006 , pp. 596 – 608 .

 [44] K. Lahiri, A. Raghunathan and S. Dey, “Evaluation of the traffi c performance characteris-
tics of system-on-chip communication architectures, ” in Proceedings of the International
Conference VLSI Design (VLSID), January 2001, pp. 29–35.

 [45] J. Buck , S. Ha , E. A. Lee and D. D. Masserchmitt , “ Ptolemy: A framework for simulating and pro-
totyping heterogeneous systems ,” International Journal on Computer Simulation, Special
Issue on Simulation Software Management , Vol. 4 , April 1994 , pp. 155 – 182 .

 [46] F. Balarin ,M. Chiodo , H. Hsieh , A. Jureska , L. Lavagno , C. Passerone , A. Sangiovanni-Vincentelli ,
 E. Sentovich , K. Suzuki and B. Tabbara , Hardware–Software Co-Design of Embedded
Systems: The POLIS Approach , Kluwer Academic Publishers , Norwell, MA , 1997 .

 [47] Synopsys Inc., RTL Synthesis, Available http://www.synopsys.com/products/logic/ .

 [48] NEC Electronics, Cell Based IC CB-12 L/M/H Type Features/Basic Specifi cations.Available
 http://www.necel.com/cbic/en/cb12/cb12.html .

 [49] Y. Zhang, “Architecture and performance comparison of a statistic-based lottery arbiter
for shared bus on chip, ” in Proceedings of the Conference on Asia South Pacifi c Design
Automation (ASP-DAC) , 2005, pp. 1313–1316.

 [50] N. Wang, M. A. Bayoumi, “Dynamic fraction control bus: new SOC on-chip communication
architecture design, ” in Proceedings of SOC Conference , 2005, pp. 199–202.

 [51] K. Sekar, K. Lahiri, A. Raghunathan and S. Dey, “FLEXBUS: A high-performance system-
on-chip communication architecture with a dynamically confi gurable topology, ” in
Proceedings of Design Automation Conference (DAC) , 2005, pp. 571–574.

 [52] T. D. Richardson, C. Nicopoulos, D. Park, V. Narayanan, Y. Xie, C. Das and V. Degalahal, “A hybrid
SoC interconnect with dynamic TDMA-based transaction-less buses and on-chip networks, ”
19th International Conference on VLSI Design (VLSID) , 2006, pp. 8–15.

 [53] “ Synopsys DesignWare Intellectual Property, ” http://www.synopsys.com/products/design-
ware/designware.html .

 [54] “ CB-12 ”http://www.necel.com/cbic/en/cb12/cb12.html .

References

340 CHAPTER 8 Custom Bus-Based On-Chip CA Design

 [55] W.-J. Hahn , A. Ki, K.-W. Rim and S.-W. Kim , “A multiprocessor server with a new highly pipe-
lined bus ,” in Proceedings of IPPS, 1996 , pp. 512 – 517 .

 [56] A. Ki ,W. Sim , B. Park and Y. Yoon , “ Highly pipelined bus: Hipi-bus ,” JTC-CSCC’91 , July 1991 , pp.
 528 – 533 .

 [57] J. P. Bissou, M. Dubois, Y. Savaria and G. Bois, “High-speed system bus for a SoC net-
work processing platform, ” in Proceedings of the 15th International Conference on
Microelectronics (ICM) , 2003, pp. 194–197.

 [58] A. Landry, Y. Savaria and M. Nekili, “A Beyond-1 GHz AMBA High-Speed Bus for SoC DSP
Platforms, ” IEEE International Conference on Microelectronics (ICM) , 2004, pp. 46–49.

 [59] A. Landry ,Y. Savaria and M. Nekili , “A novel 2 GHz multi-layer AMBA. High-speed bus inter-
connect matrix for SoC platforms ,” IEEE International Symposium on Circuits and
Systems, (ISCAS) , 2005 , pp. 3343 – 3346 .

 [60] A. Landry, Y. Savaria and M. Nekili, “Circuit techniques for a 2 GHz AMBA AHB bus, ” The 3rd
International IEEE-NEWCAS Conference , 2005, pp. 311–314.

 [61] M. Dubois ,Y. Savaria and G. Bois , “A generic AHB bus for implementing high-speed locally
synchronous islands ,” in Proceedings of IEEE Southeast Conference , 2005 , pp. 11 – 16 .

 [62] S.-Y. Hwang and K.-S. Jhang, “An improved implementation method of AHB BusMatrix, ” in
Proceedings of IEEE International SOC Conference , 2005, pp. 211–214.

 [63] P. Wijetunga , “ High-performance crossbar design for system-on-chip ,” Proceedings of the 3rd
IEEE International Workshop on System-on-Chip for Real-Time Applications , 2003 , pp.
 138 – 143 .

 [64] F. Poletti , D. Bertozzi , B. Luca and A. Bogliolo , “ Performance analysis of arbitration policies
for SoC communication architectures ,” Transactions on Design Automation for Embedded
Systems , Vol. 8 , 2003 , pp. 189 – 210 .

 [65] A. Olugbon , T. Arslan and I. Lindsay , “A formal approach to virtualisation and provisioning
in AMBA AHB-based reconfi gurable systems-on-chip ,” in Proceedings of International
Symposium on System-on-Chip , 2005 , pp. 175 – 178 .

 [66] K. Anjo, A. Okamura, T. Kajiwara, N. Mizushima, M. Omori and Y. Kuroda, “NECoBus: a high-
end SOC bus with a portable and low-latency wrapper-based interface mechanism, ” in
Proceedings of the IEEE Custom Integrated Circuits Conference , 2002, pp. 315–318.

 [67] Synopsys NanoSim, http://www.synopsys.com/products/mixedsignal/nanosim/nanosim.
html.

 [68] A. C. Waldspurger and W. E. Weihl , “ Lottery scheduling: Flexible proportional-share
resource management ,” in Proceedings of Symposium on Operating Systems Design and
Implementation , 1994 , pp. 1 – 12 .

341

CHAPTER

In a typical SoC design fl ow, several models of the system are created that capture
different levels of detail, for different purposes. Figure 9.1 shows how commu-
nication architecture refi nement and interface synthesis involve transformations
between models with different levels of detail, in a typical design fl ow. Functional
(or task/process graph) level models focus on capturing the functionality of the
system, without any notion of hardware or software components that will ulti-
mately implement the functionality. Such models are typically used as “ golden
reference ” models to allow later stages of the design fl ow to check and validate
the intended functionality of the system, as needed. Architectural level models on

 On-Chip Communication
Architecture Refinement
and Interface Synthesis 9

Task/Process
graph

Architectural
model

Implementation
model

Interface refinement,
cycle scheduling

CA exploration
model

CA selection

Gate-level
model

Logic synthesis,
place and route

CA Refinement and
Interface Synthesis

Task/process allocation, binding, scheduling

 FIGURE 9.1

 Communication architecture (CA) refinement and interface synthesis in a typical ESL design flow

