
43

CHAPTER

System-on-chip (SoC) designs typically have several different types of components 
such as processors, memories, custom hardware, peripherals, and external inter-
face IP (intellectual property) blocks that need to communicate with each other. 
In SoC design houses, some of these components might be designed from scratch, 
while others are reused from previous designs or procured from external IP ven-
dors. Each of these components has an interface to the outside world consisting 
of a set of pins that are responsible for sending/receiving addresses, data, and con-
trol information to/from other components. The choice of pins at the interface is 
governed by the particular bus protocol of the communication architecture. In 
order to seamlessly integrate all these components into an SoC design, it is nec-
essary to have some kind of a standard interface defi nition for the components. 
Without a standard interface defi nition, the component interfaces will not be 
compatible with the bus architecture implementation, and consequently will not 
function correctly. In such a scenario, the components will require the design of 
logic wrappers at their interfaces (more details in Chapter 9) to correctly inter-
face with the bus architecture being used. These logic wrappers, however, require 
additional area on the chip and can be time consuming to design and verify. 

To speed up SoC integration and promote IP reuse over several designs, sev-
eral bus-based communication architecture standards have emerged over the past 
several years. A communication architecture standard defi nes a specifi c data trans-
fer protocol, which in turn decides the number and functionality of the pins at 
the interface of the components. Usually, bus-based communication architecture 
standards defi ne the interface between components and the bus architecture, 
as well as the bus architecture that implements the data transfer protocol. Many 
of the bus architecture standards give designers a certain amount of freedom to 
implement the bus architecture in one of many ways. For instance, most bus-based 
communication architecture standards give designers freedom to select arbitra-
tion policies that are suitable for the specifi c SoC being designed. Socket-based 
bus interface standards on the other hand give absolute freedom to a designer, 
with respect to the choice and implementation of the bus architecture, since they 
only provide defi nitions for designing component interfaces. Any proprietary or 
standard bus architecture implementation can be selected, and components with 
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socket-based interface defi nitions can be connected to it using logic adapters. This 
allows a great deal of fl exibility for IP reuse. In this chapter, we present various 
standards used in SoCs with bus-based communication architectures. Section 3.1 
details some commonly used bus-based communication architecture standards. 
Section 3.2 describes popular socket-based bus interface standards. Finally, we 
briefl y discuss some of the standards for off-chip interconnects in Section 3.3. 

  3.1    STANDARD ON-CHIP BUS-BASED COMMUNICATION 
ARCHITECTURES

Since the early 1990s, several on-chip bus-based communication architecture 
standards have been proposed to handle the communication needs of emerg-
ing SoC designs. Some of the popular standards include ARM Microcontroller 
Bus Architecture (AMBA) versions 2.0  [1] and 3.0 [2], IBM CoreConnect  [3],
STMicroelectronics STBus  [4], Sonics SMART Interconnect  [5], OpenCores 
Wishbone  [6], and Altera Avalon  [7]. The next few sections describe these bus-based 
communication architecture standards in more detail. Since these standards are con-
stantly evolving, the descriptions of these standards presented here are meant to 
serve as exemplars, to highlight the capabilities and features required from on-chip 
communication architectures for supporting diverse SoC application requirements. 

  3.1.1   AMBA 2.0 
AMBA version 2.0  [1] is one of the most widely used on-chip communication stan-
dards today. The goal of this standard is to provide a fl exible high performance 
bus architecture specifi cation, that is technology independent, takes up minimal 
silicon area, and encourages IP reuse across designs. AMBA 2.0 defi nes three dis-
tinct bus standards: 

  1.    Advanced high performance bus (AHB), which is a high performance 
bus meant to connect high bandwidth, high clock frequency components 
such as microprocessors, DMA (Direct Memory Access) controllers, off-chip 
memory interfaces, and high bandwidth on-chip memory blocks. 

  2.    Advanced system bus (ASB), which is a light-weight alternative to the AHB 
bus, meant to connect high clock frequency components that do not need 
the advanced protocol features of AHB. 

  3.    Advanced peripheral bus (APB), is a low complexity bus optimized for 
low power operation, and meant for high latency, low bandwidth periph-
eral components such as timers, UARTs (universal asynchronous receivers/
transmitters), user interface (e.g., keyboard) controllers, etc.    

  Figure 3.1    shows an example of a typical AMBA-based system, with the buses 
arranged in a simple hierarchical bus topology (see Chapter 2). The AMBA AHB (or
ASB) bus typically acts as a backbone bus that provides a high bandwidth 
interface between the components involved in a majority of the transfers. The 
bridge component on the high performance bus is used to interface to the 
lower bandwidth APB bus, to which most of the low bandwidth peripherals are 
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connected. Note that  Fig. 3.1  shows just one of the topology arrangements possi-
ble with the AMBA 2.0 buses. Other topology confi gurations such as single shared 
bus, multi-layer AHB (or bus matrix) are also possible and will be discussed later 
in this section. Also note that the AMBA specifi cation  [1] is described at the archi-
tectural level granularity, and does not provide any information about the electri-
cal characteristics of the bus, which are dependent on the selected manufacturing 
process technology. Even the timing specifi cations are only provided in terms of 
signal behavior at the cycle level—the exact timing requirements depend on the 
selected complementary metal-oxide semiconductor (CMOS) process technol-
ogy and frequency of operation. The AMBA specifi cation  [1] defi nes all the sig-
nals, transfer modes, structural confi guration, and other bus protocol details for 
the AHB, ASB, and APB buses. Since the specifi cation recommends using the AHB 
over the ASB for all new designs, and the features of the ASB are simply a subset of 
the AHB features, we will not present details of the ASB bus. We now describe the 
specifi cations of the AHB and APB buses. 

  3.1.1.1   Advanced High Performance Bus 
The AHB bus standard describes a high performance bus that supports advanced 
features for high bandwidth, low latency data transfers. AHB can be used to con-
nect multiple master components, and supports high performance data transfer 
features such as pipelined operations, burst mode transfers, and split transactions. 
A single 32-bit address bus is used by the masters to transmit the addresses of the 
slaves required to complete the read or write data transfer requests. Since the AMBA 
specifi cation restricts all its on-chip buses to a non-tri-state implementation, the 
AHB has separate data buses for reads and writes. The data buses have a minimum
recommended width of 32 bits, but can have any values ranging through 8, 16, 32, 
64, 128, 256, 512, or 1024 bits, depending on application bandwidth requirements, 
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    A typical AMBA 2.0 system  [1]     
  Source:  ARM Inc. 
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component interface pin constraints, and the bit width of words accessed from 
memory modules (e.g., embedded DRAM).  Figure 3.2    shows the structure of a sim-
ple AHB shared bus with 3 masters and 4 slaves. As can be seen, the AHB makes use 
of a central multiplexer-based interconnection scheme, along with centralized arbiter 
and decoder modules to manage data transfers. The masters on the bus drive their 
address signals ( HADDR) and control signals (not shown in the fi gure) whenever 
they want to perform a data transfer, and the arbiter determines which of the masters 
will have its address, control, and possibly write data (or  HWDATA) signals routed 
(broadcast) to all the slaves on the bus. The decoder is used to decode the destina-
tion slave address, select the appropriate slave to receive the data transfer request, 
and route back response (and possible read data or  HRDATA) signals to the masters. 

  Figure 3.3    shows a basic data transfer on the AHB bus. An AHB transfer consists 
of an address phase that lasts for a single cycle, and a data phase, that can require 
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    AHB multiplexer interconnection scheme  [1]    
 Source:  ARM Inc.
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one or more cycles. In the fi gure, the master drives the address and control signals 
on the bus after the rising edge of the clock ( HCLK) in the address phase. The 
slave samples (i.e., reads) the address and control signals at the next rising edge 
of the clock, which marks the beginning of the data phase. In the case of a read, 
the slave drives the appropriate data onto the read data bus ( HRDATA) in this data 
phase cycle, followed by the master sampling the data off the bus on the third ris-
ing edge of the clock. Otherwise, in the case of a write, the master drives the data 
onto the write bus ( HWDATA) in the data phase, followed by the slave sampling 
the data off the bus on the third rising edge of the clock. Note that  Fig. 3.3  shows 
data on both the read and write buses for illustration purposes only (correspond-
ing to a read or a write, respectively). In practice, the read data bus will be idle on 
a write, and the write data bus will be idle during a read. 

It is possible that the slave can require more than one cycle to provide a response
to the master, either because it needs one or more cycles to read the requested 
data, or to get in a state to write data. In such cases, the slave can introduce wait 
cycles by lowering the  HREADY signal to indicate to the master that additional time 
is required to complete the transaction.  Figure 3.4    shows the case for a read (or 
write) operation, where the slave inserts two wait cycles by lowering the  HREADY  
signal for two cycles, before driving the read data onto the read data bus (or sam-
pling the write data from the write data bus). Since the address and data phases of 
a transfer occur in separate cycles, it is possible to overlap the address phase of one 
transfer with the data phase of another transfer, in the same clock period. Such 
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    Basic data transfer on AHB bus  [1]     
  Source:  ARM Inc. 
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a pipelined operation of the AHB bus, depicted in  Fig. 3.5   , allows for high perfor-
mance operation. 

In addition to the address and data phases, an arbitration phase is necessary 
for all data transfers if there is more than one master connected to a bus. The 
arbitration phase ensures that only one master gains access to the bus and pro-
ceeds with its data transfer at any given point of time.  Figure 3.6    shows the cen-
tralized arbitration scheme on an AHB bus to which three master components 
are connected. Whenever a master needs to initiate a read or write data transfer, 
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    Basic data transfer on AHB bus with slave wait states  [1]    
  Source:  ARM Inc. 
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    Pipelined data transfers on AHB bus  [1]    
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it drives the  HBUSREQ signal to the arbiter, requesting it for access to the AHB 
bus. The arbiter samples the  HBUSREQ signals from all the masters and uses its 
arbitration policy to decide which master gets granted access to the bus access. 
The AHB specifi cation does not identify a particular arbitration scheme—instead, 
a designer is given the freedom to implement any suitable scheme depending on 
the target application latency and bandwidth requirements. Once the arbitration 
scheme selects a master, the arbiter drives the  HGRANT signal to the selected 
master, indicating it has been granted access to the bus and can proceed with its 
transaction. All the other masters must wait until re-arbitration, after completion 
of the current data transfer.  Figure 3.7    shows an example of how the arbitration 
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    Arbitration on AHB bus  [1]     
  Source:  ARM Inc. 
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proceeds on an AHB bus: the master asserts the  HBUSREQ signal to request bus 
access from the arbiter, which samples the requests at the next rising clock edge, 
uses its internal arbitration scheme to select a master, and then grants it access to 
the bus by asserting the  HGRANT signal. Note that there is typically at least a one 
cycle overhead for arbitration that can increase to several cycles in the case of a 
more complex arbitration scheme, or when there are a large number of masters 
connected to the bus. Such a large overhead for a single data transfer can limit the 
performance on the bus. To alleviate this overhead, the AHB bus supports burst 
data transfers that only need to arbitrate once (at the beginning of the transac-
tion) for transferring multiple data items. 

  Figure 3.8    shows the different burst modes allowed for the AHB bus. The master 
uses the HBURST signal to indicate the size of a burst data transfer.  Incrementing 
bursts (INCR, INCR4, INCR8, and INCR16) access sequential locations, and 
the address of each transfer in the burst is simply an increment of the previ-
ous address.  Wrapping bursts are similar to incrementing bursts, but if the start
address of the data transfer is not aligned to the total number of bytes in the 
burst, then the address of the transfers in the burst will wrap when the bound-
ary is reached. For instance, a wrapping burst of length 4, transferring word-sized 
(4 byte) data items will wrap at 16 byte boundaries. So if the start address of a 
transfer is 0x64 h, then the four addresses in the burst will be 0x64 h, 0x68 h, 
0x6Ch, and 0x60 h.  Figure 3.9    presents an example of a wrapping burst of length 
4 (WRAP4). Notice the wait state inserted by the slave (by lowering the  HREADY  
signal) for the fi rst data transfer. Since the burst of word transfers will wrap at 16 
byte boundaries, the transfer to address 0x3C is followed by a transfer to address 
0x30 h. An incrementing burst of length 4 (INCR4) on the other hand would 
have continued beyond the 16 byte boundary, and would access the following 
sequence of addresses: 0x38 h, 0x3Ch, 0x40 h, and 0x44 h. 

It is possible for an AHB burst to be interrupted by the arbiter, in case a higher 
priority master needs to transfer data on the bus. If a master loses access to the 
bus in the middle of a burst, it must reassert its  HBUSREQ signal to again arbitrate 
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for access to the bus. Master and slave module AHB interfaces must be designed to 
correctly handle early burst termination. If a master requires that its burst transfer 
not be interrupted, it must assert the  HLOCK signal when requesting the bus from 
the arbiter, to indicate that the bus needs to be  locked away from other masters, 
for the duration of the burst transfer. When the arbiter sees the  HLOCK signal for 
a master request, it must ensure that no other master is granted access to the bus 
once this master is granted access to the bus and its fi rst data transfer has com-
menced. In addition to  HLOCK, there are several other control signals used during 
data transfers, such as: 

    !     HWRITE: A 1-bit signal generated by the master that indicates the transfer 
direction—a write when it is high, or a read when it is low.  

    !     HSIZE: A 3-bit signal generated by the master that indicates the size of the 
data transfer. There are 8 possible allowed values for data transfer size rang-
ing from 8 bits (000) to 1024 bits (111). This signal is particularly useful if 
the size of data being transmitted on the bus is smaller than the bus width.  

    !     HTRANS: A 2-bit signal generated by a master to indicate the type of a trans-
action. There are four types of transfers possible in AHB: (i)  NONSEQ, which 
is usually a single transfer or the fi rst transfer in a burst, (ii)  SEQ, which 
specifi es the remaining transfers in a burst, (iii)  IDLE, which indicates that 
no data transfer is required and is generally used when a master is granted 
access to the bus, but does not need to transfer any data, and (iv)  BUSY,
which indicates that the master is continuing with a burst transfer, but the 
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    Example of a burst transfer—a wrapping burst of length 4 on the AHB bus  [1]     
  Source:  ARM Inc. 
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next transfer cannot take place immediately (e.g., when the master needs 
to process a read data for multiple cycles before being ready to receive the 
next data item in the burst; or when a write data in a burst takes multiple 
cycles to be generated). 

    !     HRESP: A 2-bit signal generated by the slave that specifi es the status of a 
data transfer. If the data transfer completes successfully, an OKAY response 
is returned on these signals. Otherwise, if an error occurs (e.g., an attempt 
to write to a ROM region), an ERROR response is returned. The master can 
choose to continue a burst transfer if an error occurs in the middle of the 
burst and rectify the error afterward, or it may decide to cancel the remain-
ing transfers in the burst and handle the error immediately. The SPLIT and 
RETRY responses are used by slaves to free up the AHB bus when they are 
unable to provide the requested data immediately. The difference between 
these two responses is that when an arbiter sees a RETRY response, it 
will continue to use the normal priority scheme and grant access to the 
bus to higher priority masters, as usual; whereas on a SPLIT response, the 
arbiter adjusts the priority scheme and allows any other requesting mas-
ter (even one with a lower priority) to gain access to the bus. To complete 
a SPLIT transfer, the slave must inform the arbiter when it has the data 
available. 

    !     HPROT: A 4-bit protection signal that provides additional information about 
a data transfer. It is typically used by a component requiring some level of 
protection control, and can be used to specify, for instance, if the transfer is 
an opcode ( OPC) fetch or a data access. Other possible uses include indica-
tions for a privileged mode access or a user mode access, and specifying if a 
transfer is bufferable or cacheable.    

As mentioned above, a SPLIT transfer enables a slave to free up access to a bus, 
if it believes that the data requested from it (by the master) will not be available 
for several cycles. In such a scenario, the slave records the ID of the master from 
which the request initiated (to restart the transfer again at a later time) and asserts 
an HSPLIT signal to the arbiter. The arbiter then masks (i.e., ignores) requests from 
the master that was SPLIT, and grants other masters access to the bus. This pro-
cess is shown in  Fig. 3.10   , where a SPLIT on the second cycle causes the arbiter 
to grant bus access to another master. When the slave is ready to complete the 
transfer, it signals the arbiter and sends the ID of the master that was involved in 
the split transfer. The arbiter unmasks the master, and eventually grants the master 
access to the bus, to complete the data transfer. The entire process is transparent 
to the masters making the request. Thus SPLIT transfers allow the time that would 
have otherwise been spent waiting for the data from the slave, to be utilized in 
completing another transfer, which enables better utilization of the bus. Note that 
an AHB master can only have a single outstanding transaction at any given time. 
If more than one outstanding transaction needs to be handled by a master com-
ponent, it requires an additional set of request and grant signals for each such 
outstanding transaction. Both SPLIT and RETRY transfers can cause bus deadlocks, 
and therefore care must be taken while implementing them. 
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  AHB Bus Matrix Topology 
In addition to the basic hierarchical bus topology, where an AHB bus uses a 
bridge to interface with an APB bus, AHB bus-based communication architectures 
can have other topologies as well, such as a hierarchical bus topology with mul-
tiple AHB (and APB) buses interfacing with each other through bridges. For SoC 
designs that require very high bandwidths and require multiple concurrent data 
transfers, the hierarchical bus architecture may be insuffi cient. For such designs, 
an AHB multi-layer bus matrix  [8] topology offers a more suitable communication 
infrastructure.  Figure 3.11   (a) shows an example of a 2 master, 4 slave AHB full 
bus matrix topology, that has multiple buses in parallel, to support concurrent 
data transfers and high bandwidths. The  Input Stage is used to handle interrupted 
bursts, and to register and hold incoming transfers from masters if the destination 
slaves cannot accept them immediately. The  Decoder generates select signals for 
slaves, and also selects which control and read data inputs received from slaves 
are to be sent to the master. The  Output Stage selects the address, control and 
write data to send to a slave. It calls the  Arbiter component, which uses an arbi-
tration scheme to select the master that gets to access a slave, if there are simulta-
neous requests from several masters. Unlike in traditional hierarchical shared bus 
architectures, arbitration in a bus matrix is not centralized, but distributed so that 
every slave has its own arbitration. One drawback of the full bus matrix scheme is 
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    SPLIT transfer on the AHB bus  [1]     
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that it connects every master to every slave in the system, resulting in a very large 
number of buses (and consequently wires and bus logic components). Such a
confi guration, therefore, achieves high performance at the cost of high power con-
sumption and a larger area footprint. For systems that have less stringent perfor-
mance requirements, a partial AHB bus matrix  [8, 9]  topology can be used.  Figure 
3.11(b) shows a partial AHB bus matrix confi guration that clusters components 
onto shared buses, to reduce the number of buses in the matrix. This partial matrix 
confi guration offers less potential bandwidth due to the likelihood of data traffi c 
confl icts on the shared buses, when compared to the full bus matrix. However, 
the partial matrix confi guration consumes less power and takes up a smaller 
chip area, which is a desirable characteristic for communication architectures.
Pasricha et al.  [10] showed how a full AHB bus matrix can be reduced to a 
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partial bus matrix topology for a multiprocessor system-on-chip (MPSoC) design, 
by optimally reducing the number of buses while still meeting all application per-
formance constraints. This methodology is described in more detail in Chapter 6.   

  3.1.1.2   Advanced Peripheral Bus 
The APB bus standard defi nes a bus that is optimized for reduced interface com-
plexity and low power consumption. This bus is meant to interface with the AHB 
(via a bridge), connecting low bandwidth (or high latency) peripheral compo-
nents that do not require the advanced features of high performance buses such 
as the AHB. The APB allows only non-pipelined data transfers, and has only a single 
master—the bridge that connects the AHB bus to the APB bus. Typically, the APB 
bus operates at a much lower clock frequency (which helps reduce power con-
sumption) and has a smaller bus width, compared to the AHB bus.  Figure 3.12    
depicts a state diagram that represents the activity on an APB bus. The  IDLE state 
is the default state, in which the APB bus remains when there are no transfer 
requests from the AHB bus. When a transfer request arrives from the AHB bus via 
the AHB–APB bridge, the APB bus moves to the  SETUP state and asserts the appro-
priate slave select signal to select the slave on the APB bus that is required to 
participate in the transfer. The APB bus remains in the  SETUP state for one cycle, 
and this time is spent in decoding the address of the destination peripheral com-
ponent. The APB bus moves to the  ENABLE state on the next rising edge of the 
clock and asserts the  PENABLE signal to indicate that the transfer is ready to be 
performed. This state also typically lasts for one cycle, after which it can go back 
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    State diagram representing activity of the APB bus  [1]     
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to the SETUP stage if another transfer follows the current transfer or to the  IDLE  
state if no further transfers are required. 

  Figure 3.13    illustrates a read request as it propagates from the AHB to the APB 
bus. The top four signals belong to the AHB bus while the four signals at the bot-
tom belong to the APB bus. The master component on the AHB bus drives the 
address and control signals onto the AHB bus in the fi rst cycle. These are sampled 
by the AHB–APB bridge component on the rising edge of the next clock cycle 
(T2). Since the transfer is intended for the APB bus, the appropriate select signal 
(PSEL) is asserted and the APB bus transitions from the  IDLE state to the SETUP  
state in cycle T2. This is followed by the  ENABLE state in cycle T3, in which the 
slave receives the request and returns the read data. The returned data can usu-
ally be directly routed back to the master on the AHB bus, where it will be sam-
pled off the bus at the next rising clock edge (T4). However, for high performance 
systems, the returned data can be fi rst registered at the bridge, and then driven 
to the appropriate master in the following cycle. While this approach requires 
an extra cycle, it can allow the AHB bus to operate at a much higher clock fre-
quency, which allows an overall improvement in system performance.  Figure 3.14    
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    Read data request from the AHB to the APB bus  [1]    
 Source:   ARM Inc. 
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shows a similar scenario, for a write transfer on the APB bus. The bridge samples 
the address, control, and data signals from the master, holding these values for the 
duration of the write transfer on the APB bus (as it switches through the  SETUP  
and ENABLE  states).   

  3.1.2   AMBA 3.0 
The AMBA 3.0 bus architecture specifi cation  [2] introduces the Advanced eXen-
sible Interface (AXI) bus that extends the AHB bus with advanced features to sup-
port the next generation of high performance MPSoC designs. The goals of the AXI 
bus protocol include supporting high frequency operation without using com-
plex bridges, fl exibility in meeting the interface, and performance requirements of 
a diverse set of components, and backward compatibility with AMBA 2.0 AHB and 
APB interfaces. We now look at the AXI specifi cation in more detail ( Figure 3.15   ). 

  3.1.2.1   Advanced Exensible Interface 
The AXI bus standard proposes a burst-based, pipelined data transfer bus, similar 
to the AHB bus, but with additional advanced features and enhancements. The 
main features of AXI and its differences with the AHB standard are presented in 
 Table 3.1   , and elaborated in more detail below. 

The AXI specifi cation describes a high level channel-based architecture for 
communicating between masters and slaves on a bus. Five separate channels are 
defi ned:  read address, read data, write address, write data, and  write response.
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    Write data request from the AHB to the APB bus  [1]     
  Source:  ARM Inc. 
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Just like for the data bus in AHB, the data channel width in AXI can range from 8 
to 1024 bits. The read channels are shown in  Fig. 3.15 (a). The address and control 
information for a read transfer is sent by the master on the read channel, while 
the read data and response information from the slave is received on the read 
data channel.  Figure 3.15 (b) shows the write data channels. The address and con-
trol information for a write transfer is sent on the write address channel, while 
the write data is transmitted on the write data channel. A one byte strobe signal is 
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    AMBA AXI channel architecture: read address and read data channels 
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included for every 8 bits of write data, to indicate which bytes of the data bus are 
valid. This is useful for cases where there is a mismatch between the size of the 
data being transferred and the data bus width. A separate write response channel 
provides the slave a means to respond to write transactions. A write completion 
signal occurs once for every burst (and not for every data transfer) to indicate the 
status of the write at the slave. The fi ve separate channels provide implementation 
fl exibility to a designer and can be implemented in any one of three ways: 

  1.    Shared address bus and shared data buses (SASD): A single shared address 
bus is coupled with a bidirectional data bus that handles both reads and 
writes. Such a confi guration is typically useful for smaller, low complexity 
embedded systems.  

  2.    Shared address bus and multiple data buses (SAMD): A single shared 
address bus is coupled with separate, unidirectional read and write data 
buses. Since the address bus bandwidth is typically less than that of the data 
buses (as only one address needs to be sent for a burst data transfer), inter-
connect complexity can be reduced while still maintaining performance, 
by using a shared address bus.  

 Table 3.1    Contrasting features of AXI and AHB  

 AMBA 3.0 AXI  AMBA 2.0 AHB 

 Channel-based specification, with five 
separate channels for read address, 
read data, write address, write data, 
and write response enabling flexibility in 
implementation.

 Explicit bus-based specification, with 
single shared address bus and separate 
read and write data buses. 

 Burst mode requires transmitting address 
of only first data item on the bus. 

 Requires transmitting address of every 
data item transmitted on the bus. 

 OO transaction completion provides 
native support for multiple, outstanding 
transactions.

 Simpler SPLIT transaction scheme 
provides limited and rudimentary 
outstanding transaction completion. 

 Fixed burst mode for memory mapped I/O 
peripherals.

 No fixed burst mode. 

 Exclusive data access (semaphore 
operation) support. 

 No exclusive access support. 

 Advanced security and cache hint 
support.

 Simple protection and cache hint 
support.

 Register slice support for timing isolation.  No inherent support for timing isolation. 

 Native low-power clock control interface.  No low-power interface. 

 Default bus matrix topology support.  Default hierarchical bus topology 
support.
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  3.    Multiple address buses, multiple data buses (MAMD): A separate address 
bus for reads and writes is coupled with separate read and write data buses. 
This confi guration has the largest interconnect complexity, but also the best 
performance of the three implementation alternatives.    

The MAMD mode in particular allows multiple concurrent read and write trans-
actions to occur independent of each other, which can be very useful for high 
performance SoC designs. In contrast, AHB only explicitly supports the  SAMD  
implementation mode. 

One signifi cant difference between AXI and AHB is the way addressing is han-
dled during burst data transfers. In AHB, every data transfer in a burst requires an 
address to be transmitted on the address bus. In contrast, AXI requires the address 
of only the fi rst data item in the burst to be transmitted.  Figure 3.16   (a) shows burst 
data transfers on an AHB bus that require an address for every data item transmitted. 
Contrast this with the same scenario on an AXI bus, shown in  Fig. 3.16 (b), where 
only the address of the fi rst data item in a burst is transmitted. It is the responsi-
bility of the slave to calculate the address of the subsequent transfers in the burst. 
Because only a single address is transmitted per burst, the address buses in AXI are 
freed up to handle other transactions.  Figure 3.17    shows how read and write trans-
actions can occur simultaneously in an  SAMD implementation of AXI, because the 
address bus is freed up during a burst. The AHB in contrast must wait for a burst 
to complete before initiating another transfer, which results in under-utilization of 
its data buses. Another enhancement in AXI, compared to AHB, comes in the form 
of support for an additional burst type. AXI not only supports all the incrementing 
and wrapping burst types present in AHB, but also an additional  fi xed burst mode.
In this mode, the address of every data item transferred in a burst remains the same. 
This burst type is very useful for repeated accesses to the same location, such as for 
data transfers with an I/O peripheral FIFO (fi rst-in-fi rst-out). 
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Another important AXI feature is its support for  out-of-order (OO) transac-
tion completion which is an advanced feature that maximizes data throughput 
and improves system effi ciency. AXI masters have the ability to issue multiple out-
standing addresses, which means that transaction addresses can be issued without 
waiting for earlier transactions to complete. This is accomplished by assigned IDs 
to read and write transactions issued by the masters. The AXI specifi cation lays 
down certain guidelines to govern the ordering of transactions. Transactions from 
different masters have no ordering restrictions and can complete in any order. 
Transactions from the same master but with different ID values can complete in 
any order. However, a sequence of write transactions with the same ID value must 
complete in the same order in which the master issued them. For a sequence of 
read transactions with the same ID value, two possible scenarios exist: (i) reads 
with the same ID value are from the same slave, in which case it is the responsi-
bility of the slave to ensure that the read data returns in the same order in which 
the addresses are received; and (ii) reads with the same ID value are from differ-
ent slaves, in which case the AXI bus logic must ensure that the read data returns 
in the same order that the master issued the addresses in. 

The ability to fi nish transactions OO allows completion of transactions to faster
regions of a memory (or peripheral), without waiting for earlier transactions to 
slower regions. This feature reduces the effect of transaction latency and improves 
system performance.  Figure 3.18    shows a comparison between AHB and AXI for a 
scenario where a master must access a slow (i.e., high latency) slave.  Figure 3.18 (a) 
shows how an access to a slow slave in AHB holds up the master and the bus till 
the slave is ready to return the data. Note that using SPLIT transactions on AHB can 
free up the bus, but not the master, which is still stalled. In contrast, in the AXI case, 
as shown in  Fig. 3.18 (b), the master need not wait to get the data back from the 
slave before issuing other transactions. Both the bus and the master are freed up in 
AXI, which allows better performance, higher effi ciency, and greater bus utilization. 
Although theoretically any number of transactions can be reordered on the AXI bus, 
a practical limit is placed by the read/write data  reordering depth at the slave inter-
faces. The read or write data reordering depth of a slave is the number of addresses 
pending in the slave that can be reordered. A slave that processes all transactions 
in order is said to have a data reordering depth of 1. This reordering depth must 
be specifi ed by the designer for both reads and writes, and involves a trade-off 
between hardware complexity and parallelism in the system—a larger reordering 
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    Better utilization of data buses in AXI    
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depth requires greater hardware complexity, but also improves parallelism and pos-
sibly overall system performance. However, there is a limit beyond which increas-
ing the reordering depth for a slave does not improve performance because there 
is typically a limit to the maximum number of concurrent transfers possible in an 
application, as shown by Pasricha et al.  [11].

Other areas where AXI improves on and differs from the AHB feature set 
include: 

    !     Semaphore operations: AXI provides support for semaphore type operations 
using an exclusive access mechanism that does not require the bus to remain 
locked to a particular master for the duration of the transaction. The support 
for semaphore type operations in AXI therefore does not affect maximum 
achievable bandwidth or data access latency. In contrast, AHB does not pro-
vide any support for semaphore type operations. An exclusive access on AXI 
is initiated when a master performs an exclusive read from a slave address 
location. At some later time, the master attempts to complete the exclusive 
access by attempting to write to the same location. The exclusive write access 
is signaled by the slave as successful if no other master has written to the 
location between the read and write accesses, or as a failure if another mas-
ter has written to the location between the read and write accesses. A slave is 
required to have additional logic (such as a monitor unit for each exclusive-
capable master ID that can access it) if it supports exclusive accesses. 

    !     Cache support: AXI provides support for system level caches and other per-
formance enhancing components with the help of two 4-bit cache hint sig-
nals, one for each of the read and write channels. These cache hint signals 
provide additional information about how the transaction can be processed. 
While AHB provides support for basic cache hints (with a 2-bit signal) such 
as if data is bufferable or cacheable, AXI extends this by providing additional 
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    Transaction sequence for access to a slow slave on AHB bus 
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signals to specify write-through and write-back cache allocation strategies for 
reads and writes, as well as providing the designer the option of customizing 
the hint signals for other purposes such as fl ushing cache and page tables. 

    !     Protection support: AXI utilizes two 3-bit signals, one each for the read 
and write data channels, to provide protection against illegal transactions. 
There are three levels of protection possible, each represented by a single 
bit of the protection signals: (i)  normal or privileged access, used by cer-
tain masters to indicate their processing mode and to obtain access to spe-
cial resources in a system, since privileged accesses typically provide greater 
access within a system, (ii)  secure or non-secure accesses, used in systems 
where a greater degree of differentiation between processing modes is 
required, and (iii)  instruction or data accesses, to indicate if the transac-
tion is an instruction or a data access. In comparison, AHB provides support 
for normal/privileged accesses and instruction/data accesses, but not for 
secure/non-secure accesses.  

    !     Low power support: AXI supports an optional set of signals for low power 
operation. These signals target two classes of peripherals. The fi rst consists of 
peripherals that require a power-down sequence, and can have their clocks 
turned off (to save power) only after they enter a low power state. These 
peripherals require a signal from the system clock controller to determine 
when to begin the power-down sequence. The second type of peripherals 
are those that do not require a power-down sequence, and can assert a sig-
nal to indicate when it is acceptable to turn off their clock. AXI provides 
support for both types of signals. In contrast, AHB does not include any sig-
nals for low power peripheral operation support.  

    !     Recommended topology: The AXI specifi cation assumes a default bus matrix 
topology implementation, without any requirement for complex bridges. 
Such an implementation is in keeping with the advanced feature set of AXI, 
and is suitable for contemporary high performance designs. However, this 
does not limit AXI in any way from being used in a hierarchical bus topol-
ogy, if required. The AHB specifi cation, on the other hand, assumes a default 
hierarchical bus topology arrangement, involving an AHB bus interfacing 
with an APB bus via a bridge. This is in keeping with the comparatively less 
advanced AHB feature set, but does not limit it from being implemented in a 
bus matrix topology.  

    !     Register slice support: The clock frequency on a bus puts a limit on the length 
of its bus wires during physical layout. This is because a signal can only travel 
a fi nite distance on the chip in a single clock cycle  [12]. As the clock fre-
quency of the bus is increased, the clock cycle period (which is the inverse 
of the clock frequency) is reduced, and the distance that can be traveled by a 
signal shrinks. In fact, it can take multiple cycles for a signal to travel between 
the ends of a chip  [13] in Deep Submicron (DSM) process technologies. For 
high performance SoC designs, high clock frequencies on the bus are essen-
tial to meet performance constraints. To sustain these high bus clock frequen-
cies and ensure correct operation on long interconnects, AXI proposes using 
one or more register slices on a bus. These register slices latch signal informa-
tion coming from the source and then retransmit it toward the destination. 
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The advantage here is that the signal need only cover the distance between 
latches in a single clock cycle. Thus, by inserting register slices, timing closure 
(i.e., ensuring timing requirements of a design are met) becomes relatively 
easier. Introducing the register slices will of course increase the latency (in 
terms of number of cycles required) for communicating on the bus. However, 
the bus can now be operated at a much higher frequency (compared to a bus 
with no register slices inserted) which can improve overall system perfor-
mance. AHB, in contrast, does not provide any such means of alleviating the 
problem of meeting timing for high performance, high frequency systems.    

  AXI Bus Matrix Topology 
Just like the AHB protocol, AXI can be connected in a bus matrix topology. ARM 
distributes an AXI confi gurable interconnect (ACI) IP at the register transfer level 
(RTL) called  PL300 [30] (recently superseded by the next version— PL301 [31])
that allows designers to connect several masters and slaves together with a confi g-
urable AXI bus matrix fabric. The structure of the AXI bus matrix is somewhat sim-
ilar to that of the AHB bus matrix described earlier, but differs in its support for 
additional features of the AXI protocol such as independent control for decoupled 
read, write, and response channels, and OO transaction completion. Components 
are connected to the AXI bus matrix using interface routers. Each master is con-
nected to a slave interface router, and each slave is connected to a master inter-
face router. The interface routers are part of the AXI bus matrix fabric. These 
routers essentially consist of multiplexing and de-multiplexing elements to ensure 
appropriate connectivity with other components connected to the bus matrix. 
The select signal for each router is generated from a control block that is unique 
for each channel and interface. The control blocks store the routing information 
necessary to enforce the ordering constraints within the AXI protocol, and con-
sist of arbiters, decoders, content addressable buffers (CABs), and FIFO elements. 
The bus matrix fabric does not buffer addresses and data—slaves supporting out-
standing transactions must provide the required storage locally. Much like in the 
case of the AHB bus matrix, a full AXI bus matrix (that connects all the masters 
to all the slaves in a system) supports high bandwidth but can be prohibitively 
expensive as it requires a very large number of wires and bus logic components. 
In a lot of cases where a somewhat lower performance is acceptable, a partial AXI 
bus matrix that clusters components onto shared buses to reduce the number 
of wires and bus logic components in the matrix may be more suitable. Pasricha 
et al.  [9] showed how a partial AXI bus matrix can be automatically synthesized 
from a full AXI bus matrix for MPSoC designs. This methodology, which reduces 
the number of buses in the matrix while satisfying all application performance 
constraints, is described in more detail in Chapter 6.    

  3.1.3   IBM CoreConnect 
The IBM CoreConnect  [3] on-chip communication architecture standard is 
another popular synchronous bus-based standard that shares many similarities 
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with the AMBA standard. It defi nes three types of buses: (i)  processor local bus 
(PLB), which is a high performance bus used to connect high speed processor 
and memory components, (ii)  on-chip peripheral bus (OPB), which is used to 
connect lower performance peripheral components, and (iii)  device control reg-
ister (DCR) bus, which is a simple, high latency bus used to access the status and 
control registers of the PLB and OPB masters. The CoreConnect standard targets a 
hierarchical bus topology implementation, similar to AMBA 2.0, with the OPB and 
PLB buses interfacing with each other using a bridge as shown in  Fig. 3.19   . We 
now look at the specifi cations of the PLB, OPB, and DCR buses in more detail. 

  3.1.3.1   Processor Local Bus 
The PLB is a synchronous, high performance bus, similar in many aspects to the 
AMBA 2.0 AHB, and used to interconnect high performance processor, ASIC, and 
memory cores. The main features of PLB are summarized below: 

    !    Shared address, separate read and write data buses ( SAMD ).  
    !    Decoupled address, read data, write data buses.  
    !    Support for 32-bit address, 16, 32, 64, and 128-bit data bus widths.  
    !    Dynamic bus sizing—byte, half-word, word, and double-word transfers.  
    !    Up to 16 masters and any number of slaves. 
    !    AND–OR implementation structure.  
    !    Pipelined transfers.  
    !    Variable or fi xed length burst transfers. 
    !    Support for 16–64 byte bursts.  
    !    SPLIT transfer support.  
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    An example of CoreConnect-based SoC design  [3]     
 Reprint Courtesy of International Business Machines Corporation copyright (2001)  ©  International Business 
Machines Corporation 
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    !    Overlapped read and write transfers (up to 2 transfers per cycle). 
    !    Centralized arbiter. 
    !    Four levels of request priority for each master, programmable secondary 

arbitration. 
    !    Locked transfer support for atomic accesses. 
    !    Latency timer (to limit a master ’s tenure on PLB during bursts).    

A PLB transaction consists of two cycles: address and data, as shown in  Fig. 3.20   .
The address cycle has three phases: request, transfer, and address acknowledge. A 
PLB bus transaction is initiated when a master drives its address and control signals, 
and sends a bus access request to the arbiter, during the request phase. Once the 
arbiter grants the master access to the bus, the address and control information is 
sent to the slave in the transfer phase. The address cycle is terminated by the slave 
latching the address and control information during the acknowledge phase. The 
data cycle has two phases: transfer and acknowledge. The master drives the write 
data or samples the read data bus, during the transfer phase. Data acknowledge sig-
naling is required for every data item transmitted on the bus, during the acknowl-
edge phase. 

  Figure 3.21    shows an example of overlapped transfers on the PLB bus, where 
two masters perform a single read and a single write transfer each. Due to the decou-
pled nature of the address, read data, and write data buses, the address cycles can be 
overlapped with the read or write data cycles, and the read data cycles can be over-
lapped with the write data cycles. The split bus capability allows for the address and 
data buses to have different masters at the same time. Support for address pipelining 
allows a new transfer to begin even before the current transfer has fi nished. This 
reduces bus latency by allowing the latency associated with a new transfer request 
to be overlapped with an ongoing data transfer in the same direction. 

A simple write transfer on the PLB bus is shown in  Fig. 3.22   . A master requests 
access to the bus for a single write transfer in the fi rst cycle. Due to the slave assert-
ing its wait signal ( SI_wait) to the arbiter, which indicates that the slave is unable 
to participate in the transaction, the transaction is stalled. The arbiter continues to 
drive the address and control signals to the slave through this entire period, till it 
receives the slave address acknowledge ( SI_AddrAck) signal in the fourth cycle. The 
slave then asserts the write data acknowledge ( SI_wrDAck) and write transfer com-
plete ( SI_wrComp) signals to indicate the end of the transaction. 
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    PLB address and data cycles  [3]    
 Reprint Courtesy of International Business Machines Corporation copyright (2001)  © International Business 
Machines Corporation 
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    Example of overlapped PLB transfers  [3]     
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  Figure 3.23    illustrates a read burst transfer of length 4 on the PLB bus. The mas-
ter asserts the request for bus access to the arbiter in the fi rst cycle and is granted 
access in the same cycle. The slave receives the address and control information 
and drives the address acknowledge ( SI_addrAck) signal to the arbiter in the 
same cycle. The read data is driven onto the read data bus starting from the third 
cycle, along with a read data acknowledge ( SI_rdDAck) signal for each data item. 
The slave asserts the read transaction complete signal ( SI_rdComp) in the cycle 
prior to the last read data acknowledge ( SI_rdDAck). Note that only the address of 
the fi rst burst data needs to be transmitted by the master and it is the responsibil-
ity of the slave to internally increment the addresses sequentially for each transfer 
(just like in AMBA 3.0 AXI). 
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    Read burst transfer (of length 4) on a PLB bus  [3]    
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  Figure 3.24    shows a block diagram of the PLB arbiter that handles arbitration for 
up to eight masters. It consists of several components that are described below: 

    !     Bus control unit (BCU): This supports arbitration for masters on the PLB 
bus. Each master typically drives a 2-bit signal that encodes four priority levels 
(highest, high, low, lowest), indicating the priority of the request to the arbiter. 
The arbiter uses this information, in conjunction with the requests from other 
masters to decide which master to grant the bus access to. In case of a tie, the 
arbiter provides a choice of using either a fi xed (static) priority scheme or a 
fair, round-robin (RR) priority scheme. The BCU consists of four 32-bit DCRs to 
control and report its status: (i)  PLB arbiter control register (PACR), which is 
used to program the choice of static or RR priority schemes to be used in case 
of an arbitration tie, (ii)  PLB error address register (PEAR), which contains 
the address of the access where a bus time-out error occurred, (iii)  PLB error 
status register (PESR), which contains bits to identify time-out errors on PLB 
bus transfers, the master initiating the transfer, and the type of transfer (read 
or write), and (iv)  PLB revision ID register (PREV), that contains the revision 
ID of the PLB arbiter core. 

    !     Address Path Unit: It contains necessary MUXes to select master address 
that will be driven to the slaves. 

    !     Read Data Path Unit: It contains necessary steering logic for the read data 
bus.  

    !     Write Data Path Unit: It contains necessary steering logic for the write data 
bus.  

    !     Watchdog Timer: It provides the necessary handshake to complete a trans-
fer, if a master ’s request times out on the PLB.    
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To control the maximum latency of a particular application, PLB supports a 
master latency timer in each master. This latency timer consists of two 8-bit reg-
isters: a  Latency Count Register and a Latency Counter. The Latency Count 
Register is software programmable, with the option of hardwiring the lower 4 bits 
to ensure a minimum latency of 16 clock cycles. The Latency Counter is used as 
a clock cycle counter and is not accessible via software code. It is enabled and 
begins counting the clock cycles during burst data transfers. Once the value of 
the Latency Counter reaches the value programmed in the Latency Count Register, 
the master is required to terminate its burst if a request to the bus arrives from 
another master of equal or higher priority. This timeout mechanism ensures that 
no master remains parked on the bus for excessive periods of time, and ensures 
that high priority requests are serviced with low latency. 

  3.1.3.2   On-Chip Peripheral Bus 
The OPB is a synchronous bus used to connect high latency peripherals, and alle-
viate system performance bottlenecks by reducing the capacitive loading on the 
PLB (since connecting a large number of components on a bus results in high 
capacitive loading of the bus that increases signal propagation delay and reduces 
performance). A bridge module is used to interface the OPB bus with a PLB bus. 
The OPB is more advanced than the simple APB peripheral bus used in AMBA, as 
indicated by its main features, summarized below: 

    !    Shared address bus, multiple data buses ( SAMD ). 
    !    Up to a 64-bit address bus width. 
    !    32- or 64-bit read, write data bus width support. 
    !    Support for multiple masters. 
    !    Bus parking (or locking) for reduced transfer latency. 
    !    Sequential address transfers (burst mode). 
    !    Dynamic bus sizing—byte, half-word, word, and double-word transfers. 
    !    MUX-based (or AND–OR) structural implementation. 
    !    Single cycle data transfer between OPB masters and slaves. 
    !    16 cycle fi xed timeout provided by arbiter, to reduce transfer latency (can 

be disabled by a slave). 
    !    Slave retry support, to break possible arbitration deadlocks.    

A basic data transfer on an OPB bus is shown in  Fig. 3.25   . A master requests 
access to the bus for a read data transfer in the second cycle. The arbiter grants 
access to the bus, based on its arbitration scheme, and the master subsequently 
assumes ownership of the bus by asserting the select ( M1_select) signal. The mas-
ter then drives the address and control signals, which is sampled off the bus by 
the slave. The slave drives the read data onto the data bus and asserts the transfer 
acknowledge ( SI2_xferAck) signal in the next cycle. The master latches the data 
off the bus in the following cycle and de-asserts select to end the transaction. 

For reducing arbitration latency during multiple transfers, a master can park or 
lock itself on the OPB bus. The parked master is allowed to access the bus without 
any delay due to an arbitration cycle, as long as no request is asserted by another 
master. Like in the case of the PLB, the OPB masters capable of long parked/locked 
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access have Latency Counters to insure a low latency response for requests from 
other masters. Multiple data transfers to sequential addresses can take advantage of 
the sequential transfer mode in OPB, which is similar to a burst transfer. Unlike the 
PLB, a master on the OPB bus must drive addresses for each data item transferred 
on the bus. OPB also allows the overlapping of a new arbitration request with the 
fi nal cycle of an ongoing data transfer, to avoid wasting a cycle for bus request 
and improve performance. The arbiter module is simpler than the PLB arbiter, with 
only two registers: one for programmable priority and another for controlling bus 
parking. There is fl exibility in choosing either a fi xed (static) scheme or a fair, RR 
scheme. These options are dynamically programmable, allowing for adjustments in 
priority based on varying traffi c profi les or operation modes. The watchdog timer 
module in the arbiter implements a timeout feature if a slave does not respond to 
a master request within 16 clock cycles. If a slave must take longer to complete 
the transfer, it is allowed to inhibit the timer counter in the watchdog. 

To alleviate possible deadlock scenarios on the bus, OPB supports the slave 
retry operation. This allows an OPB slave to assert a retry signal if the slave cannot 
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    Basic read data transfer on OPB  [3]     
Reprint Courtesy of International Business Machines Corporation copyright (2001)  ©  International Business 
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perform the required bus operation at a particular instant of time. The bus master 
responds to this signal by immediately terminating its transfer and relinquishing 
control of the bus for at least one cycle, so that the arbiter can re-arbitrate the bus. 
This allows the slave a chance to access the OPB in order to resolve the deadlock 
condition. Note that this mechanism may still be insuffi cient to guarantee that all 
possible deadlock conditions will be alleviated. However, the retry operation does 
provide OPB masters with suffi cient information to detect a deadlock situation, 
and to take corrective action. 

OPB, much like PLB, also supports dynamic bus sizing which allows compo-
nents that have different data interface widths than the OPB data bus to operate 
seamlessly. When a master transfers data that is wider than the data bus width, it 
must split the transfer into two or more operations. Similarly, if a data item being 
transferred has a smaller width than the data bus width, it must be appropriately 
aligned on a subset of the bus lines. The OPB bus permits byte (8-bit), half-word 
(16-bit), full-word (32-bit), and double-word (64-bit) sized transfers. 

  3.1.3.3   Device Control Register Bus 
The DCR bus is a synchronous bus designed to transfer data between a CPU ’s
general-purpose registers (GPRs) and the device control registers (DCRs) of the 
slave components in the system. The DCR bus removes device confi guration regis-
ters from the global memory address map. It allows the lower performance status 
and control read/write transfers to occur separately, and concurrently with high 
speed transfers on the PLB and OPB buses, thus improving system response time 
and overall performance. It is assumed that in a typical SoC environment where 
DCR master and slave components are operating at different clock frequencies, 
the slower clock ’s rising edge always corresponds to the faster clock ’s rising edge. 
DCR transactions control the confi guration of on-chip peripherals such as inter-
rupt controllers, timers, arbiters, bridges, etc. The main features of the DCR bus 
are summarized below: 

    !    10-bit, up to 32-bit address bus. 
    !    32-bit read and write data buses. 
    !    4-cycle minimum read or write transfers (extendable by slave or master). 
    !    Slave bus timeout inhibit capability. 
    !    Multi-master arbitration. 
    !    Privileged and non-privileged transfers. 
    !    Daisy-chain (serial) or distributed-OR (parallel) bus topologies.    

The DCR bus consists of the address, read and write data buses, and the DCR 
read, DCR write, master ID, privilege level, timeout wait, and acknowledge signals. 
Slaves can have privileged registers that can only be accessed by privileged transac-
tions from a master. Any non-privileged transaction meant for a privileged DCR is 
ignored by the slave and results in a timeout. A typical transfer on the DCR bus is 
initiated by a master asserting the DCR read or write command signals, and driving 
the address and appropriate control signals. Slaves decode the command, address, 
privilege level, and master ID to determine whether to claim the transfer or not. 
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A slave can claim a transfer by asserting the timeout wait or acknowledge signals. 
Since requests can time out if a response is not received by the master, a slave that 
takes longer to complete the transfer must assert the timeout wait signal to prevent 
a timeout. Asserting the acknowledge signal implies that a write operation is com-
plete, or that read data has been driven onto the read data bus. If no slave responds 
to the transfer request, a timeout occurs and the master terminates the command. 

The DCR bus can be implemented by daisy-chaining the slave components 
or by creating a distributed-OR structure out of the slave devices. The daisy-chain 
approach allows for easier chip level wiring while the distributed-OR approach 
allows for easier chip level timing closure. For the case of the daisy-chain con-
fi guration, data moves along the ring-like network connecting all the slave compo-
nents, and each slave component either passes along the unmodifi ed data input, 
or puts its data onto its data bus output. In the distributed-OR implementation, 
each slave directly receives data from the master, and places its data output onto 
the system OR logic. It is possible for multiple masters to be connected to the 
DCR bus. In such a case, an arbiter is required to negotiate access to the DCR bus.   

  3.1.4   STMicroelectronics STBus 
 STMicroelectronics ’ STBus [4] on-chip communication architecture is an evolu-
tionary on-chip interconnection standard developed for microcontroller consumer 
applications such as set-top boxes, ATM networks, digital cameras, etc. It is closely 
related to the VSIA (virtual sockets interface alliance; described in Section 3.2.2) 
industry interface standard  [14] to ease compatibility and integration with third 
party IP blocks. The STBus standard defi nes three types of synchronous buses 
(or bus protocols) having varying levels of complexity in terms of performance 
and implementation: (i)  Type 1, which is the simplest bus protocol intended for 
peripheral register access, (ii)  Type 2, which is a more complex bus protocol that 
supports pipelined operations and SPLIT transactions, and (iii)  Type 3, which is 
the most advanced bus that implements OO transactions, compound operations, 
and transaction labeling/hints. These buses are implemented with a MUX-based 
structure, and can be arranged in either a shared bus, partial crossbar (partial bus 
matrix), or a full crossbar (full bus matrix) topology. We describe each of these 
bus protocols in more detail below. 

  3.1.4.1   Type 1 
The Type 1 or  peripheral STBus standard is the simplest protocol in the STBus family
that is meant to interconnect components such as general-purpose input/output 
(GPIO), UARTs, and simple controllers that require medium data-rate communi-
cation with the rest of the system. A simple handshaking mechanism is used to 
ensure correct transmission. Operations on the buses are defi ned in terms of  OPCs  
which defi ne, for instance, whether an operation is a read or a write. The Type 1 
bus supports the LOAD (read) and STORE (write) data operations, with an address 
bus size of 32 bits, and a possible data size of a byte (8-bit), half-word (16-bit), 
word (32-bit), and double-word (64-bit).  Figure 3.26    shows a simple data transfer 
on the Type 1 bus. The initiator (master) sends a data transfer request ( REQ) to 
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the target (slave) by sending the  OPC for the transfer (either read or write), the 
transfer address ( ADD), and the byte enable ( BE) to specify which bytes in the 
bus are signifi cant, based on the width of the data involved in the transfer (1–8 
bytes). The write data bus ( DATA) to send the write data (for a write data transfer). 
The slave indicates it has received the transfer request by asserting the handshake 
signal ( R_REQ), and then proceeds to return the read data on the read data bus 
(R_DATA) or write data in its address space for a write data transfer. The slave 
returns an optional response opcode ( R_OPC) to indicate any errors during the 
transaction. 

The Type 1 bus is similar to the IBM CoreConnect DCR bus, since it is also 
used to program the internal confi guration registers of components connected 
to the STBus communication architecture. A register decoder block is responsible 
for performing address decoding, data transfer routing, and arbitration (if more 
than one master is connected to the bus) for transfers on the Type 1 bus. 

  3.1.4.2   Type 2 
The Type 2 or the  basic STBus standard supports all the Type 1 functionality, and 
additionally provides support for pipelined operations, SPLIT transactions, com-
pound operations, source labeling, and some priority and labeling/hint informa-
tion. This bus protocol is targeted at high performance components. The use of 
SPLIT transactions and pipelined operation improves bus effi ciency and perfor-
mance. The Type 2 standard supports the basic LOAD (read) and STORE (write) 
operations, with an address bus size of 32 bits and allowed data bus sizes of 8, 16, 
32, 64, 128, or 256 bits. Additionally, the Type 2 standard also supports compound 
operations which are built from one or more primitives. The supported standard 
compound operations include: 

    !     READMODWRITE: An atomic operation that transfers read data from the 
slave to the master, but leaves the slave  locked until a write transfer from the 
same master completes, replacing the information at the specifi ed address in 
the slave. 
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    Basic data transfer on STBus Type 1 bus  [4]    
  Source:  STMicroelectronics 
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    !     SWAP: An atomic operation that exchanges a data value from the master 
with the data held in a specifi ed location in a slave. 

    !     FLUSH: An operation used to ensure the coherence of main memory while 
allowing local copies associated with a slave to remain coherent. The opera-
tion returns a response when any copies of the data associated with a physi-
cal address (which are held by a slave module) are coherent with the actual 
data at the physical address. The slave may retain a copy of the data.  

    !     PURGE: An operation used to ensure the coherence of main memory while 
ensuring that stale local copies are destroyed. The operation returns a 
response when any copies of the data associated with a physical address 
(which are held by a slave module) are coherent with the actual data at the 
physical address, while removing any copies of the data held by the slave. 

    !     USER: This is reserved for user defi ned operations that can implement use-
ful operations specifi c to particular applications.     

  3.1.4.3   Type 3 
The Type 3 or  advanced STBus standard supports all Type 1 and Type 2 function-
ality, but additionally supports packet shaping and OO transaction completion. 
These features make this bus protocol suitable for very high performance compo-
nents. The Type 3 supports the same basic and compound operations as the Type 
2 standard. Packet shaping allows optimum bandwidth allocation in Type 3 buses, 
with only the minimum number of clock cycles required to carry out a transaction 
being used. In Type 1 and Type 2 buses, every request requires a response, which 
wastes bandwidth. In contrast, a Type 3 requires only a single response from a slave 
for multiple write data operations by a master, or a single read request from a mas-
ter for multiple data reads from a slave. Due to this asymmetry between request 
and response phases, the bandwidth allocation in the Type 3 protocol is optimized 
compared to the Type 1 and Type 2 protocols. The use of OO transaction comple-
tion further reduces latency on the bus since a master waiting for a response from 
a slave no longer blocks access to other slaves. Transaction IDs associated with data 
transfers allow the components to have up to 16 transactions in progress. 

  3.1.4.4   STBus Components 
The STBus node shown in  Fig. 3.27    is the main component of the STBus on-chip 
communication architecture. It consists of two main blocks: the  control logic and 
the data path. The control logic is responsible for the arbitration, decoding, and 
contains other bus logic required for implementing advanced protocol features 
(such as OO transaction completion), while the data path represents the topology 
of the communication architecture, which can be a shared bus, a full crossbar, or 
a partial crossbar confi guration. Master components connect to the initiator inter-
faces, while slaves connect to the target interfaces of this node architecture. 

The control logic is responsible for arbitration, and supports several arbitration 
schemes which are described below: 

    !     Fixed priority : The priorities of the masters are static or hardwired.  
    !     Variable priority: The priorities of the masters can be dynamically changed 

during system operation by writing to special programmable priority registers
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in the node. If two or more masters have the same priority value stored in 
their registers, the master with the higher fi xed (hardwired) priority gets 
preference. 

    !     Least recently used (LRU): Masters are granted access to the bus in the 
order of the longest time since the last grant. If two or more masters have 
been waiting for the same amount of time, the master with the higher fi xed 
(hardwired) priority gets preference. 

    !     Latency-based: Each master has a register associated with it containing the 
maximum allowed latency in clock cycles. If the value is 0, then it needs 
to have zero cycle latency when a request is received, and such a master 
must be granted bus access as soon as possible. Each master also has a coun-
ter, which is loaded with its maximum latency value each time the master 
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    Block diagram of STBus node  [4]    
  Source:  STMicroelectronics 
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makes a request. At every subsequent cycle, the counter is decremented. The 
arbiter grants bus access to the master having the lowest counter value. If 
two or more masters have the same counter values, the grant will be given 
to the master with the higher fi xed (hardwired) priority. 

    !     Bandwidth-based: Each master has a register associated with it containing 
its bandwidth, expressed in terms of clock cycles per fi xed period. Each 
master also has a counter, loaded with a starting value obtained from its 
bandwidth register. At the beginning of an operation, the counter for the 
fi rst master (selected based on the hardwired priority) starts decrementing 
for the entire duration of the time slot allocated to this master. If during this 
period the fi rst master makes any requests, they are granted. If during this 
period no master makes any requests, the fi rst master eventually loses its 
slot, and the next master based on hardwired priority is selected. However, 
if during this period the fi rst master makes no requests but requests are 
received from other masters, its counter is stopped and the bus is granted 
to the next master in order of hardwired priority (whose counter subse-
quently begins to decrement since it is now using bandwidth). If a master 
consumes its bandwidth (i.e., its bandwidth counter has reached 0), it can-
not be granted bus access again till the end of the fi xed time period. This 
process continues till all masters have consumed their allocated bandwidth, 
at which point the arbitration process starts again. This scheme is similar to 
a TDMA/static-priority two level arbitration scheme. 

    !     STB: This is a hybrid of the latency-based and variable priority schemes. In its 
normal state, arbitration proceeds just like in a variable priority scheme. As in 
the latency-based scheme, masters also have an associated maximum latency 
register and counter. Each master also has an additional  latency-counter-enable  
bit. If this latency-counter-enable bit is set, and the counter value is 0, then a 
master is said to be in panic state. In the case when one or more masters are 
in a panic state, the normal variable priority scheme is overridden, and the mas-
ters in panic state are granted bus access, in the order of highest priority. 

    !     Message-based: This is a fi xed priority scheme which allows masters having 
a higher priority and a priority fl ag set, to interrupt the message transfer on 
the bus. Note that in the normal fi xed priority scheme, a message transfer 
cannot be interrupted while it is in progress.    

From the description of the supported arbitration schemes in STBus, it can be 
seen that the control unit requires several registers to hold the latency, bandwidth, 
and/or priority values for the masters in the system. In addition to the node, other 
components used in the STBus communication architecture include: 

    !     Size converters: Components used to allow communication between two 
STBus IP blocks having different data bus widths. 

    !     Type converters: Components used to allow communication between two 
STBus IPs following different STBus protocol types (e.g., between Type 1 
and Type 3). 

    !     Buffer: A FIFO-based component that is used as a retiming stage between 
two IPs following the Type 2 or Type 3 protocol. A buffer is useful to break 
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critical paths between components that are far apart from each other on the 
system fl oorplan. In this aspect, it is similar to the register slice proposed in 
AMBA 3.0 AXI.      

  3.1.5   Sonics SMART Interconnect 
The Sonics SMART Interconnect  [5] is another on-chip communication archi-
tecture standard designed to ease component interoperability and provide high 
performance for a wide range of applications. The standard comprises of three 
synchronous bus-based interconnect specifi cations which differ in their level of 
complexity and performance: (i)  SonicsMX, which is a high performance intercon-
nect fabric with advanced features; (ii)  SonicsLX, which is also a high performance 
interconnect fabric, but with less advanced features compared to SonicsMX; 
and (iii) S3220, which is a peripheral interconnect, designed to connect slower 
peripheral components. Both SonicsMX and SonicsLX natively support the open 
core protocol (OCP) version 2.0  [15] wrapper-based interface standard (described 
in Section 3.2.1). Additionally, components with AMBA 2.0 AHB and AMBA 3.0 AXI 
natives interfaces can also be plugged into these interconnection fabrics using 
pre-designed interface bridge logic components. These features are crucial in 
maximizing reuse of IP cores. Sonics SMART Interconnect provides a highly con-
fi gurable communication architecture solution for contemporary SoC designs. It 
is supported by the  SonicsStudio development environment  [5] that allows auto-
mated confi guration, data analysis, and performance verifi cation for the commu-
nication architecture. We now examine the specifi cations of the three bus-based 
interconnect fabrics that make up the Sonics SMART Interconnect, in more detail. 

  3.1.5.1   SonicsMX 
SonicsMX is the third generation of  socket-based (described in Section 3.2) syn-
chronous interconnect fabrics from Sonics, targeted at high performance, sophis-
ticated SoC applications such as WCDMA/3G wireless headsets, video game 
consoles, and portable multimedia players. Its main features are summarized 
below: 

    !    Pipelined, non-blocking, and multi-threaded communication support. 
    !    Split/outstanding transactions for high performance. 
    !    Confi gurable data bus width: 32, 64, or 128 bits. 
    !    Multiple topology support—shared bus, full crossbar, partial crossbar. 
    !    Socket-based connection support, using native OCP 2.0  [15] interface between

components and interconnect. 
    !    Bandwidth and latency-based arbitration schemes to obtain desired quality 

of service (QoS) for components threads. 
    !    Register points (RPs) for pipelining long interconnects and providing timing 

isolation. 
    !    Protection mode support. 
    !    Advanced error handling support. 
    !    Fine-grained power management support.    
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SonicsMX supports the full crossbar, partial crossbar, and shared bus intercon-
nection topology. A crossbar confi guration can have a maximum size of 8 " 8, 
with a maximum of 8 masters connected to 8 slaves. A shared bus confi guration 
can connect up to 32 components with up to 16 masters connected to 16 slaves. 
Protocol points (PPs) are used to interconnect different topology confi gurations, 
and consist of logic for frequency and data width conversion. Up to 4 crossbar 
and shared buses can be joined in a single instance of SonicsMX, to support up to 
64 cores. A single  register target (RT) component is used as interface to the inter-
nal confi guration registers of a SonicsMX instance, for any dynamic reconfi gura-
tion. Multiple SonicsMX instances (interconnected via bridges) can be used in an 
SoC design. SonicsMX makes use of  RPs to pipeline long interconnects in order 
to break long combinatorial timing paths and achieve the desired bus clock fre-
quency of operation.  RPs are essentially small FIFOs with a depth that is confi gu-
rable, to provide queuing support if needed. This is similar in concept to register 
slices in AMBA 3.0 AXI and buffers in STMicroelectronics ’ STBus. 

  Initiator (master) and target (slave) components are connected to the inter-
connect fabric (which natively support the OCP 2.0 interface) through  initia-
tor and target agents (TAs), respectively. An  agent contains bus logic such as a 
bridge to connect a component with a mismatched OCP version 1.0  [16], AMBA 
AHB [1] or AXI  [2] interface,  data width converters to handle mismatched com-
ponent and interconnect data widths,  fl ip-fl ops to adapt component timing to 
the interconnect clock frequency, and  RPs, which provide FIFO-based transaction 
buffering if required.  Figure 3.28    shows an example of a SonicsMX instance that 
consists of a crossbar topology (XB) and a shared link/bus (SL) topology inter-
connected using PP connectors. The initiators connect to the architecture via  ini-
tiator agents (IAs) while the targets connect to it via the  TA. Components with a 
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non-native (i.e., non-OCP 2.0) interface require a bridge at their respective agents. 
RPs provide FIFO buffering/queuing between the components and the intercon-
nect. An  extender link (EL) is used to connect a target (or initiator) that lies far 
away from the interconnect fabric on the system fl oorplan.  ELs are optimized to 
span large distances, and use  PP connectors to interface with the interconnection 
fabric. An  RT component is used for interfacing with the internal confi guration 
registers of the SonicsMX instance. Note that all the buffering components in the 
SonicsMX interconnect fabric can increase the transaction latency, and must be 
used judiciously. For instance, there is typically at least a one cycle penalty for 
using fl ip-fl ops,  RPs , and  PPs.

For multi-threaded components in a system, SonicsMX supports defi ning map-
pings between initiator threads and target threads. Resources within the intercon-
nect fabric such as  RPs and PPs are allocated for each of the thread mappings. 
For cases where independent resources and fl ow control is not required for 
every thread (e.g., for multi-threaded initiator components with limited concur-
rency), thread collapsing at the initiator socket is supported. This can reduce the 
overhead of allocating unnecessary resources in the interconnect fabric, without 
degrading performance. 

The arbitration schemes used in SonicsMX guarantee QoS requirements for an 
application. Three QoS levels are defi ned for use, each characterized by a different 
arbitration policy: 

  !       Weighted QoS: This mode uses a bandwidth-based arbitration scheme, 
where the available bandwidth is distributed among initiators, based on the 
ratio of bandwidth weights confi gured at each initiator agent. 

  !       Priority QoS: This mode uses two arbitration schemes. It extends the 
bandwidth-based arbitration scheme from the weighted QoS mode, by add-
ing support for static priority. One or two threads are allowed to be assigned 
a static priority instead of bandwidth weights, and always get preference over 
other threads that are allocated bandwidth weights. These threads that are 
assigned bandwidth weights may starve for bandwidth, if there is excessive 
traffi c from priority threads. The bandwidth-based weight allocation scheme 
can therefore be considered to be a kind of  best-effort bandwidth scheme. 

  !       Controlled QoS: This mode uses three arbitration schemes, which dynami-
cally switch among each other based on traffi c characteristics. In addition 
to the priority and best-effort bandwidth scheme from the priority QoS 
mode, an additional allocated bandwidth scheme is used to ensure that cer-
tain threads are guaranteed a certain bandwidth during operation.    

For power management, SonicsMX utilizes several mechanisms to reduce idle 
and active power levels. A fi ne grained internally implemented clock gating mech-
anism is used to remove the clock from inactive portions of the interconnect to 
reduce power consumption. Power management interfaces (signals) at each inter-
face socket allow its activity status to be observed externally, and enable activity-
dependent power management (e.g., waking up powered-down targets). Coarse 
grain power management is supported by using power control logic external 
to the SonicsMX instance. The external power control logic manages power by 
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removing clock or supply voltage from the entire interconnect. Every SonicsMX 
instance provides a single power management interface for the entire intercon-
nect, which allows the external power control logic to know when the clock or 
supply voltage can be restored or removed without disrupting communications. 

An optional access protection mechanism is implemented in SonicsMX to des-
ignate protected regions within the address spaces of certain targets. This mecha-
nism can dynamically specify protected region sizes and locations at runtime. The 
mechanism can defi ne access permissions as a function of which initiator can 
access a protected region, the type of transaction (read or write) being requested, 
or what state the target is currently in. Each target is allowed to have up to eight 
protection regions. 

  3.1.5.2   SonicsLX 
SonicsLX is a third generation of socket-based synchronous interconnect fabrics
from Sonics, targeted at mid-range SoC designs. It supports pipelined, multi-
threaded, and non-blocking communication on its buses. It also has support for 
SPLIT transactions to improve bus utilization. SonicsLX can be arranged in a full or 
partial crossbar topology and supports the weighted and priority QoS modes, as 
described above for SonicsMX. The SonicsLX features are a subset of the SonicsMX 
feature set.  Table 3.2    summarizes the main differences between SonicsMX and 
SonicsLX.  

  3.1.5.3   Sonics Synapse 3220 
The Sonics Synapse 3220 synchronous interconnect fabric is targeted at low band-
width, physically dispersed peripheral target (slave) cores. The main features of 
the 3220 interconnect are a subset of the SonicsMX and SonicsLX interconnect 
fabrics. Its main characteristics are summarized below: 

    !    Up to 4 OCP-compliant initiators, and 63 OCP-compliant targets. 
    !    Up to 24-bit confi gurable address bus.  
    !    Confi gurable data bus widths—8, 16, 32 bits.  
    !    Fair arbitration scheme, with high priority allowed for a single initiator 

thread.  
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  Table 3.2    Comparison of SonicsMX and SonicsLX feature set  

 Features  SonicsMX  SonicsLX 

 Data Width Conversion  Full  Full 

 Quality of Service Management  Multi-level QoS  Two level QoS 

 Advanced Power Management  Configurable  Fixed 

 Advanced Security Management  Full  Reduced 

 Interrupt and Error Management  Full  Reduced 

 Side Band Signaling Management  Full None
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    !    Power management interface. 
    !    Exclusive (semaphore) access support. 
    !    Error detection and recovery—watchdog timer to identify unresponsive 

peripherals. 
    !    Protection mode support.    

  Figure 3.29    shows some of the typical peripheral targets that are connected to 
the Synapse 3220 interconnect fabric. The fabric interfaces with the main inter-
connect fabric (SonicsMX or another proprietary interconnect) using a DMA type 
block that acts like a bridge.   

  3.1.6   OpenCores Wishbone 
The Wishbone bus-based on-chip communication architecture standard  [6] is an 
open-source standard that proposes a single, high speed synchronous bus specifi ca-
tion to connect all the components in an SoC design. Since it is open source, design-
ers can download synthesizable Wishbone RTL components available for free from 
the OpenCores website  [6]. However, due to lack of default support for advanced 
features (e.g., OO transaction completion, SPLIT transactions, power management, 
etc.), its scope is limited to small- and mid-range embedded systems. The main fea-
tures of the Wishbone high speed bus standard are summarized below: 

    !    Multiple master support. 
    !    Up to 64-bit address bus width. 
    !    Confi gurable data bus width 8- to 64-bit (expandable). 
    !    Supports single or block read/write operations. 
    !    Read–modify–write (RMW) support for semaphore type operations. 
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    Example of Synapse 3220 interconnect fabric interfacing with the rest of the system  [5]    
 Source: Sonics Inc. 
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    !    Supports point-to-point, data fl ow, shared bus, or crossbar topology.  
    !    Retry mode support.  
    !    User defi ned tags, for error signaling, cache hints, etc.  
    !    Flexible arbitration scheme (fi xed priority, RR, etc.).    

The Wishbone interface is highly confi gurable, and allows a user to customize 
tags or signals to support specifi c application requirements. Thus, designers can 
create their own customized version of the Wishbone standard to suit a particu-
lar applications need. While this customizability is desirable, it can make devel-
oping generic components (e.g., bridges to interface with other standards such 
as AMBA) more diffi cult.  Figure 3.30    shows the different possible topologies in 
which the Wishbone on-chip communication architecture can be structured. For 
very small systems, the master and slaves can be directly connected using  point-
to-point bus links, as shown in  Fig. 3.30 (a). For systems with a sequential data fl ow, 
where data fl ows from component to components, the  data fl ow topology is rec-
ommended, as shown in  Fig. 3.30 (b). Data fl ows in a pipelined manner, exploiting 
parallelism and thus speeding up execution. To interconnect several masters and 
slaves effectively and with the fewest resources, a  shared bus topology can be 
used, as shown in  Fig. 3.30 (c). The arbitration scheme of the arbiter (not shown 
in the fi gure) is left up to the system designer. The shared bus can have either a 
tri-state-based, or a MUX-based implementation. For higher performance systems, 
a crossbar topology can be used, as shown in  Fig. 3.30 (d). While this topology 
offers better performance due to higher parallelism, it requires more logic and 
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routing resources. As a rule of thumb, a crossbar switch with two masters and two 
slaves takes up twice the interconnect logic as a similar shared bus system with 
the two masters and two slaves. 

Wishbone supports the basic single read/write data transfers with handshak-
ing, and block (burst) read/write data transfers, like the other standards. Semaphore 
type operations, that allow multiple components to share common resources, are 
supported via the RMW operation. This type of operation is commonly used in disk 
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controllers, serial ports, and memories. In this operation, once an arbiter grants the 
bus to a master, no other master is allowed to access the bus till the selected master 
has read, modifi ed, and written back data to the slave. Such a  locking of the bus can 
be ineffi cient, especially if the slave takes multiple cycles to respond. More effi cient 
semaphore type operation support was discussed earlier in the context of other bus 
standards such as AMBA 3.0 AXI and STBus Type 3, where the bus need not remain 
locked for the entire duration of the semaphore operation. 

  3.1.7   Altera Avalon 
The Altera Avalon  [7] synchronous bus-based communication architecture is 
targeted at system-on-programmable-chip (SoPC) designs, and is comprised of 
two standards: Avalon memory mapped (Avalon-MM)  [32] and Avalon streaming 
(Avalon-ST)  [33] .

  3.1.7.1   Avalon-MM 
The Avalon-MM standard defi nes an interface to connect memory-mapped mas-
ter and slave peripherals such as microprocessors, UARTS, memory, timers, etc. 
Confi gurability is an important attribute of the Avalon-MM interface, and compo-
nents can choose to use a small set of signals if they only support simple trans-
fers (e.g., a simple ROM interface requiring only address, read-data, and control 
signals). Components requiring more complex transfer types will support a larger 
set of signals (e.g., high speed memory controller that supports pipelined bursts). 
The Avalon-MM signals are a superset of several other bus standards. For example, 
most Wishbone interface signals can be mapped to Avalon-MM signals types, mak-
ing it easy to include Wishbone components into Avalon-MM systems. 

Avalon-MM is implemented as a synchronous bus crossbar, as shown in  Fig. 3.31   .
The crossbar has an integrated interrupt controller, and supports optional logic to 
transfer data across multiple clock domains, and across multiple interface widths. 
Pipeline registers can be added at any point on a crossbar bus to increase the value 
of the maximum allowed clock frequency on the bus. Separate read and write data 
buses can have widths of up to 128 bits. The crossbar buses support the burst 
transfer mode to hide arbitration latency for individual transfers, as well as fi xed 
latency and variable latency pipelined reads. For the fi xed latency case, with a speci-
fi ed pipeline latency of  N, the slave must present valid read data on the  Nth rising 
clock edge after the end of the address phase.  Figure 3.32   (a) shows an example of 
pipelined read data transfers with a fi xed latency of 2 cycles. In the variable latency 
case, the slave can take an arbitrary number of cycles after the address phase to 
put the read data on the bus, as shown in  Fig. 3.32 (b). An additional signal is used by 
the slave in this case to signal to the switch fabric when valid data has been put on 
the read data bus. 

Several arbitration schemes are allowed in the Avalon-MM crossbar, such as: 

    !     Fairness-based shares: This scheme assigns each master port with an inte-
ger value of transfer shares with respect to a slave port. One share signifi es 
permission to perform one transfer. As an example, if  Master 1 is assigned 
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3 shares and  Master 2 is assigned 4 shares, then the arbiter grants  Master 1  
access for 3 transfers, followed by a grant to  Master 2 for 4 transfers. The arbi-
ter cycles through this process indefi nitely. If a master stops requesting trans-
fers before it exhausts its shares, it forfeits all of its remaining shares, and the 
arbiter grants access to another requesting master. 

    !     RR: Masters are granted access to a slave in a cyclic, RR manner, ensuring a 
fair bus access distribution among requesting masters.  

    !     RR with minimum share values: In this scheme, a slave port can defi ne a 
value for the minimum number of shares in each RR cycle. This results in 
the arbiter granting at least  N shares to any master port when it begins a 
sequence of transfers. By declaring a minimum share value  N, a slave indi-
cates that it is more effi cient at handling continuous sequential transfers of 
length N. Since burst transfers provide even higher performance for contin-
uous transfers to sequential addresses, the minimum share value does not 
apply for slave ports that support burst transfers—the burst length takes 
precedence over minimum share value.     

  3.1.7.2   Avalon-ST 
The Avalon-ST standard defi nes an interface optimized for the unidirectional fl ow 
of data, with support for multiplexed streams, packets, and DSP (digital signal pro-
cessor) data. Avalon-ST is implemented as a synchronous point-to-point commu-
nication bus. The interface signals can be used to describe traditional streaming 
interfaces that consist of a single stream of data without knowledge of channels or 
packet boundaries. The interface can also support more complex protocols such 
as burst and packet transfers with packets interleaved across multiple channels. 
Packet transfer between the source and destination components is supported by 
using three interface signals:  startofpacket, which is used by the source to indicate 
the cycle with the start of packet;  endofpacket, which indicates the cycle contain-
ing the end of the packet; and the optional  empty signal, which indicates the num-
ber of symbols that are empty during the cycles that mark the end of a packet. At 
the time of publishing of this book, Avalon-ST is a relatively new standard and its 
specifi cation document is sparse on advanced features and supported modes.    
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  3.2   SOCKET-BASED ON-CHIP BUS INTERFACE STANDARDS 
A socket-based on-chip bus interface standard defi nes the interface of a compo-
nent that connects to a bus-based communication architecture. Unlike the bus-
based communication architecture standards described in the previous section 
that defi ne the bus–component interface and the architectural implementation 
of the bus, socket-based bus interface standards only defi ne the interface and do 
not address the bus architecture implementation. The computational components 
are truly decoupled from the communication architecture and its implementation 
in this scenario.  Figure 3.33    illustrates an example of a system utilizing a socket-
based bus interface standard. The standard interface defi nitions allow compo-
nents to be designed with a standard interface, without committing to a particular 
communication architecture implementation. This improves IP reuse fl exibility, 
since components can now be connected to any of the wide array of standard 
bus-based communication architectures described previously.  Figure 3.33  shows 
how designers are free to choose any standard or proprietary bus architecture 
(e.g., AMBA, CoreConnect, STBus) to implement the actual communication primi-
tives, when using a socket-based interface (I/F) standard. The only requirement for 
seamless component and bus architecture integration in this case is  adapter logic 
components that can map the component interface to the bus architecture fab-
ric protocol. Such adapter or translation logic is not required if the bus architec-
ture implementation natively supports the socket-based interface defi nition. As an 
example, since the Sonics SMART Interconnect  [5] bus architecture fabric natively 
supports the signals in the OCP 2.0  [15] socket-based interface standard, no trans-
lation logic is required between the bus and components that have an OCP 2.0 
socket interface. 

Socket-based interface standards must be generic, comprehensive, and confi g-
urable to capture the basic functionality and advanced features supported by a 
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    Example of system implemented with socket-based interface standards    
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wide array of standard bus-based communication architectures. This ensures that 
there are no possible incompatibilities when a component with a socket-based 
interface is connected to the bus-based communication architecture that actually 
implements the communication primitives. Socket-based interface standards have 
the disadvantage of requiring adapter or translation logic at the bus–component
interface. This results in additional design time to create the adapter logic, an 
increase in chip area, and possible performance penalties due to every data trans-
fer propagating through the adapter logic that has an intrinsic delay associated 
with it. However, the adapter logic only needs to be created once and can be sub-
sequently reused in several designs. The benefi ts that accrue from using socket-
based bus interface standards such as improved IP reusability across designs and 
greater fl exibility to explore (or change) diverse bus architecture implementations 
should not be underestimated. 

Several socket-based bus interface standards have been proposed over the years. 
Some of the popular interface standards include OCP  [15], virtual component inter-
face (VCI)  [14], and device transaction level (DTL)  [17]. Because of the implementa-
tion fl exibility it offers, AMBA 3.0 AXI  [2] can also be considered to be a type of bus 
interface standard. OCP, however, is by far the most popular industry standard as far 
as socket-based bus interface specifi cations go. Because the VCI interface standard is 
a subset of the OCP, and DTL is a proprietary standard with very little publicly avail-
able information, we will only briefl y review these two interface standards. We now 
present a comprehensive overview of the OCP socket-based interface standard. 

  3.2.1   Open Core Protocol 
The OCP version 2.0  [15] socket-based bus interface standard defi nes a high per-
formance, synchronous, bus architecture-independent interface between IP cores. 
It promotes IP design reuse by allowing IP cores to be independent of the archi-
tecture and design of the systems in which they are used. It is also highly con-
fi gurable and can be optimized to use only the necessary features required for 
communicating between two components, which saves chip area. OCP essentially 
defi nes a point-to-point interface between two components, one of which must 
be a master and the other a slave. Its key features include: 

    !    Point-to-point synchronous interface.  
    !    Bus architecture independent.  
    !    Confi gurable data fl ow (address, data, control) signals for area-effi cient 

implementation.  
    !    Confi gurable sideband signals to support additional communication 

re-quirements.  
    !    Pipelined transfer support.  
    !    Burst transfer support.  
    !    OO transaction completion support.  
    !    Multiple threads.    

  Figure 3.34    shows an example of a simple SoC system consisting of three 
IP cores with OCP interfaces connected to an on-chip bus. The on-chip bus can 
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belong to any one of the standard bus-based on chip communication architec-
tures such as AMBA 2.0/3.0, CoreConnect or STBus, described in Section 3.1. A 
bus wrapper interface module is required to translate and map the OCP interface 
signals of the IP cores, to the signals of the on-chip bus. The wrapper interface 
module must act as the complementary side of the point-to-point OCP connection 
for each IP core port that is connected to the bus that is, for the case of a master 
port on the IP core, the connected wrapper module must act as a slave, and for a 
slave port on the IP core, the connected wrapper module must act as a master (as 
shown in  Fig. 3.34 ). A data transfer in such a system proceeds as follows: the mas-
ter (initiator) sends address, data and control information via the OCP interface 
signals to its corresponding slave (target) bus wrapper interface module. The inter-
face module converts the OCP request to an on-chip bus request, which is then 
transmitted to the destination. The request is received by the wrapper interface 
module at the destination, and converted from an on-chip bus request to an OCP 
request. This OCP request is then transferred from the (master) wrapper interface 
module to the (slave) destination, which takes the appropriate action. 

  3.2.1.1   OCP Signals 
The OCP interface is synchronous, with a single clock signal. Thus all its signals 
are driven with respect to, and sampled by the rising edge of the clock. The OCP 
interface signals are divided into three categories: data fl ow, sideband, and test sig-
nals. A small subset of the data fl ow signals are required to be supported by all 
OCP interfaces. The remaining data fl ow signals, as well as all the sideband and 
test signals are optional. With the exception of the clock, all OCP signals are unidi-
rectional and point-to-point. 

  Data fl ow signals consist of a set of signals, some of which are used for data 
transfers, while others are confi gured to support any additional communication 
requirements between the master and slave components. Data fl ow signals can be 
divided into the following categories: 

    !     Basic signals: These include the clock, address (separate), read and write 
data, transfer type, and handshaking/response signals between the master and 
the slave. Only the clock and transfer type signals are mandatory for an OCP 
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interface, the remaining signals being optional. The widths of the address, read 
data, and write data are confi gurable, and not limited to being multiples of 
eight. The transfer type indicates the type of data transfer operation issued by 
a thread running on a master, and can be any one of the following: 
 —    Read: Reads data from the addressed location in a slave. 
 —    Write: Writes data to the addressed location in a slave. 
 —    Idle : No operation is required to be performed.  
 —     Broadcast: Writes data to the addressed location, which may be mapped 

to more than one slave. 
 —     Exclusive read: Reads from a location in a slave and locks it, preventing 

other masters from writing to the location (exclusive access). The loca-
tion is unlocked after a write to it from the original master that caused 
the lock to be set.  

 —     Linked read: Reads data from the addressed location in a slave, and sets a 
reservation in a monitor for the corresponding thread, for the addressed 
location. Read or write requests from other masters to the reserved loca-
tion are not blocked from proceeding, but may clear the reservation.  

 —     Non-posted write: Writes data to the addressed location in a slave, unlock-
ing the location if it was locked by an exclusive read, and clearing any 
reservations set by other threads.  

 —     Conditional write: Only writes to the addressed location in a slave if a 
reservation is set for the corresponding thread. Also clears all reservations 
on the location. If no reservation is present for the corresponding thread, 
no write is performed, no reservations are cleared, and a FAIL response is 
returned.    

The handshaking signals are used by the master and the slave to synchronize 
data transfers, and the response signals are used by the slave to signal whether a 
request is valid or if an error occurred. 

    !     Simple extensions: These include signals to indicate the address region (e.g., 
register or memory), BEs for partial transfers and core-specifi c confi gurable 
signals that send additional information with the transfer request, read data, 
write data, and the response from the slave. The confi gurable signals can 
transmit information about data byte parity, error correction code values, 
FIFO full or empty status, and cacheable storage attributes.  

    !     Burst extensions: These signals are used to support burst transfers. They 
specify details about the data burst, such as 
 —   whether it is a precise length or unknown length burst;  
 —   burst length (for a precise length burst);  
 —    wrapping, incrementing, exclusive-OR (used by some processors for 

critical-word fi rst cache line fi ll from wide and slow memory systems) or 
streaming (fi xed address) burst mode; 

 —    packing or non-packing mode – for the scenario where data is transferred 
between OCP interfaces having different widths, the packing mode aggre-
gates data when translating from a narrow to wide OCP interface, while 
the non-packing mode performs stripping when translating from a wide 
to narrow OCP interface;  

3.2 Socket-Based On-Chip Bus Interface Standards
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 —    minimum number of transfers to be kept together as an atomic unit when 
interleaving requests from different masters onto a single thread at the 
slave; 

 —    whether a single request is suffi cient for multiple data transfers, or if a 
request needs to be sent for every data transfer in the burst; 

 —   the last request, write data, or response in a burst. 
    !     Tag extensions: These signals are used to assign tags (or IDs) to OCP trans-

fers to enable OO responses and to indicate which transfers should be pro-
cessed in order. 

    !     Thread extensions: These signals are used to assign IDs to threads in the 
master and slave, and for a component to indicate which threads are busy 
and unable to accept any new requests or responses.          

  Sideband signals are optional OCP signals that are not part of the data fl ow 
phases, and can change independent of the request/response fl ow (but are still 
synchronous to the rising edge of the clock). These signals are used to transmit 
control information such as interrupts, resets, errors, and other component-
specifi c information. They are also used to exchange status and control informa-
tion between a component and the rest of the system. Finally, the OCP  Test signals 
are also a set of optional signals, and are responsible for supporting scan, clock 
control, and IEEE 1149.1 (JTAG), for testing purposes. 

Some of the OCP signals can be grouped together because they must be active 
at the same time. The OCP data fl ow signals can be combined into three  groups of 
request, response, and data handshake signals. These groups in turn map one-on-
one onto their respective protocol  phases—request, response, and data handshake 
phases. An OCP  transfer consists of several phases, and different types of trans-
fers are made up of different combinations of phases. Every transfer must have a 
request phase. Read type requests always have a response phase, but write type 
transfers can be confi gured to with or without the response and data handshake 
phases. Generally, in an OCP read or write transfer, the request phase must pre-
cede the data handshake phase which in turn must precede the response phase. 
Burst  transactions are comprised of a set of transfers linked together, and having 
a defi ned address sequence and number of transfers. This hierarchy of elements 
that are part of OCP is summarized in  Fig. 3.35   .

  3.2.1.2   OCP Profiles 
As mentioned earlier, the OCP interface can be confi gured to meet the require-
ments of the communicating components. The OCP 2.0 specifi cation  [15] intro-
duces several pre-defi ned  profi les that defi ne a confi guration of an OCP interface. 
These profi les consist of OCP interface signals, specifi c protocol features, and 
application guidelines. Two sets of profi les are provided: 

  1.    Native OCP profi les: These profi les are meant for new components imple-
menting native OCP interfaces. There are three profi les defi ned in this set: 
   !      Block data fl ow profi le: Master type (read-only, read–write, or write-only) 

interface for components that require exchanging data blocks with memory.
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This profi le is useful for managing pipelined access of defi ned-length traf-
fi c (e.g., MPEG macro-blocks) to and from memory.  

   !      Sequential undefi ned length data fl ow profi le: Master type (read-only, 
read–write, or write-only) interface for cores that communicate data 
streams with memory.  

   !      Register access profi le: Supports programmable register interfaces across 
a wide range of IP cores, such as simple peripherals, DMA, or register-
controlled processing engines. Offers a control processor the ability to 
program the functionality of an attached component.  

  2.    Bridging profi les: These profi les are meant to simplify or automate the cre-
ation of bridges between OCP and other bus protocol interfaces. There are 
three profi les in this set:  
   !      Simple H-bus profi le: Intended to provide a connection through an exter-

nal bridge to a CPU with a non-OCP interface (e.g., ARM9 processor [34] 
with AMBA 2.0 AHB native interface). This profi le thus allows creation of 
OCP master wrappers to native interfaces of simple CPU type masters 
with multiple-request/multiple-data, read and write transactions. 

   !      X-bus packet write profi le: Supports cacheable and non-cacheable instruc-
tion and data write traffi c between a CPU and the memories and register 
interfaces of other slaves. Allows creation of OCP master wrappers to native 
interfaces of CPU type masters (e.g., ARM11 CPU master with AMBA 3.0 AXI 
native interface) with single-request/multiple-data, write-only transactions. 

   !      X-bus packet read profi le: Supports cacheable and non-cacheable instruc-
tion and data read traffi c between a CPU and the memories and register 
interfaces of other slaves. Allows creation of OCP master wrappers for 
native interfaces of CPU type masters (e.g., ARM11 CPU [35] master with 
AMBA 3.0 AXI native interface) with single-request multiple-data, read-
only transactions.    

These profi les are useful in several ways such as simplifying the task of integrat-
ing OCP components from different vendors, reducing the learning curve when 
applying OCP for standard purposes, simplifying logic needed to bridge an OCP 
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…

 FIGURE 3.35 

    Hierarchy of elements that compose the OCP  [15]     
 Source: OCP-IP 
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component with another communication interface standard, improving compo-
nent maintenance, and easing test bench creation.  Figure 3.36    shows an example 
of an SoC design using the two types of profi les: the CPU and the CPU subsys-
tem make use of the bridging profi les, whereas the rest of the components use 
the native OCP profi les. The  X-bus packet read and X-bus packet write profi les 
used by the CPU (that might internally support a native AMBA 3.0 AXI interface, 
for instance) support cacheable and non-cacheable instruction and data traffi c 
between the memories and register interfaces of other slaves. The CPU bus subsys-
tem (which might consist of a native AMBA 2.0 AHB interface, for instance) con-
nects to the OCP-based interconnect using the  H-bus profi le, through an external 
bridge. The MPEG2 decoder component uses multiple OCP interfaces. It has two 
OCP master interfaces that make use of the  block data fl ow profi le that is suitable 
for managing pipelined access of defi ned-length traffi c (e.g., MPEG macro-blocks) 
to and from memory. The reason for using two master interfaces is to improve 
parallelism and achieve higher performance. The decoder also has an OCP slave 
interface that uses the  register access profi le, to allow the CPU to program its 
operation. The DMA and media controllers also have OCP slave interfaces that use 
the register access profi le for the same purpose. The DMA controller has an OCP 
master interface that can use either a  block data fl ow profi le or an OO system 
interface profi le (TBD—to be defi ned in future revisions  [15]) depending on the 
amount of parallelism required. The media controller has an OCP master interface 
that uses the sequential undefi ned length data fl ow profi le which is a good fi t 
for the controller because it needs to communicate a data stream with a mem-
ory-based buffer. Finally, the shared synchronous dynamic random access memory 
(SDRAM) controller optimizes bank and page accesses to SDRAM and can maxi-
mize performance (and minimize latency) by reordering requests. Therefore its 
slave OCP interface uses the  OO memory interface profi le (TBD—to be defi ned 
in future revisions  [15]).   
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 FIGURE 3.36 

    Example of SoC using several OCP profiles  [15]    
Source: OCP-IP
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  3.2.2   VSIA Virtual Component Interface 
The virtual socket interface alliance (VSIA) VCI  [14] is another point-to-point, syn-
chronous, socket-based bus interface standard. It defi nes three types of interfaces 
having varying levels of complexity: 

  1.    Peripheral VCI (PVCI): Defi nes a simple handshake interface for data trans-
fers, with support for burst transfers, address bus widths up to 64 bits, and 
data bus widths up to 32 bits.  

  2.    Basic VCI (BVCI): Superset of PVCI; adds support for SPLIT transactions, 
additional burst modes (e.g., wrapped, fi xed), additional data transfer modes 
(e.g., locked/exclusive read), and data bus widths up to 128 bits.  

  3.    Advanced VCI (AVCI): Superset of BVCI; adds additional data transfer modes 
(e.g., new wrap, defi ned transfer modes), and support for advanced features 
such as OO transaction completion and multiple threads.    

As can be seen, each of the interfaces described above is an enhanced and 
enriched version of the previous one. The interfaces proposed by the AMBA APB, 
AHB, and AXI bus architecture standards can be considered as somewhat analo-
gous to the Peripheral, Basic, and AVCI interfaces, respectively. VCI actually shares 
many parallels with the OCP 2.0 socket-based interface standard. Unlike OCP 2.0, 
however, the VCI interface only contains data fl ow signals and does not address 
issues pertaining to test and control. Since the data fl ow signals in the VCI inter-
face are quite similar to the OCP 2.0 interface signals (although AVCI has some 
additional features not found in OCP 2.0; however these have yet to be tested 
in silicon or verifi ed in any form), OCP 2.0 is generally considered a functional 
superset of VCI.  

  3.2.3   Philips Device Transaction Level Protocol 
The Philips DTL standard  [17] defi nes another point-to-point, synchronous data
transfer protocol. The DTL interface supports all the basic signals for single 
and block (or burst) data transfers, error signaling, and subword operations. 
Additionally, an extended DTL interface protocol specifi cation defi nes optional 
application (or domain) specifi c extensions to the basic protocol. These exten-
sions include signals for: 

    !     Addressing modes: Wrapped, fi xed, or decrementing addresses for block 
transfers.  

    !     2-D block operations: Useful when operating on data stored in memory that 
represents a large 2-D area such as a frame buffer, and smaller 2-D accesses 
(such as a JPEG 8 " 8 block) are required.  

    !     Secure operations : To indicate if a particular transaction is secure or not.  
    !     Buffer management: To allow a component to request a fl ush of a write 

buffer, or to request notifi cation when a certain data element reaches its 
destination.    

3.2 Socket-Based On-Chip Bus Interface Standards
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Four major applications or OCP-like profi les related to traffi c types are supported 
by DTL. Each of these four profi les has requirements for signals that must be 
implemented at the component interfaces. These profi les are presented below: 

  1.    Memory-mapped input/output (MMIO): For low bandwidth and latency 
critical control traffi c. 

  2.    Memory-mapped block data (MMBD): For moving a block of data between 
a CPU (or any other component) and memory. Examples include cache 
line fi lls or cache line write-back on a CPU. This type of traffi c may be both 
bandwidth and latency critical. 

  3.    Memory-mapped streaming data (MMSD): For moving a sequence of data 
items between components and memory. Such traffi c is usually bandwidth 
critical, while latency may be less important. 

  4.    Peer-to-peer streaming data (PPSD): For moving a sequence of data items 
between two components. Like with the MMSD case, such traffi c is usually 
bandwidth critical, while latency may be less important.    

DTL is a proprietary interface standard (unlike OCP 2.0 and VCI which are open
standards) developed by Philips, and has been used in the popular Philips 
Nexperia platform  [29]. Although currently support for some of the more 
advanced features such as SPLIT or OO transaction completion, semaphore type 
operations, cache coherency, and read buffer management is not present, it is 
planned to be incorporated in future revisions of the DTL specifi cation  [17].  

  3.3   DISCUSSION: OFF-CHIP BUS ARCHITECTURE STANDARDS 
While the focus of this book is on on-chip bus-based communication architec-
tures, we include a brief discussion of off-chip bus architecture standards here for 
the sake of completeness. Off-chip buses are used to connect an SoC with exter-
nal components, the most common of which are off-chip DRAM memory compo-
nents such as synchronous dynamic random access memory (SDRAM), dual data 
rate DRAM (DDR DRAM), and Rambus DRAM (RDRAM). While on-chip embed-
ded DRAM is beginning to become more ubiquitous in SoCs, it is more expen-
sive. Applications with large memory requirements still rely on cheaper off-chip 
memories to meet storage requirements. An important motivation for the design 
of off-chip interconnects to connect an SoC with off-chip memory is the need to 
reduce pin counts, because a large number of pins can signifi cantly increase pack-
aging costs and system complexity. Therefore, unlike on-chip buses that make use 
of unidirectional multiplexed or AND–OR implementations, off-chip buses prefer 
bidirectional tri-state implementations to reduce pin counts. 

Several off-chip, shared bus standards such as S-100  [18], PC-AT  [19], Multi-Bus 
(II) [20], VME  [20], PCI  [21], and PCI-X (PCI Extended)  [22] have been proposed 
and used in designs. PCI has undoubtedly been the most popular standard in this 
category, with almost the entire software infrastructure of the computer industry 
tied to the PCI interconnect model. However, these shared, parallel off-chip inter-
connects have inherent limitations such as crosstalk, excessive circuit capacitive 
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loading, delays due to capacitive loads, high power dissipation, signal skew effects 
due to large distances covered, and reliability issues. As performance requirements 
of applications increase, higher bus clock speeds and shrinking process technol-
ogy make crosstalk and capacitive delays more signifi cant, and limit the maximum 
bus clock speed achievable. To alleviate the problems faced by shared parallel 
interconnects, switched parallel interconnect standards such as HyperTransport 
 [23]  and RapidIO [24] have been proposed, which use narrow, point-to-point 
connections. HyperTransport, for instance, supports narrower widths between 2 
and 32 bits, and higher clock frequencies up to 800  MHz. These switched, point-
to-point parallel interconnects solve the electrical loading, speed, and reliability 
issues of shared parallel interconnects. However, crosstalk and signal skew are still 
a problem. Switched serial interconnect standards such as PCIe (PCI Express)  [25]  
and Infi niband  [26] use a single signal for transmission and can achieve very high 
speeds, without suffering from any crosstalk effects. PCIe is fast becoming one of 
the most dominant off-chip standards in system design, especially because of its 
support for legacy PCI infrastructure. The emerging trend of using optical inter-
connects instead of copper-cabling for chip-to-chip interconnection is also well 
suited to a serial communication approach. The interested reader is directed to 
surveys of off-chip communication architectures by Mayhew and Krishnan  [27]  
and Sassone  [28]  for related discussions on this topic.  

  3.4   SUMMARY 
In this chapter, we presented the prevailing standards for on-chip communication 
architectures. Standards are essential in order to promote IP reuse and reduce the 
design time of the increasingly complex SoC designs today. On-chip bus-based 
communication architecture standards defi ne the interface signals for components, 
as well as bus logic components such as arbiters, decoders, and bridges that are 
needed to implement the features of the proposed standard. We looked at some 
of the popular on-chip bus architecture standards such as ARM ’s AMBA 2.0 and 
3.0, IBM ’s CoreConnect, STMicroelectronics ’ STBus, Sonics ’ SMART Interconnect, 
OpenCores ’ Wishbone, and Altera ’s Avalon. Another set of standards focuses on 
defi ning the component interface, but not the architecture implementation (which 
is left to the designer). These are the socket-based bus interface standards. Since 
these standards only defi ne the component interface, the designer is free to use 
either a proprietary, custom bus architecture implementation, or any one of the 
bus architecture standards described above, such as AMBA 2.0/3.0 or CoreConnect. 
Socket-based bus interface standards require additional adapter logic to interface 
components to non-native bus architectures, and this can increase area, cost, and 
delay. However, the benefi ts of improved IP reusability across designs and greater 
fl exibility to explore (or change) diverse bus architecture implementations is also 
substantial. We described some of the popular socket-based bus interface standards 
such as OCP, VCI, and DTL in this chapter. Finally, we briefl y covered popular off-
chip buses and standards which are used to connect SoCs to external DRAM mem-
ory blocks and other SoCs. 

3.4 Summary
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With a background on bus-based communication architectures in the last 
chapter (Chapter 2), and a description of prevalent communication architecture 
standards in this chapter, we now proceed to address the important problem of 
understanding the on-chip communication architecture design space, to aid in 
selecting the best communication architecture confi guration for an application. 
The next chapter (Chapter 4) presents models for the performance estimation of 
communication architectures. These models capture details of the communica-
tion architecture design space and allow designers to estimate the performance 
of different communication architecture confi gurations. The subsequent chapter 
(Chapter 5) presents models for power estimation of communication architec-
tures that allow designers to know more about the power characteristics of dif-
ferent communication architecture confi gurations. These performance and power 
models for communication architectures are used as part of various techniques 
(presented in Chapter 6) to select, confi gure and design a communication archi-
tecture that meets the requirements of a given application.       

  Brief Discussion: Evolution of On-Chip Communication Protocols

As the trend for SoCs moves toward multiple processors on a chip, on-chip com-
munication protocols are continuously evolving. Most of the popular commu-
nication architecture (e.g., AMBA) and socket-based standards (e.g., OCP) have 
evolved over the last few years to accommodate the need for high performance 
and customizable on-chip data communication. Going forward, these standards 
will likely continue to evolve further, to handle the many needs of multiprocessor 
SoC (MPSoC) designs. Support for cache coherence mechanisms will be impor-
tant in the next generation communication protocols, as multiple processors will 
frequently access shared memories both on and off the chip. The excessive power 
consumption of complex communication architectures will also necessitate 
more explicit support for dynamic power management, to switch off parts of the 
communication architecture fabric when not in use via power/clock gating. 
Finally, the number of on-chip communication standards has been growing over 
the past few years, and will possibly continue to grow in the coming years, requir-
ing more emphasis on techniques to handle interface mismatches. Some recent 
research in the area of handling interface mismatches between different protocols 
is presented in Chapter 9.     
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