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CHAPTER

In addition to the bus-based on-chip communication architecture standards 
described in Chapter 3, there has been a lot of research on developing custom 
bus architectures over the last several years. Such custom architectures attempt 
to address the shortcomings of standard on-chip communication architectures 
by utilizing new topologies and protocols to obtain improvements for common 
design goals, such as performance and power. These novel topologies and proto-
cols are often customized to suit a particular application, and typically include 
optimizations to meet application-specifi c design goals.  Figure 8.1    shows where 
the custom communication architecture selection process fi ts into a typical elec-
tronic system level (ESL) design fl ow. Once a custom on-chip communication 
architecture has been selected, the next step is usually to perform an exploration 
phase, to determine the protocol and topology parameters that can best meet the 
design goals. In this chapter, we present some of the more signifi cant custom bus-
based on-chip communication architectures that have been proposed over the 
past few years. In Section 8.1, we describe split bus architectures that are useful 
for reducing bus power consumption. Section 8.2 presents serial bus architectures 
that aim to reduce wire congestion and the area footprint of the on-chip commu-
nication architecture. Section 8.3 describes code division multiple access (CDMA) 
based bus architectures. Section 8.4 elaborates on asynchronous bus architectures 
that avoid a global clock signal for synchronization, in order to reduce power con-
sumption. Finally, Section 8.5 presents reconfi gurable bus architectures that allow 
dynamically changing the bus topology and/or parameters (such as arbitration 
schemes) in order to better adapt to changing traffi c conditions during applica-
tion execution and improve performance. 

  8.1   SPLIT BUS ARCHITECTURES 
Single shared bus-based communication architectures have the advantage of a 
simple topology and low area cost. The disadvantages of shared-bus architectures 
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include larger wire and load capacitance, which results in a correspondingly 
larger power consumption as well as longer delay for data transfer (which leads to 
lower bandwidth). Split or segmented bus architectures attempt to overcome this 
drawback by splitting a shared bus into multiple segments. Split buses allow selec-
tive shutdown of unused bus segments, potentially saving energy. Furthermore, 
segmentation increases the parallelism by permitting parallel data transfers on dif-
ferent segments, which improves performance. 

For instance, the segmented bus architecture [1] proposes the insertion of buf-
fers to isolate the components on a bus.  Figure 8.2    shows an example of the seg-
mented bus architecture. An advantage of such an architecture is that only part 
of the bus is active at any given time. As an example, a transfer between the DSP 
and X-mem components in Fig. 8.2  causes only their corresponding segments and 
the buffers between them to be active, while the rest of the segments and buffers 
remain inactive. This reduces the effective load and wire capacitance of the active 
bus. Since the power consumption of the bus is proportional to the load capaci-
tance and length of the active bus  [2], the segmented bus results in power savings. 
Figure 8.3    compares the total bus power for the segmented bus [1] with a shared 
bus, for a set of benchmarks. It can be seen that a segmented bus dissipates much 
less power than a corresponding shared bus, since only part of the segmented 
bus is active at any given time, compared to a single shared bus, for which the 
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entire bus must be active to transfer data between any two components. Such 
segmented/split architectures can be considered to be light-weight variants of tra-
ditional hierarchical shared bus architectures  [3–8].

The split bus communication architecture proposed in  [9, 10]  is another vari-
ant of the split/segmented bus architecture. In a single shared bus, such as that 
shown in  Fig. 8.4   , the propagation delay between module  M1 and M6 is large. 
In order to improve the timing and energy consumption of the long bus, it can 
be partitioned into two segments, as shown in  Fig. 8.5   . A dual-port driver at the 
boundary of  bus1 and bus2 is responsible for relaying data between the two 
buses, with the data fl ow direction being determined by two control signals  en1  
and en2. When  en1 is high, data can be transmitted from  bus1 to bus2, and when 
en2 is high, data can be transmitted from  bus2 to bus1. When both  en1 and en2  
are low, the buses are isolated from each other. 

Assuming that the internal energy of dual-port drivers is negligible and their 
intrinsic delay is smaller than the rest of the bus, and the energy dissipated to gener-
ate and connect control signals of the bus drivers is negligible, the split bus archi-
tecture results in energy savings compared to a simple shared bus architecture. 

M1

M2 M4 M6

M3 M5

Data bus

 FIGURE 8.4 

    Monolithic single shared bus architecture  [9]    
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The energy savings will vary, depending on how the components are clustered on 
the different segments.  Table 8.1    shows the energy consumption of different com-
ponent allocations on the two segments, for a system with four modules— M1, M2,
M3  , and M4. The confi guration in which modules  M1 and M2 are on one segment, 
and modules M3 and M4 are on another segment results in the largest energy sav-
ings. Such a lowest energy consumption confi guration can be derived from a data 
transfer probability graph, as shown in  Fig. 8.6   . The components having the highest 
probabilities of data transfer should be kept on the same segment, so that only that 
segment of the bus architecture is active during the transfer, which saves energy. 
This observation can be corroborated from the energy observations in  Table 8.1  and 
the probability graph in  Fig. 8.6 .

  Figure 8.7    shows the results of an experiment to determine energy savings of 
the split bus technique when compared to a shared bus architecture, where the 
data transfer probability between any two modules is assumed to be one of four 
probability distributions ( normal, exponential, delta function, and uniform). The 
x-axis represents different system testbenches with varying number of modules. It 
can be seen that energy savings are obtained with all four data transfer probability 
functions when a split bus is used. Further reduction of bus energy can be obtained 
by using bus encoding and low-voltage swing signaling techniques  [11, 12] .

Another variant of the split bus was proposed by Lu and Koh [13]. The high per-
formance bus architecture called SAMBA (single arbitration, multiple bus accesses) 
allows multiple masters to access the bus with only a single bus arbitration grant. 
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 FIGURE 8.6 

    Data transfer probabilities between modules  [9]     
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 Table 8.1    Energy consumption of various bus architectures  [9]   

 Architecture  Energy 

  BUS    ! { M  1 , M2 , M3 , M4}  1 

  BUS1!{ M  1 , M2}  BUS2 !{ M  3 , M4}  0.75 

  BUS1!{ M  1 , M3}  BUS2 !{ M  2 , M4}  0.875 

  BUS1!{ M 1 , M4}  BUS2 !{ M  2 , M3}  0.875 
 © 2002 IEEE 
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The split nature of the bus enables idle bus segments to be used for other pend-
ing bus transactions (in addition to the transaction permitted by the arbitration), 
without introducing additional arbitration complexity. In traditional bus architec-
tures, only one master can access the bus at any given time, after it is granted 
access to the bus by the arbiter. This leads to wastage of bus resources, which are 
completely consumed by a single transaction on the bus. Split [3] or out-of-order 
(OO) [4] transactions can overcome this bandwidth limitation, but at the cost of 
increased arbitration complexity, leading to an increase in arbitration delay. The 
SAMBA bus architecture attempts to overcome these drawbacks, and improve bus 
bandwidth and latency response. 

  Figure 8.8    shows the structure of the SAMBA bus architecture. It consists of two 
separate buses, each of which is used for data transfer in a forward or backward 
direction. The SAMBA bus architecture requires that the addresses of the modules 
be in an increasing or decreasing order from one end of the bus to the other. The 
bus transferring data from the lower address modules to the higher address modules 
is called the forward bus, while the bus transferring data from the higher address 
modules to the lower address modules is called the  backward bus. A module is 
attached to the bus through an interface unit that can communicate with other 
interface units through both the forward and backward buses. Each bus operation 
consists of two phases: the request phase and the response phase. The communica-
tion request is sent by the initiator to the destination module via one of the buses 
in the request phase, and the response is sent by the destination on the other bus 
in the response phase. Before a transaction can begin on a bus, the interface unit 
of the initiator must decide whether to use the forward or backward bus, and then 
request the arbiter for access to that bus. The arbiter broadcasts the winner of the 
arbitration to all interface units, and it is possible that one module gains access to 
the forward bus, while another gets access to the backward bus. Multiplexers are 
used to combine all the signals, as shown in  Fig. 8.8 .
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    Power savings for different data distribution patterns  [9]    
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Unlike a traditional bus architecture, a module connected to the SAMBA bus 
can access the bus even if it is not an arbitration winner. As long as there are no 
common bus segments in the paths of bus transactions, they can be performed 
simultaneously, allowing for more parallelism in data communication. If a module 
has a pending transaction for the forward bus, it can initiate the transaction if any 
of the following three conditions are met: 

  (i)     The module wins the arbitration for the forward bus.  

  (ii)   The bus transaction destination of the module is not after the arbitration 
winner (i.e., the address of the destination is lower than or equal to that 
of the arbitration winner), and no modules before this module are per-
forming transactions with modules after it on the bus.  

  (iii)    The module is after the arbitration winner and no module before it per-
forms a bus transaction with a module after it.    

  Figure 8.9    depicts of a scenario where simultaneous multiple accesses to a bus
occur after a single arbitration. Module 3 is the arbitration winner, and therefore 
the bus transaction from modules 3 to 5 is performed. Since the destination of 
the pending transaction at module 1 is module 2, which is before the arbitration 
winner, it satisfi es condition (ii) above, and can therefore perform the transaction
on the bus simultaneously. The ability to perform multiple transactions in a single
cycle results in higher bandwidth and lower latency for the SAMBA bus. Com-
munication latency is further reduced because transactions can be performed 
after automatic compatible transaction detection at the interface units without 
waiting for bus access from the arbiter.  Figures 8.10 and 8.11      show the effective 

 FIGURE 8.8 

    Structure of SAMBA bus architecture  [13]     
 © 2003 IEEE 
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bandwidth and average latency reduction when different SAMBA bus confi gura-
tions are compared with a traditional shared bus architecture. The  x-axis shows the 
number of modules in the different testbenches on which the experiments were 
performed. The inter-communication interval, defi ned as the number of bus cycles 
after which a new transaction is generated once the previous bus access has been 
granted, is randomly generated following a  Poisson distribution. Three different 
SAMBA confi gurations are considered in the experiment, which are based on the 
communication distance distribution. The communication distance of a bus trans-
action is defi ned as the number of interface units between its initiator and desti-
nation. The three SAMBA confi gurations have different communication distance 
distributions:  uniform, Poisson, and exponential. In the SAMBA-uniform confi g-
uration, a module has equal probability of generating a transaction for all other
modules. In the other two distributions, an average communication distance of 
(num_of_modules/4) is also used to direct traffi c generation, where  num_of_
modules is the number of modules attached to the bus. A two level TDMA/RR 
(time division multiple access/round-robin) arbitration scheme is used for all four 
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    Effective bandwidth for buses with different number of modules  [13]    
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bus confi gurations that are compared, and an arbitration latency of one cycle is 
assumed. For fairness of comparison, it is assumed that the traditional bus archi-
tecture has two buses that can be used independently. Therefore, when the traffi c 
on those buses is high enough, the effective bandwidth is two, as shown in  Fig. 
8.10. From  Figs. 8.10 and 8.11  it can be seen that when the SAMBA bus is used, 
the effective bandwidth is improved by as much as 3.5 times, while the latency is 
reduced by up to 15 times.  

  8.2   SERIAL BUS ARCHITECTURES 
Typical standard bus-based communication architectures  [3–8, 14]  have parallel-
line buses with multiple signal lines for the data and address buses. In the deep 
submicron (DSM) era, coupling capacitance between adjacent signal lines leads 
to signifi cant signal propagation delay and power consumption  [15, 16] . Several 
techniques have been proposed to reduce this coupling capacitance, includ-
ing increasing line-to-line spacing and non-uniform wire placement  [17–20], bus 
ordering  [21], bus swizzling  [22], repeater staggering  [23], and skewing signal 
transition timing of adjacent lines  [24] (these techniques are explored in more 
detail in Chapters 6 and 11). One extremely effective way of reducing coupling 
capacitance is to reduce the number of physical signal lines, by coupling the data 
of m signal lines onto a single line, called a  serial link. Such an approach was 
proposed by Ghoneima et al. [25] and Hatta et al.  [26]. A parallel  n line bus is con-
verted into  n/m serial links, as shown in  Fig. 8.12   . The reduction in the number 
of bus lines results in (i) a larger interconnect pitch, which reduces the coupling 
capacitance and (ii) a wider interconnect, which reduces the effective resistance, 
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    8-to-2 serial bus that converts an 8-bit parallel bus into 2 serial links ( n  = 8,  m  = 4)  [25]     
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leading to a decrease in interconnect delay and energy consumption. A signifi cant 
improvement in energy consumption can be obtained by carefully selecting the 
number of serial links. 

  Figure 8.13    shows the throughput per unit area of a 64 to (64/ m) serial link 
bus,  TPA(m), normalized to the throughput per unit area of a 64-bit bus, TPA(1), 
and plotted as a function of the degree of multiplexing  m. The technology scal-
ing parameters were obtained from  [27]. Multiplexing bus lines to create serial 
links results in an increase in line spacing and width (if the bus area remains con-
stant), which reduces the line resistivity and capacitance, leading to an improve-
ment in line bit rate. However, multiplexing also reduces the number of bus 
lines transferring data, which imposes a throughput penalty. Thus an optimal 
degree of multiplexing must exist, and is shown to have a value of 2 from  Fig. 
8.13. The bus energy reduction obtained for this degree of multiplexing ( m  ! 2)
for a 64- to 32-bit serial link is shown in  Fig. 8.14   . The energy reduction numbers 
take into account the overhead of both the driving and multiplexing circuitry. An 
energy reduction of up to 31.42% is obtained for the 50-nm CMOS (complemen-
tary metal-oxide semiconductor) technology node and this energy reduction is 
expected to be more pronounced with further technology scaling, as shown in 
the fi gure. The drawback of such a scheme is its increased latency response and a 
performance overhead for serializing and de-serializing communication data. 

  8.3   CDMA-BASED BUS ARCHITECTURES 
Typically, in standard bus-based communication architectures  [3–8, 14] , the physi-
cal interconnect resources are shared in the time domain. A bus inherently uses a 
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variant of TDMA to reuse expensive on-chip wires for multiple transactions that 
occur at different points of time. In contrast, CDMA is a spread spectrum tech-
nique that allows simultaneous use of the on-chip wires by multiple data transmis-
sion fl ows  [28, 29] . It is based on the principle of codeword orthogonality, which 
avoids cross-correlation of codewords and allows perfect separation of data bits 
modulated with different codewords. In such a CDMA scheme, a transmitter on 
the bus modulates each of its transmitted bits with a spreading code before trans-
mission on the bus, as shown in  Fig. 8.15(a)   . On the bus, multiple transmissions 
can exist simultaneously as a multi-level signal. At the receiver ’s end, the signal is 
correlated with the same spreading code that was used by the transmitter. Since 
spreading codes are orthogonal, the original data that was transmitted can be 
retrieved.  Figure 8.15(b)  shows the  Walsh–Hadamard spreading code [29] that is 
widely used in the communication domain. In CDMA, these spreading codes con-
vert (or spread) each source data bit into  k   “ chips ” (which are user-specifi c fi xed 
patterns), so that the spreading data rate (called  chip rate ) is k times the source 
bit rate. In a channel with two concurrent CDMA links, a 2-bit Walsh code is used 
and a data bit will be expanded into two  “ chips. ” Two clock cycles are needed to 
receive 1 bit of data if the receiver can receive one  “ chip ” per clock cycle [30]. 

A mixed-mode bus architecture called CT-Bus was proposed by Lai et al. [30], 
which integrates CDMA and TDMA techniques in a hierarchical structure. The CT-
Bus supports a fi xed number of CDMA subchannels that are separated by differ-
ent spreading codes. Two or more of these subchannels can be grouped into a 
subchannel group.  Figure 8.16    shows the CT-Bus architecture having six subchan-
nels, grouped into three different subchannel groups.  DF1 to DF4 are data fl ows 
that will utilize the bus, and need to be assigned to different subchannel groups. 
Because of the channel isolation feature of the CDMA scheme, data fl ows in 
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 FIGURE 8.15 

    (a) CDMA-based interconnect   (b) modulation of data and spreading code [30]
 © 2004 IEEE 
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different subchannel groups are isolated and do not impact each other. Within 
each CDMA subchannel group, data fl ows are assigned different TDMA times-
lots. The subchannel groups can optionally use other arbitration schemes such as 
round-robin ( RR) or fi xed-priority ( FP), which were described earlier in Chapter 2. 
The number of CDMA subchannels and subchannel groups are also confi gurable. 

  Figure 8.17    shows the latencies of two traffi c fl ows,  DF3 and DF4, on a TDMA 
bus and on the CT-Bus, from a multimedia mobile phone case study that was simu-
lated for a period of 1 second ( x-axis). The  DF3 and DF4 data fl ow latencies in the 
TDMA bus are impacted by the bursty traffi c from other data fl ows. In contrast, 
due to the channel isolation feature of the CT-Bus, the latencies for the  DF3 and 
DF4 data fl ows are very predictable and well controlled, after appropriate assign-
ment to separate subchannel groups. 
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An interesting discussion on CDMA and other advanced interconnects, such as 
frequency division multiple access (FDMA), was presented by Chang  [31]. FDMA 
interconnects allow sharing of bus lines by assigning different data fl ows to differ-
ent frequency channels. Data fl ows assigned to different frequency channels can 
communicate concurrently with virtually no interference, provided that undesired 
frequency channels are fi ltered out at the destination. The FDMA and CDMA can 
also be combined into a hybrid multi-carrier CDMA scheme, where concurrent 
data fl ows are possible by assigning appropriate codes and frequencies to each 
data fl ow pair. Such a multi-carrier CDMA scheme can have the highest aggregate 
data rate when compared to TDMA, CDMA, or FDMA interconnects, due to the 
increased bandwidth made available through the use of more than one frequency 
channel. However, the overhead of the modulation and demodulation transceiv-
ers at the interfaces of the communicating modules needs to be further analyzed, 
before CDMA-based interconnects can be considered commercially viable as 
on-chip communication architectures. 

  8.4   ASYNCHRONOUS BUS ARCHITECTURES 
Asynchronous buses are implemented using clockless circuits, that is, they do not 
make use of a global clock signal for synchronization. Instead, synchronization 
occurs using additional handshake signals between transfer phases. Since the global 
clock generator and distributor contributes to a signifi cant chunk of the on-chip 
bus power consumption, the clockless asynchronous buses have lower power con-
sumption compared to traditional synchronous buses. Asynchronous buses also 
have another important advantage—resilience to clock skew even as the number of 
IPs (components) connected to the bus increases  [32]. Performing long range com-
munication across the chip using a widely distributed clock is diffi cult especially at 
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high frequencies where the effect of clock skew usually leads to slower and wider 
interconnects (Chapter 11 discusses on-chip clock networks in more detail). 

An asynchronous bus architecture called MARBLE (Manchester AsynchRonous 
Bus for Low Energy) was proposed by Bainbridge and Furber  [33, 34]  for reduc-
ing on-chip bus architecture power consumption. It consists of address and data 
channels, and exploits pipelining of the arbitration, address, and data phases, just 
like in traditional synchronous bus architectures. However, due to its asynchronous 
nature, there is a lack of synchronization between these phases, which introduces 
problems in the control of bus handover between initiators. For instance, during 
an address phase, the bus is occupied until the slave accepts the address and com-
pletes the handshake. A similar scenario is repeated for the data channel in the sub-
sequent data phase. The extent of handshaking in an asynchronous bus is typically 
more involved compared to that for a synchronous bus and is an undesirable over-
head. This overhead can be overcome to an extent by the introduction of latches at 
the component ports, as shown in  Fig. 8.18   . This allows, for instance, the address 
packet  n to be held in the latch at the target, freeing up the address channel for the 
initiator, which can now send packet  n  " 1. These latches thus decouple the bus 
from the components, and free them up for subsequent transfers. 

Two separate arbiters are used in MARBLE: one for the address channel and the 
other for the data channel. The bus utilizes centralized decoding and arbitration. It 
also supports spatial locality optimizations (implemented via dedicated signals) 
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that indicate cache line fetches and DMA transfers. Finally, MARBLE supports burst 
mode and in-order split transactions. All these features, coupled with its inherent 
asynchronous behavior result in a bus architecture that has low latency and zero 
quiescent state power consumption. Two drawbacks of using an asynchronous 
bus like MARBLE are the additional hardware logic overhead at the module inter-
faces, and the additional bus lines needed for handshaking. 

A high performance asynchronous bus, capable of multiple issue (i.e., allowing 
each master to issue another transaction before the response of a previous trans-
action arrives), and in-order as well as OO transaction completion was presented 
by Jung et al. [35]. A customized layered architecture is used for the proposed 
asynchronous bus in order to alleviate increasing system complexity and enable 
optimizations. This layered architecture is shown in  Fig. 8.19   . The  physical, data 
link, and  transport layers are mapped to the interfaces of the IPs connected to 
the bus. The physical layer handles data encoding, fi ltering, and driving functions. 
The data link layer is concerned with fl ow and access controls. The transport layer 
manages burst and split transactions, multiple issue, and in-order/out-of-order trans-
action completion. An asynchronous handshake protocol with two-phase signaling 
and data insensitive (DI) encoding is used for robust and high speed data transfers 
on the bus [35], while four-phase signaling and bundled data transfers [35] are 
used at the IP interfaces for high performance and low complexity. Two asyn-
chronous buses are proposed: (i) MI-OCB, a multiple issue on-chip bus support-
ing in-order transaction completion and (ii) MO-OCB, a multiple issue on-chip 
bus supporting OO transaction completion. Experimental results for the perfor-
mance and power dissipation of these buses, when compared to a single issue 
on-chip asynchronous bus (SI-OCB) are shown in  Figs. 8.20 and 8.21     , respectively. 
The three asynchronous buses were implemented with a 0.25    !m CMOS process 
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and simulation results were obtained with Synopsys NanoSim  [67] at the transis-
tor level, using the pre-layout netlist. The testbench consists of 12 IPs (4 masters 
and 8 slaves), with each master communicating with the slaves with the same 
probability. The assumptions are that the delay of all the asynchronous modules 
is 0, and that the ratio of the non-bus transfer time to the total transfer time per 
synchronous IP is also 0. The testbench workload comprises of a total of 4800 
transactions. From  Fig. 8.20(a) , it can be seen that the throughputs of MI-OCB and 
MO-OCB are 31.3% and 34.3% more than for SI-OCB. The throughput of MI-OCB 
is lower than that of MO-OCB because no reorder buffers and related hardware 
controllers are needed in MO-OCB (it is the responsibility of the master IP to han-
dle rearrangement of responses in MO-OCB). The effect of number of issues on 
throughputs of MI-OCB and MO-OCB is shown in  Fig. 8.20(b) . The value of 1 for 
the number of issues represents the throughput of SI-OCB. It can be seen that the 
throughput is saturated when the number of issues is greater than 4. 

  Figure 8.21(a)  shows the energy consumption of the three asynchronous 
bus architectures. MI-OCB and MO-OCB consume 6.76% and 3.98% more energy, 
respectively, than SI-OCB. The energy consumption per data transaction for the 
three asynchronous buses as a function of the number of issues is shown in 
Fig. 8.21(b) . The value of 1 for the number of issues represents SI-OCB. With an 
increase in number of issues, energy consumption increases proportionally, since 
the hardware complexity of the reorder buffer increases linearly. 

An asynchronous crossbar bus architecture called NEXUS was proposed by 
Lines [36]. NEXUS is based on the Quasi-Delay-Insensitive (QDI) timing model 
 [37]  requiring that the circuit functions correctly regardless of the delays of all 
gates or most wires. This conservative model forbids all forms of timing races, 
glitches, delay assumptions and clocks, and can work robustly over delay varia-
tions caused by power supply drop, in-die variations, crosstalk, and local heating. 
In such a QDI system, a separate wire cannot be used to indicate the validity of 
the data wire because one cannot make an assumption about the relative delay of 
the wires. Instead, the data and validity are mixed onto two wires. Together with 

 FIGURE 8.20 

    Simulation results for performance: (a) throughputs   (b) throughputs of MI-OCB and MO-OCB 
as a function of the number of issues [35]
 © 2005 ACM Press 
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a backward going acknowledge wire for fl ow control, these wires form an asyn-
chronous channel. When both the data wires are 0, the channel is  neutral and no 
data is present. When an initiator must send a bit, either the fi rst or the second 
data wire is raised to send a logical 0 or 1. Once the receiver has received and 
stored the data, the receiver raises the acknowledge signal. Eventually, the sender 
puts the data wires back to  neutral, after which the receiver lowers the acknowl-
edge signal. This is called the four-phase dual rail handshake, and it is used in the 
asynchronous buses in NEXUS. 

The NEXUS crossbar employs clock domain converters to bridge the asynchro-
nous interconnect with the synchronous modules in the system.  Figure 8.22    shows a 
decomposition of the NEXUS crossbar, which can support up to 16 modules. Data is 
transferred in bursts that cannot be fragmented, interleaved or dropped (i.e.,  atomic  
bursts). Each burst contains a variable number of words (NEXUS uses a 36-bit data 
path) terminated by a tail bit, and a 4-bit TO/FROM signaling to route the data to 
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    Simulation results for energy consumption: (a) energy consumption per data transaction 
(b) energy consumption per data transaction of MI-OCB and MO-OCB as a function of the 
number of issues [35]  
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the appropriate destination. The largest part of the crossbar is its data path, which 
MUXes all input data channels to the output data channels. It is controlled by a  split  
channel for each input which specifi es which output to send the burst to. A merge 
control channel is also required at the output to indicate which input to receive the 
burst from. The  split control comes from the input control block, while the  merge  
control comes from the output control block, as shown in the fi gure. In between 
the input/output control and the data path are  repeat circuits that replicate the 
same split/merge control until a tail bit of 1 passes through the link. 

The 16-port, 36-bit NEXUS crossbar with arbitration and fl ow control, pipe-
lined repeaters to communicate over long wires, and clock domain converters to 
connect to synchronous modules was fabricated for a 130-nm CMOS process and 
shown to reach frequencies of 1.35  GHz with a 780 Gb/s cross-section bandwidth. 
The area footprint of a typical NEXUS system with all 16 ports used, and an aver-
age of two pipelined repeaters per link was reported to be 4.15  mm 2, which is a 
small and relatively reasonable fraction of the total chip area. 

  8.5   DYNAMICALLY RECONFIGURABLE BUS ARCHITECTURES 
Typically, once the topology and values for communication parameters such as 
arbitration schemes, bus clock frequencies, etc. are decided (after an exploration 
phase) for a bus-based communication architecture, they remain fi xed for the 
entire lifetime of the System on-chip (SoC) design. Dynamically reconfi gurable 
bus architectures have the ability to modify certain parameters and even the bus 
architecture topology dynamically during system execution. Such an ability for 
reconfi guration allows the communication architecture to better adapt to chang-
ing traffi c patterns and needs of the system during execution, and can result in 
better optimization of design goals, such as power and performance. We fi rst pre-
sent research that has looked at dynamic bus parameter reconfi guration, followed 
by research efforts on dynamic bus topology reconfi guration. 

  8.5.1   Dynamic Bus Architecture Parameter Reconfiguration 
On-chip communication architecture standards such as AMBA  [3, 14] , IBM 
CoreConnect [4] and Sonics Smart Interconnect [6] provide limited support for 
dynamically reconfi guring their parameters, to adapt to changing application 
requirements at runtime  [38]. For instance, Sonics Smart Interconnect allows soft-
ware programmable arbitration and bandwidth allocation by dynamically varying 
TDMA slot allocation among components. Variable-length burst sizes and software 
programmable arbitration priorities are supported in AMBA and CoreConnect. An 
additional degree of confi gurability is provided in CoreConnect, by allowing each 
bus master to indicate a desired priority to the arbiter for each bus request. 

  8.5.1.1   Communication Architecture Tuners 
Lahiri et al. proposed  communication architecture tuners (CAT)  [39, 40]  to adapt 
on-chip communication architecture parameters (mainly arbitration priority) to the 
varying communication needs of the system and the varying nature of data being 
communicated.  Figure 8.23    shows an example of a CAT-based communication 
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architecture for a TCP system from a network interface card. CATs are added to every 
master in the system and the arbiter and component interfaces are enhanced to han-
dle CAT operation. Every time a communication request is generated by a compo-
nent, its corresponding CAT is notifi ed. The CAT also monitors the details of the data 
being communicated and the state of the component. For the system shown in  Fig. 
8.23, the CAT observes the packet size and deadline from the header of the packet 
being processed by the component, and groups communication requests based on 
the size and deadline of the packet being processed. The CAT then determines an 
appropriate arbitration priority value for the group of communication requests. Such 
a CAT-based communication architecture was able to dynamically adjust priorities 
and meet all the packet deadlines for the TCP example shown in  Fig. 8.23 . Whereas 
the traditional static priority assignment failed to meet the deadlines. 

A more detailed view of the CAT module is shown in  Fig. 8.24   . CAT consists 
of a partition detector and a parameter generator circuit that generates arbitra-
tion priority values during system execution. A communication partition is a sub-
set of the transactions generated by a component during execution. The partition 
detector circuit monitors and analyzes information generated by the component, 
such as transaction initiation requests, indications of importance of the data being 
processed, and tracer tokens. A component is enhanced to generate tracer tokens 
purely for the purpose of the CAT, to indicate specifi c operations to the CAT that 
the component is executing. The partition detector uses this information to iden-
tify the start and end of a sequence of consecutive communication transactions 
belonging to a partition. The parameter generator circuits generate values for com-
munication arbitration priority based on the partition ID generated by the parti-
tion detector circuit (and other application specifi c data properties specifi ed by 
the system designer). The generated value for the priority is sent to the arbiters 
and controllers in the communication architecture, to change its behavior. 

  Figure 8.25    shows the overall methodology for designing CAT-based communica-
tion architectures. In the fi rst step, a performance analysis of the system execution 
traces for the partitioned/mapped system is performed, as described in  [41], in order 
to obtain information and statistics for use in later steps. The trace-driven performance 
analysis technique used in  [41] is considered comparable in accuracy to complete 
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system simulation, while being more effi cient to employ in an iterative manner. The 
output of this analysis is a communication analysis graph (CAG), which is a compact 
representation of the system ’s execution for the given input traces. The vertices of this 
graph represent clusters of computation and abstract communications performed by 
the components during execution. The edges of the graph represent dependencies 
between the various computations and communications. The CAG can be quickly ana-
lyzed to obtain various performance statistics. In Step 2, the communication vertices 
in the CAG are grouped into a number of partitions. Each partition consists of events 
having similar communication requirements. In Step 3, various cluster statistics are 
evaluated, based on which arbitration priority values are assigned to the partitions in 
Step 4. Step 5 re-evaluates system performance for the new priority value assignments. 
If there is an improvement in performance, Steps 1–5 are repeated, till no further per-
formance improvement can be achieved. Finally, Step 6 generates the CAT hardware 
to realize the optimized protocol generated in the previous steps. 

Experimental studies were performed to compare an enhanced CAT-based com-
munication architecture with conventional communication architectures, with static 
arbitration priority assignment. Four system testbenches were considered for the 
comparison study: (i)  TCP/IP, a four component, single shared bus system shown 
in  Fig. 8.23 , (ii) SYS, a system with four components accessing a shared memory on 
a single shared bus, (iii)  ATM, a packet forwarding unit of an ATM switch that con-
sists of fi ve components accessing a dual-port memory, over a single shared bus, and 
(iv) BRDG, a hierarchical shared bus-based system with two buses connected via a 
bridge, and six components, including two shared memories.  Table 8.2    shows the 
performance benefi ts of using a CAT-based approach over a static arbitration pri-
ority-based conventional bus architecture. The performance objective for the  TCP/
IP, SYS, and ATM systems is to minimize the number of missed deadlines. For the 
BRDG system, each transaction is assigned a weight, and the overall performance 
of the system is measured using a weighted mean of the execution times of all the 

 Table 8.2    Performance comparison of a CAT-based architecture with a 
conventional static priority-based architecture  [39, 40]   

Example
system

 Performance
metric

Input
trace

 Static 
protocol-
based
architecture

CAT-
based
architecture Improvement

 TCP/IP  Missed 
deadlines

 20 packets  10  0  – 

 SYS  Missed 
deadlines

 573 
transactions

 413  17  24.3 

ATM  Missed
deadlines

 169 
packets

 40  16  2.5 

BRDG Average
cycles

 10,000
cycles

304.72 254.1 1.2
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bus transactions. The objective for this system is to minimize the weighted aver-
age processing time. Column 4 reports the performance of the static priority-based 
conventional bus architecture, while column 5 reports the results of the CAT-based 
communication architecture. The CAT-based architecture uses information such as 
weights on communication requests and deadlines to provide a more fl exible and 
higher performance communication infrastructure. 

Since this methodology is dependent on performance evaluation on execution 
traces, it is important to determine what infl uence the choice of input traces has on
the performance of the CAT-based communication architecture. For this purpose, 
the performance of the CAT-based architecture and the conventional static priority 
bus architecture are compared for the  SYS system testbench, for 10 different input 
traces (that present comparable workloads to the communication architecture), 
generated using random distributions for the timing, performance requirements, and 
size of the communication requests.  Table 8.3    compares the fraction of deadlines 
met by the CAT-based architecture and the conventional static priority bus architec-
ture. It can be seen that the performance gain for the CAT-based architecture over 
the conventional architecture is consistent across the traces, meeting 94.66% of the 
deadlines on an average. It is also clear that the performance advantage provided 
by CATs are relatively immune to the exact sequence and timing of input stimuli 
experienced by the system, because CATs are not tuned to the exact arrival times of 
communication requests, or packet sizes, and can therefore effectively track changes 
in deadlines and control-fl ow, which can impact performance. 

  Figure 8.26    shows an experiment comparing the performance of the CAT-based 
architecture with a static priority assignment based conventional bus architec-
ture, for the  SYS example, for 12 different input traces that present widely varying 
workloads to the communication architecture. Again, it can be seen from the fi gure 

 Table 8.3    Effect of varying input traces (while maintaining comparable 
workloads) on the performance of CAT-based architecture  [39, 40]   

   Deadlines Met (%) 

 Input trace  Static protocol-based architecture  CAT-based architecture 

 T-6-0  13.06  94.62 

 T-6-1  12.86  93.47 

 T-6-2  12.06  93.47 

 T-6-3  11.9  94.1 

 T-6-4  10.64  95.48 

 T-6-5  11.62  94.08 

 T-6-6  11.24  96.89 

 T-6-7  13.3  95.07 

 T-6-8  12.17  94.47 

 T-6-9  14.76  94.55 
 © 2004 IEEE 
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that the CAT-based architecture provides better performance than the conventional 
bus architecture. The extent of the performance improvement varies, depending 
on the workload imposed by the trace. The benefi t of an adaptive communication 
architecture like the CAT-based architecture is more pronounced for moderate to 
high workloads (e.g.,  T-3 to T-9). For low workloads, both the conventional and 
CAT-based architectures are capable of meeting most of the deadlines, whereas for 
very high workloads, neither architecture can meet the deadlines. Consequently, 
for very low or very high workloads, the gains for the CAT-based architecture are 
comparatively smaller. 

  8.5.1.2   LOTTERYBUS 
Lahiri et al. also proposed LOTTERYBUS  [42, 43]  to overcome the shortcomings 
of existing arbitration schemes, which can be inadequate under certain circum-
stances. For instance, the static priority scheme can lead to starvation of low prior-
ity masters under heavy traffi c loads (i.e., the masters with low priority are rarely 
granted access to the bus, because of frequent high priority master transfers). On 
the other hand, the TDMA scheme provides a fairer distribution of bus bandwidth 
that can overcome starvation scenarios, but can lead to high transfer latencies 
due to the lack of fl exibility in the static TDMA slot reservation. The LOTTERYBUS 
communication architecture attempts to provide effective bandwidth guarantees, 
while ensuring low latencies for bursty traffi c with real-time latency constraints. 
LOTTERYBUS introduces a randomized arbitration algorithm implemented 
in a centralized  lottery manager for each shared bus in an SoC. The lottery 
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manager receives requests from one or more masters on the bus, each of which 
is (statically or dynamically) assigned a number of  lottery tickets, as shown in  Fig. 
8.27  . The manager probabilistically chooses one of the masters as the winner and 
grants it access to the bus. While multiple word (burst) transfers are allowed, a 
maximum transfer size ensures that none of the masters monopolizes the bus for 
extended periods at a time. 

The principle of the LOTTERYBUS operation can be explained as follows. Let 
C  1  , C  2  , …, C n be the set of masters on the bus. Let the number of tickets held by a 
master be t  1  , t  2  , …, t n, and at any cycle. In addition, let the set of pending requests 
at any cycle be represented by  r1, r 2, …, r n, where  ri = 1 if master  Ci has a pend-
ing request (and  ri   = 0 otherwise). Then the probability that master  Ci gets access 
to the bus is given by: 

P
r t

r t
i

i i

j jj

n
( )C !

!

⋅

⋅∑ 1      

To decide on the arbitration winner, the lottery manager uses the notion of a 
lottery  [68], and fi rst examines the total number of tickets possessed by contend-
ing masters, given by  r tj jj

n ⋅∑ !1
   . It then generates a random number (or picks a 

winning lottery) from the range [0,  rjj

n∑ !1
    % tj)

1 to determine which master to 
grant the bus to. If the number falls in the range [0,  r  1   ·  t  1), the bus is granted to 
master C  1. If it falls in the range [ r1   ·   t1, r 1   ·   t1 + r2   ·   t2), it is granted to compo-
nent C  2, and so on. For example, in  Fig. 8.28   , masters  C  1  , C  2  , C  3  , and C  4 are 
assigned 1, 2, 3, and 4 lottery tickets, respectively. In the bus cycle shown, only 
C  1, C  3, and  C4 have pending requests, and hence the number of current tickets is 

r tj jj

n ⋅∑ !
! " " !

1
1 3 4 8.    The random number generator generates a number in

the range [0, 8) that happens to be 5, which lies between  r  1    ·  t  1  " r  2    ·  t  2  " r  3    ·  t  3  ! 4, 
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 1 This set [a, b) includes all the integers between a and b, inclusive of  a but not b.
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and r  1    ·  t  1  " r  2    ·  t  2  " r  3    ·  t  3  " r  4    ·  t  4  ! 8. Therefore, the bus is granted to master  C  4.
LOTTERYBUS addresses the problem of a low priority master not being able to 
access the bus for extended periods of time, since the probability  p that a compo-
nent with t tickets is able to access the bus within  n lottery drawings is given by 
the 1 # (t/T)n, which converges rapidly to 1, ensuring that no master is starved. 

As mentioned earlier, tickets in the LOTTERYBUS architecture can be assigned 
to masters either statically or dynamically. The dynamic ticket assignment case 
is of particular interest, since it allows better adaptation to changing traffi c and 
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performance requirements.  Figure 8.29    shows the lottery manager for the 
LOTTERYBUS architecture with dynamic ticket assignment. The inputs to the lottery 
manager are the master request lines ( r  1,r2,r  3,r  4) and the number of tickets currently 
possessed by each master. At each lottery, the partial sum  r tj jj

i ⋅∑ !1
    must be cal-

culated for each master  Ci (unlike in the static case, where the partial sum values 
are fi xed and can be stored in a lookup table). For  C  4, this yields the total range, or 
the sum of the number of tickets held by all masters. The fi nal result,  T  ! r  1   · t  1  "
r  2   ·   t  2  " r  3   ·  t  3  " r  4   · t  4 defi nes the range in which the random number to be gen-
erated must lie. Modulo hardware arithmetic is used to generate the random num-
ber in the range [0,  T ). The random number is then compared in parallel against 
all four partial sums using comparators, and a grant signal is generated for the 
appropriate winning master, using the output range analysis described earlier. 

The performance of LOTTERYBUS was studied through several experiments. 
A simple four master, four slave shared bus system testbench was used  [44], with 
the masters connected to parameterized traffi c generators. All the system compo-
nents were specifi ed in Esterel and C, from which PTOLEMY  [45] simulation mod-
els were generated using POLIS  [46]. PTOLEMY was used for schematic capture 
and HW/SW co-simulation. 

The fi rst experiment examined the ability of LOTTERYBUS to proportionally 
allocate bandwidth under different classes of communication traffi c.  Figure 8.30    
shows the results of this experiment, with the  x-axis depicting nine different com-
munication traffi c classes and the  y-axis depicting the fraction of the total bus 
bandwidth allocated to masters. It can be seen that for traffi c classes with high 
bus utilization, the bandwidth allocated closely follows the assignment of lottery 
tickets. Tickets were assigned in the ratio 1:2:3:4 and for the traffi c classes  T4, 
T5, T7, T8, and T9, the bandwidth allocated is in the ratio of 1.15:2.09:2.96:3.83. 
However, for cases when the bus is partially un-utilized (e.g.,  T3, T6), the band-
width allocation does not follow ticket assignment and is roughly the same for all 
components. This is because due to the sparse nature of communication in these 
classes, immediate grants are issued to most requests. These results show that 
LOTTERYBUS is capable of providing effi cient control over bus bandwidth alloca-
tion for a variety of traffi c classes and a varying level of bus utilization. 
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  Figure 8.31    compares the latency of the TDMA and LOTTERYBUS architec-
tures over six different communication traffi c classes. The  x-axis depicts different 
traffi c classes, while the  y-axis depicts timeslots ( Fig. 8.31(a) ) and lottery tickets 
(Fig. 8.31(b) ) assigned to the masters. The  z-axis depicts the average communication
latency per word. It can be seen from the fi gures that LOTTERYBUS exhibits bet-
ter latency behavior than the TDMA architecture for a wide range of traffi c classes. 
Most importantly, the communication latency for high priority masters varies sig-
nifi cantly for the TDMA architecture (1.65 to 20.5 cycles per word), because the 
latency of communication in TDMA is highly sensitive to the timing wheel posi-
tion (i.e., which master ’s slot currently has access to the bus) when the request 
arrives. The LOTTERYBUS architecture does not exhibit this phenomenon and 
ensures low latencies for high priority masters. 

The experimental results thus show that LOTTEYRBUS is able to simultane-
ously provide low latencies for high priority traffi c, while at the same time pro-
viding proportional bandwidth guarantees. The LOTTERYBUS architecture was 
implemented on top of the AMBA AHB architecture [3] and synthesized using the 
Synopsys Design Compiler [47] for a 0.15    !m CMOS cell library from NEC  [48].
A communication architecture area increase of 16% for the static LOTTERYBUS 
and 24% for the dynamic LOTTERYBUS architecture was observed over the static 
priority-based communication architecture area. The critical path of the static pri-
ority-based architecture was observed to be 1.68  ns, enabling, at least theoretically, 
bus speeds up to 595 MHz. This critical path delay was unchanged for the static 
LOTTERYBUS architecture. The critical path delay for the arbiter in the dynamic 
LOTTERYBUS architecture was measured to be 1.92 ns, which is a 14% increase in 
the critical path of the overall communication architecture. With current technol-
ogy scaling trends, such a logic delay will play a decreasing role compared to the 
global wire delay in determining overall communication architecture clock fre-
quency [15], making the deployment of dynamic LOTTERYBUS architecture more 
feasible in future designs. The authors did not provide any information about the 
power dissipation overhead of the additional circuits, which is also a critical fac-
tor in considering such schemes for deployment. 
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  8.5.1.3   Other Dynamic Parameter Adaptation Schemes 
A derivative statistic-based dynamic lottery arbitration scheme was proposed by 
Zhang [49], which additionally makes use of the arbitration history record to deter-
mine the priority of the masters for the next arbitration grant. This implies that the 
priority of master  A is higher than that of master B if master A was granted bus 
access more than master  B during the last  L times arbitration was performed. Each 
master has M registers to store their history record for the number of times it was 
granted bus access during the last  L times arbitration was performed. The value of 
L is also stored in a register. In contrast to the lottery manager in LOTTERYBUS, the 
lottery manager issues tickets based on the values of the history record registers 
and the initial ticket registers. Results of experiments showed that the proposed 
statistic-based lottery scheme provided superior performance compared to the lot-
tery-based scheme in LOTTERYBUS. However, no experiments were performed by 
the authors to determine the additional area overhead or timing impact of the his-
tory-based ticket generation. It was also not shown whether the statistic-based lot-
tery scheme provides low latencies for high priority traffi c, while at the same time 
providing proportional bandwidth guarantees, like LOTTERYBUS. 

A dynamic fraction control bus architecture was proposed by Wang and 
Bayoumi  [50] to provide similar benefi ts as LOTTERYBUS, but with lower system 
cost and design complexity. Additionally, since arbitration in LOTTERYBUS is based 
on probability, it becomes hard to implement accurate control over the bus band-
width allocation for applications. In the proposed fraction control bus, bandwidth 
fractions are assigned to master components based on their communication require-
ments. The greater the fraction value, the greater the priority.  Figure 8.32    shows 
the architecture of the fraction bus arbiter and decoder. The decoder is responsible 
for granting bus access to masters or produce chip select signals for comparators, 
based on master requests. The fraction calculator calculates the real-time bandwidth 
fraction for each master. The assigned fraction values for the masters are stored in a 
Lookup Table (LUT). Comparators perform fraction comparison and grant access to 
the master that satisfi es arbitration conditions. The proposed fraction control bus can 
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    Architecture of the fraction bus arbiter and decoder  [50]    
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be implemented statically or dynamically. In the  static fraction control bus (SFCB), 
the fractions assigned to the masters are fi xed. In the  dynamic fraction control bus  
(DFCB), the fractions are initially set to a fi xed value, and are thereafter continuously 
tuned to adapt to communication circumstances dynamically. The assigned band-
width fraction for a master can be increased if it has pending requests more than 
a threshold value. In such a case, the master can  borrow the bandwidth fractions 
from other masters temporarily, till the number of pending requests drops below the 
threshold value. Both the threshold value and the amount of bandwidth that can be 
borrowed are confi gurable by the designer. 

Several experiments were performed to determine the effectiveness of the 
fraction control bus over LOTTERYBUS and conventional static priority bus archi-
tectures.  Table 8.4    compares the gate count and achievable bus speed for the imple-
mentations of the static priority bus architecture, the LOTTERYBUS architecture and 
the static (SFCB) and dynamic (DFCB) fraction control bus architectures. The imple-
mentations were mapped onto the Xilinx Vertex2Pro FPGA. It can be seen from the 
table that the proposed fraction control bus architectures have lower area and delay 
compared to LOTTERYBUS. To evaluate and compare the performance of the fraction 
control bus, a four master subsystem for the cell forwarding unit of an ATM switch 
[51] was considered. Four versions of the system were implemented, with: (i) the 
static priority bus, with priorities 4, 3, 2, 1; (ii) LOTTERYBUS, with lottery numbers 
1:1:4:6; and (iii), (iv) SFCB and DFCB architectures, with fractions 15%:15%:60%:10%. 
Table 8.5    shows the results of this experiment. For the static priority bus, the com-
munication latency of the master with the highest priority is the lowest, but the 
bandwidth fraction for the masters with low priorities is extremely low, due to star-
vation. The fraction control buses (SFCB and DFCB) have lower system cost while 

 Table 8.4    Design complexity and achievable bus speed comparison  [50]   

   Gate counts  Delay (ns)  Max speed (MHz) 

 Priority  86  2.707  369.41 

 LotteryBus  152  3.276  305.72 

 SFCB  104  2.987  334.89 

 DFCB  134  3.113  321.23 
 © 2005 IEEE 

 Table 8.5    Performance comparison for ATM switch example  [50]   

   Port4 latency 
(cycles)

 Port4 BW 
(%)

 Port3 BW 
(%)

 Port2 BW 
(%)

 Port1 BW 
(%)

 Priority  1.39  9.56  60.6  29.83  0.01 

 Lottery  1.4  9.32  63.6  15.15  11.93 

 SFCB  1.42  10.32  60.4  14.64  14.64 

 DFCB  1.46  9.74  58.25  16.34  15.67 
 © 2005 IEEE 
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maintaining comparable communication latencies, with LOTTERYBUS. SFCB and 
DFCB can also be seen to have a more accurate control over the allocation of band-
width fractions, than other buses. 

A time-division-based bus architecture which dynamically allocates TDMA 
timeslots ( dTDMA), was proposed by Richardson et al.  [52]. In dTDMA, the bus 
arbiter dynamically grows or shrinks the number of timeslots to match the num-
ber of active transmitters, as shown in  Fig. 8.33   . When a master needs to transmit 
data on the bus, it asserts its active signal to the arbiter, to request a timeslot. The 
arbiter uses a number of techniques to decide on a timeslot assignment for each 
master and produces a new confi guration for each active transmitter and receiver 
before the beginning of the next clock cycle. On the next clock edge, the timeslot 
confi guration data is loaded by the transmitters and receivers, and normal opera-
tion is continued. When a master fi nishes transmitting, it de-asserts its active signal, 
following which the arbiter de-allocates its timeslot in the same manner as it allo-
cated it ( Fig. 8.33 ). Such a dynamic timeslot assignment produces the most effi -
cient timeslot allocation without any slot wastage. The only overhead is the one 
cycle initial communication delay when a timeslot is allocated. Various methods 
can be used to assign timeslot, including (but not limited to) methods based on 
the status of the transmit buffers or the length of the wait time. 

The address mapped dTDMA bus architecture has several advantages over stan-
dard bus architectures such as AMBA [3]. Because of its memory-oriented design, 
AMBA imposes certain restrictions on the nature of addressing behavior. In addi-
tion to a 1kB address boundary on sequential transfers, a new transaction must be 
initiated if the next address is not an increment of the previous (i.e., a non-sequen-
tial access). These restrictions result in repeated arbitration overhead. For instance, 
a long transmission crossing the 1kB boundary must re-arbitrate, at the risk of los-
ing bus ownership. Such re-arbitration can waste several cycles and add a signifi -
cant overhead. To overcome these drawbacks during data streaming, the dTDMA 
bus architecture is transaction-less and address mapped, with each component on 
the bus being assigned a unique identifi er. The dTDMA bus only requires re-arbi-
tration when the destination of the data stream transfer changes. In contrast, for 
AMBA, transfer requests that are not sequential or that cross the 1kB boundary, 
require arbitration even if the destination of the transfer remains the same. 
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    Dynamic timeslot allocation example  [52]    
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A simple comparison between AMBA and dTDMA is shown in  Fig. 8.34   . In this 
example, master  A requests access to the bus at clock  T1, followed by a request 
from master  B at clock  T2. The AMBA arbiter does not grant access to master  A  
before clock  T3, whereas the dTDMA arbiter issues the new timeslot confi guration 
before the end of clock  T1. Data transmission for AMBA commences at  T5, since 
T4 is dedicated to the address phase of the transaction. In dTDMA, data transmis-
sion commences earlier, at  T2. Master  B has to wait fi ve cycles from request to 
data transfer in AMBA, but only one cycle in dTDMA. In the example, the dTDMA 
bus architecture completes the transmission of two words from each master three 
cycles before the AMBA bus does. 

An attractive quality of dTDMA is its predictable latencies, since a component 
is guaranteed to wait no longer than the number of active transmitters. In con-
trast, in the AMBA bus, a master may need to wait for an indeterminate amount of 
time before being granted access to the bus. The transaction-less, address-mapped 
dTDMA bus also requires fewer arbitrations compared to AMBA, and needs fewer 
cycles for the arbitration process, which improves overall performance.   
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  8.5.2 Dynamic Bus Architecture Topology Reconfiguration 
In addition to dynamically confi guring bus architecture protocol parameters such as 
arbitration schemes and burst sizes, it is also possible to change the topology of the 
bus architecture dynamically. Sekar et al.  [51] proposed the  FLEXBUS architecture, 
which is a high performance on-chip bus architecture with a dynamically confi gu-
rable topology that can be implemented on top of an existing standard communica-
tion architecture such as AMBA AHB [3]. FLEXBUS is capable of detecting runtime 
variations in communication traffi c, and adapting the topology of the communica-
tion architecture in two ways: (i) dynamic bridge bypass, which enables bus topol-
ogy customizations via runtime fusing and splitting of bus segments and (ii) dynamic 
component re-mapping, which allows runtime switching of components from one 
bus segment to another. The key challenges of such an approach are maintaining 
compatibility with existing bus standards, minimizing the timing impact, minimizing 
the logic and wiring complexity, and providing low reconfi guration overhead. 

The hardware required to support dynamic bridge bypass is shown in  Fig. 
8.35  , for a system consisting of two AMBA AHB bus segments:  AHB1, containing 
two masters and one slave; and  AHB2, containing one master and one slave. This 
system can be operated in a single shared bus mode or a multiple bus mode by 
disabling or enabling the bridge bypass with the  confi g_select signal. In the mul-
tiple bus mode, the signals shown by dotted lines are inactive, and the two bus 
segments operate concurrently, with the two arbiters resolving confl icts on each 
of the segment and transactions between the two segments passing through the 
bridge. In the single shared bus mode,  confi g_select !! 1, which results in the 
bridge being bypassed and the signals shown with dotted lines being activated. In 
this mode, multiplexers are used to bypass the bridge logic and directly route data 
between the components in a single cycle. 
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Arbitration in a single bus mode only grants one master access to the bus, 
whereas in multiple bus mode more than one master can have transactions 
executing in parallel. The arbitration mechanism of the multiple bus mode is 
adapted to meet the requirements of the single bus mode in FLEXBUS. This is 
done by using a distributed arbitration mechanism in the single bus mode, in 
which one of the arbiters acts as a virtual master that is regulated by the other 
arbiter. For example, in  Fig. 8.35 , if  Arbiter2 receives a transfer request from a 
master on AHB2, it immediately sends a request to  Arbiter1 using busreq_AHB2  
and lock_AHB2 signals.  Arbiter1 arbitrates from the requests received on  AHB1,
as well as the requests from the virtual master. In parallel, to reduce arbitration 
latency,  Arbiter2 arbitrates among its received requests. However, it grants  AHB2  
to its selected master only after receiving the  grant_AHB2 signal from  Arbiter1,
thus ensuring that only one master gets access to the bus in the single bus mode. 

The reconfi guration unit ( Fig. 8.35 ) selects the bus confi guration at runtime, 
and ensures correct operation of the system when switching between the two 
confi gurations. The worst case overhead of bus reconfi guration for the two bus seg-
ment AMBA system is 17 clock cycles, assuming a single cycle slave response and 
that the bus is not locked. The runtime reconfi guration policy used in FLEXBUS can 
be described as follows: at runtime, the system observes the number of transac-
tions on each local bus segment, as well as transactions between bus segments, for 
a time period  T. Assuming that the average number of cycles required for a local 
transaction, and a cross-bridge transaction are known, the reconfi guration unit cal-
culates the time required to process traffi c for the single bus mode and the multi-
ple bus mode. If the time taken to process the traffi c for the single bus mode is less 
than the time for the multiple bus mode, the reconfi guration unit selects the single 
bus mode. Otherwise, the multiple bus mode is selected. The confi guration time 
period  T must be carefully set by the designer. A smaller value for  T can result in a 
system more responsive to variations in traffi c conditions, but if the traffi c charac-
teristics change rapidly, it can result in frequent switching between the confi gura-
tions, and performance degradation due to the large reconfi guration overhead. 

The hardware required to implement dynamic component re-mapping is shown
in  Fig. 8.36   , which illustrates a two segment AMBA AHB architecture in which mas-
ter M2 and slave  S2 can be dynamically mapped to either  AHB1 or AHB2. The sig-
nals confi g_select_M2 and confi g_select_S2 are used to select the mapping of  M2  
and S2, respectively. The signals of the re-mappable master or slave are connected to 
both buses, but the switch logic in  SWITCH_M and SWITCH_S activates the signals 
for only one of the buses at a time, depending on the confi guration chosen. The arbi-
ters do not require any change when re-mapping components since master requests 
are only sent to the arbiter on the bus to which a master is connected. However, the 
decoders on the two bus segments need to be reconfi gured to generate the correct 
signal for the re-mappable slave. The  Remap unit ( Fig. 8.36 ) is responsible for gener-
ating the signals to select the master and slave mapping confi gurations. Monitoring 
strategies, similar to the ones used for the dynamic bridge bypass can be used to 
determine when to remap the re-mappable masters and slaves. 

Experimental studies were performed to evaluate the usefulness of the 
FLEXBUS approach. The AMBA AHB RTL description from the Synopsys 
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Designware  [53] library was enhanced with the additional hardware descriptions 
needed to implement FLEXBUS. A system with eight masters (traffi c generators) 
and eight slaves was used as a testbench. The fi rst experiment explored the area 
and timing characteristics of the FLEXBUS implementation for a dynamic bridge 
bypass, and compared the results with those for a single shared bus architec-
ture, and a multiple shared bus architecture.  Table 8.6    shows the results from the 
experiment, for an implementation in the 0.13   !m CMOS process technology  [54].
FLEXBUS incurs a small delay penalty compared to statically confi gured architec-
tures, due to the additional wiring and logic delay. For FLEXBUS, the critical path 
delay in the multiple bus mode is smaller than in the single bus mode since many 
of the long paths present in the single bus mode are not used in the multiple 
bus mode. The static multiple bus architecture has a smaller delay than the single 
shared bus due to less bus loading and shorter wire lengths. 

Next, an experiment was performed to analyze the performance of FLEXBUS 
under a synthetic traffi c profi le  [51]. Figure 8.37    plots the cumulative latency for 
the different architectures. It can be seen that FLEXBUS successfully adapts to fre-
quent changes in traffi c characteristics, to achieve performance improvements over 
the static single shared bus (21.3%) and multiple shared bus (17.5%) architectures. 
Finally, the performance of FLEXBUS and conventional architectures was compared 
for an IEEE 802.11 MAC (Message Authentication Code) processor-based SoC sub-
system. All the buses were operated at 200  MHz.  Table 8.7    shows the average time 

Remap
Unit

config_select_M2

lock_M2

busreq_M2
grant_M2

busreq_M2

busreq_M3

grant_M2

lock_M2

SWITCH_M

Decoder1 Decoder2

S1 S3

Arbiter2

M2

Arbiter1

grant_M1
busreq_M1

lock_M1

M1 M3

S2

address,
control, wdata

address,
control, wdata

ready,
response, rdata

ready,
response, rdata

select S1 select S3

config_select_S2

AHB1 AHB2select S2 select S2

SWITCH_S

select
BRG

select
BRG

BRG

Mst
I/F

Slv
I/F

Slv
I/F

Mst
I/F

busreq_BRG
lock_BRG
grant_BRG

busreq_BRG
lock_BRG lock_M3
grant_BRG

grant_M3

 FIGURE 8.36 

    Dynamic component re-mapping hardware in FLEXBUS  [51]    
 © 2005 IEEE 



335

  Table 8.6    FLEXBUS hardware implementation results  [51]   

 Bus architecture  Area (sq. mm)  Delay (ns)  Frequency (MHz) 

 Single shared bus  82.12  4.59  218 

 Multiple bus  84.27  3.79  264 

 FLEXBUS (single bus mode) 
82.66  

4.72 212

 FLEXBUS (multiple bus mode)  3.93  254 
 © 2005 IEEE 
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    Cumulative frequency for different bus architecture, under synthetic traffic profiles  [51]     
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 Table 8.7    Performance of 802.11 MAC processor-based SoC subsystem for 
different communication architectures  [51]   

Bus architecture Computation time (ns) Data transfer time (ns) Total time (ns) 

 Single shared bus  42,480  –  42,480 

 Multiple bus  26,905  12,800  39,705 

 FLEXBUS (bridge 
by-pass)

 27,025 5,290  32,315 

 FLEXBUS 
(component
re-mapping)

 27,010 5,270  32,280 

 Ideally 
reconfigurable
bus

 26,905 5,120  32,025 

 © 2005 IEEE 
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taken to process a single frame of size 1 kB, for different bus architectures. It can 
be seen that the times required by both variants of the FLEXBUS architecture are 
smaller compared to conventional architectures. FLEXBUS and its reconfi guration 
policies are also seen to perform close to the ideal case, which assumes no recon-
fi guration overhead, and an ideal reconfi guration policy having full knowledge of 
future bus traffi c.   

  8.6   SUMMARY 
In this chapter, we presented custom bus-based communication architectures that 
attempt to overcome limitations of commercially available standard bus-based 
communication architectures, and improve system design goals such as power 
consumption and performance. We fi rst looked at  split/segmented bus architec-
tures that split a long interconnect into segments in order to reduce the wire 
delay, capacitive load and consequently power consumption, as well as increase 
parallelism during data communication.  Serial bus architectures reduce the num-
ber of wires connecting components, compared to conventional parallel bus 
architectures. This reduces coupling capacitance between wires, which reduces 
signal propagation delay and also reduces power consumption because of the 
reduced capacitance.  CDMA-based bus architectures allow multiple transmitters 
to send data on a shared medium simultaneously, which can reduce traffi c con-
fl icts and consequently communication latency. Asynchronous bus architectures, 
unlike conventional commercial bus architectures that are primarily synchronous, 
do not use a global clock signal for synchronization. Since the global clock con-
sumes a signifi cant amount of power, asynchronous bus architectures have lower 
power consumption. Finally,  dynamically reconfi gurable bus architectures allow 
the topology and/or protocol parameters such as arbitration schemes to dynami-
cally change and adapt to changing traffi c profi les and data characteristics, in 
order to improve performance. 

  FURTHER READING 
Very early work in the area of custom bus architecture design resulted in a synchro-
nous, high performance, split and burst transaction capable, pipelined, shared bus 
called the HiPi+ bus [55], which extended an even earlier work that proposed the 
high performance HiPi bus  [56]. The concepts proposed in the work were a pre-
cursor to the enhancements that followed in several commercial on-chip bus archi-
tectures. Several works have proposed using custom circuit techniques  [57–63] 
to improve the performance of hierarchical and crossbar bus-based conventional 
communication architectures such as AMBA AHB/AXI. A performance analysis of 
commonly used arbitration schemes was presented in  [64], and custom variations 
on existing arbitration schemes, such as the direct mapped slot allocation TDMA 
[65], have been proposed to improve the performance of bus architectures. A cus-
tom wrapper-based bus (NECoBUS)  [66] was proposed to reduce the latency of 
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wrappers in wrapper-based bus architectures. NECoBUS employs several latency 
reduction techniques such as retry encapsulation, write-buffer switching, early bus 
requests, and converter-based multiple bit-width connections to remove the latency 
penalty induced in the conventional wrapper-based bus design.   
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CHAPTER

In a typical SoC design fl ow, several models of the system are created that capture 
different levels of detail, for different purposes.  Figure 9.1    shows how commu-
nication architecture refi nement and interface synthesis involve transformations 
between models with different levels of detail, in a typical design fl ow.  Functional  
(or task/process graph) level models focus on capturing the functionality of the 
system, without any notion of hardware or software components that will ulti-
mately implement the functionality. Such models are typically used as  “ golden 
reference ” models to allow later stages of the design fl ow to check and validate 
the intended functionality of the system, as needed.  Architectural level models on 
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    Communication architecture (CA) refinement and interface synthesis in a typical ESL design flow    


