
43

CHAPTER

System-on-chip (SoC) designs typically have several different types of components
such as processors, memories, custom hardware, peripherals, and external inter-
face IP (intellectual property) blocks that need to communicate with each other.
In SoC design houses, some of these components might be designed from scratch,
while others are reused from previous designs or procured from external IP ven-
dors. Each of these components has an interface to the outside world consisting
of a set of pins that are responsible for sending/receiving addresses, data, and con-
trol information to/from other components. The choice of pins at the interface is
governed by the particular bus protocol of the communication architecture. In
order to seamlessly integrate all these components into an SoC design, it is nec-
essary to have some kind of a standard interface defi nition for the components.
Without a standard interface defi nition, the component interfaces will not be
compatible with the bus architecture implementation, and consequently will not
function correctly. In such a scenario, the components will require the design of
logic wrappers at their interfaces (more details in Chapter 9) to correctly inter-
face with the bus architecture being used. These logic wrappers, however, require
additional area on the chip and can be time consuming to design and verify.

To speed up SoC integration and promote IP reuse over several designs, sev-
eral bus-based communication architecture standards have emerged over the past
several years. A communication architecture standard defi nes a specifi c data trans-
fer protocol, which in turn decides the number and functionality of the pins at
the interface of the components. Usually, bus-based communication architecture
standards defi ne the interface between components and the bus architecture,
as well as the bus architecture that implements the data transfer protocol. Many
of the bus architecture standards give designers a certain amount of freedom to
implement the bus architecture in one of many ways. For instance, most bus-based
communication architecture standards give designers freedom to select arbitra-
tion policies that are suitable for the specifi c SoC being designed. Socket-based
bus interface standards on the other hand give absolute freedom to a designer,
with respect to the choice and implementation of the bus architecture, since they
only provide defi nitions for designing component interfaces. Any proprietary or
standard bus architecture implementation can be selected, and components with

 On-Chip Communication
Architecture Standards 3

44 CHAPTER 3 On-Chip Communication Architecture Standards

socket-based interface defi nitions can be connected to it using logic adapters. This
allows a great deal of fl exibility for IP reuse. In this chapter, we present various
standards used in SoCs with bus-based communication architectures. Section 3.1
details some commonly used bus-based communication architecture standards.
Section 3.2 describes popular socket-based bus interface standards. Finally, we
briefl y discuss some of the standards for off-chip interconnects in Section 3.3.

 3.1 STANDARD ON-CHIP BUS-BASED COMMUNICATION
ARCHITECTURES

Since the early 1990s, several on-chip bus-based communication architecture
standards have been proposed to handle the communication needs of emerg-
ing SoC designs. Some of the popular standards include ARM Microcontroller
Bus Architecture (AMBA) versions 2.0 [1] and 3.0 [2], IBM CoreConnect [3],
STMicroelectronics STBus [4], Sonics SMART Interconnect [5], OpenCores
Wishbone [6], and Altera Avalon [7]. The next few sections describe these bus-based
communication architecture standards in more detail. Since these standards are con-
stantly evolving, the descriptions of these standards presented here are meant to
serve as exemplars, to highlight the capabilities and features required from on-chip
communication architectures for supporting diverse SoC application requirements.

 3.1.1 AMBA 2.0
AMBA version 2.0 [1] is one of the most widely used on-chip communication stan-
dards today. The goal of this standard is to provide a fl exible high performance
bus architecture specifi cation, that is technology independent, takes up minimal
silicon area, and encourages IP reuse across designs. AMBA 2.0 defi nes three dis-
tinct bus standards:

 1. Advanced high performance bus (AHB), which is a high performance
bus meant to connect high bandwidth, high clock frequency components
such as microprocessors, DMA (Direct Memory Access) controllers, off-chip
memory interfaces, and high bandwidth on-chip memory blocks.

 2. Advanced system bus (ASB), which is a light-weight alternative to the AHB
bus, meant to connect high clock frequency components that do not need
the advanced protocol features of AHB.

 3. Advanced peripheral bus (APB), is a low complexity bus optimized for
low power operation, and meant for high latency, low bandwidth periph-
eral components such as timers, UARTs (universal asynchronous receivers/
transmitters), user interface (e.g., keyboard) controllers, etc.

 Figure 3.1 shows an example of a typical AMBA-based system, with the buses
arranged in a simple hierarchical bus topology (see Chapter 2). The AMBA AHB (or
ASB) bus typically acts as a backbone bus that provides a high bandwidth
interface between the components involved in a majority of the transfers. The
bridge component on the high performance bus is used to interface to the
lower bandwidth APB bus, to which most of the low bandwidth peripherals are

45

connected. Note that Fig. 3.1 shows just one of the topology arrangements possi-
ble with the AMBA 2.0 buses. Other topology confi gurations such as single shared
bus, multi-layer AHB (or bus matrix) are also possible and will be discussed later
in this section. Also note that the AMBA specifi cation [1] is described at the archi-
tectural level granularity, and does not provide any information about the electri-
cal characteristics of the bus, which are dependent on the selected manufacturing
process technology. Even the timing specifi cations are only provided in terms of
signal behavior at the cycle level—the exact timing requirements depend on the
selected complementary metal-oxide semiconductor (CMOS) process technol-
ogy and frequency of operation. The AMBA specifi cation [1] defi nes all the sig-
nals, transfer modes, structural confi guration, and other bus protocol details for
the AHB, ASB, and APB buses. Since the specifi cation recommends using the AHB
over the ASB for all new designs, and the features of the ASB are simply a subset of
the AHB features, we will not present details of the ASB bus. We now describe the
specifi cations of the AHB and APB buses.

 3.1.1.1 Advanced High Performance Bus
The AHB bus standard describes a high performance bus that supports advanced
features for high bandwidth, low latency data transfers. AHB can be used to con-
nect multiple master components, and supports high performance data transfer
features such as pipelined operations, burst mode transfers, and split transactions.
A single 32-bit address bus is used by the masters to transmit the addresses of the
slaves required to complete the read or write data transfer requests. Since the AMBA
specifi cation restricts all its on-chip buses to a non-tri-state implementation, the
AHB has separate data buses for reads and writes. The data buses have a minimum
recommended width of 32 bits, but can have any values ranging through 8, 16, 32,
64, 128, 256, 512, or 1024 bits, depending on application bandwidth requirements,

High performance
ARM processor

High bandwidth
on-chip RAM

High bandwidth
external memory

interface

AHB or ASB

AHB to APB bridge
or

ASB to APB bridge

DMA bus
master

UART Timer

PIOKeypad

APB

B
R
I
D
G
E

AMBA AHB AMBA ASB AMBA APB

* High performance
* Pipelined operation
* Multiple bus masters
* Burst transfers
* Split transactions

* High performance
* Pipelined operation
* Multiple bus masters

* Low power
* Latched address and control
* Simple interface
* Suitable for many peripherals

 FIGURE 3.1

 A typical AMBA 2.0 system [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

46 CHAPTER 3 On-Chip Communication Architecture Standards

component interface pin constraints, and the bit width of words accessed from
memory modules (e.g., embedded DRAM). Figure 3.2 shows the structure of a sim-
ple AHB shared bus with 3 masters and 4 slaves. As can be seen, the AHB makes use
of a central multiplexer-based interconnection scheme, along with centralized arbiter
and decoder modules to manage data transfers. The masters on the bus drive their
address signals (HADDR) and control signals (not shown in the fi gure) whenever
they want to perform a data transfer, and the arbiter determines which of the masters
will have its address, control, and possibly write data (or HWDATA) signals routed
(broadcast) to all the slaves on the bus. The decoder is used to decode the destina-
tion slave address, select the appropriate slave to receive the data transfer request,
and route back response (and possible read data or HRDATA) signals to the masters.

 Figure 3.3 shows a basic data transfer on the AHB bus. An AHB transfer consists
of an address phase that lasts for a single cycle, and a data phase, that can require

Master
#1

Master
#2

Master
#3

HADDR

HADDR

HWDATA

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HADDR

HWDATA

HRDATA

HRDATA

HADDR

HWDATA

HRDATA

Slave
#1

Slave
#2

Slave
#3

Slave
#4

Decoder

Arbiter

Address and
control mux

Write data mux

Read data mux

 FIGURE 3.2

 AHB multiplexer interconnection scheme [1]
 Source: ARM Inc.

47

one or more cycles. In the fi gure, the master drives the address and control signals
on the bus after the rising edge of the clock (HCLK) in the address phase. The
slave samples (i.e., reads) the address and control signals at the next rising edge
of the clock, which marks the beginning of the data phase. In the case of a read,
the slave drives the appropriate data onto the read data bus (HRDATA) in this data
phase cycle, followed by the master sampling the data off the bus on the third ris-
ing edge of the clock. Otherwise, in the case of a write, the master drives the data
onto the write bus (HWDATA) in the data phase, followed by the slave sampling
the data off the bus on the third rising edge of the clock. Note that Fig. 3.3 shows
data on both the read and write buses for illustration purposes only (correspond-
ing to a read or a write, respectively). In practice, the read data bus will be idle on
a write, and the write data bus will be idle during a read.

It is possible that the slave can require more than one cycle to provide a response
to the master, either because it needs one or more cycles to read the requested
data, or to get in a state to write data. In such cases, the slave can introduce wait
cycles by lowering the HREADY signal to indicate to the master that additional time
is required to complete the transaction. Figure 3.4 shows the case for a read (or
write) operation, where the slave inserts two wait cycles by lowering the HREADY
signal for two cycles, before driving the read data onto the read data bus (or sam-
pling the write data from the write data bus). Since the address and data phases of
a transfer occur in separate cycles, it is possible to overlap the address phase of one
transfer with the data phase of another transfer, in the same clock period. Such

Address phase Data phase

HCLK

HADDR[31:0]

HWDATA[31:0]

Control

HREADY

HRDATA[31:0]

Control

Data
(A)

Data
(A)

A

 FIGURE 3.3

 Basic data transfer on AHB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

48 CHAPTER 3 On-Chip Communication Architecture Standards

a pipelined operation of the AHB bus, depicted in Fig. 3.5 , allows for high perfor-
mance operation.

In addition to the address and data phases, an arbitration phase is necessary
for all data transfers if there is more than one master connected to a bus. The
arbitration phase ensures that only one master gains access to the bus and pro-
ceeds with its data transfer at any given point of time. Figure 3.6 shows the cen-
tralized arbitration scheme on an AHB bus to which three master components
are connected. Whenever a master needs to initiate a read or write data transfer,

Address phase Data phase

HCLK

HADDR[31:0]

Control

HWDATA[31:0]

HRDATA[31:0]

HREADY

A

Control

Data
(A)

Data
(A)

 FIGURE 3.4

 Basic data transfer on AHB bus with slave wait states [1]
 Source: ARM Inc.

HCLK

HADDR[31:0]

HWDATA[31:0]

HRDATA[31:0]

Control

HREADY

A B C

Control
(A)

Control
(B)

Control
(C)

Data
(A)

Data
(A)

Data
(B)

Data
(B)

Data
(C)

Data
(C)

 FIGURE 3.5

 Pipelined data transfers on AHB bus [1]
 Source: ARM Inc.

49

it drives the HBUSREQ signal to the arbiter, requesting it for access to the AHB
bus. The arbiter samples the HBUSREQ signals from all the masters and uses its
arbitration policy to decide which master gets granted access to the bus access.
The AHB specifi cation does not identify a particular arbitration scheme—instead,
a designer is given the freedom to implement any suitable scheme depending on
the target application latency and bandwidth requirements. Once the arbitration
scheme selects a master, the arbiter drives the HGRANT signal to the selected
master, indicating it has been granted access to the bus and can proceed with its
transaction. All the other masters must wait until re-arbitration, after completion
of the current data transfer. Figure 3.7 shows an example of how the arbitration

HMASTER[3:0]

HGRANT_M1 HADDR_M1[31:0]

HADDR to all slavesHADDR_M2[31:0]

HADDR_M3[31:0]

HBREQ_M1

HGRANT_M2

HBREQ_M2

HGRANT_M3

HBREQ_M3

Arbiter
Master

#1

Master
#2

Master
#3

Address and
control

multiplexer

 FIGURE 3.6

 Arbitration on AHB bus [1]
 Source: ARM Inc.

HCLK

HBUSREQx

HGRANTx

HMASTER[3:0]

HADDR[31:0]

HWDATA[31:0]

HREADY

T1 T2 T3 T4 T6 T7 T8 T9T5
Master asserts

request
A number of cycles later

arbiter asserts grant
Master drives address after both
HGRANT and HREADY are high

Address sampled and data
starts when HREADY high

#1

A A + 4

Data (A)

 FIGURE 3.7

 Cost of arbitration on AHB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-based Communication Architectures

50 CHAPTER 3 On-Chip Communication Architecture Standards

proceeds on an AHB bus: the master asserts the HBUSREQ signal to request bus
access from the arbiter, which samples the requests at the next rising clock edge,
uses its internal arbitration scheme to select a master, and then grants it access to
the bus by asserting the HGRANT signal. Note that there is typically at least a one
cycle overhead for arbitration that can increase to several cycles in the case of a
more complex arbitration scheme, or when there are a large number of masters
connected to the bus. Such a large overhead for a single data transfer can limit the
performance on the bus. To alleviate this overhead, the AHB bus supports burst
data transfers that only need to arbitrate once (at the beginning of the transac-
tion) for transferring multiple data items.

 Figure 3.8 shows the different burst modes allowed for the AHB bus. The master
uses the HBURST signal to indicate the size of a burst data transfer. Incrementing
bursts (INCR, INCR4, INCR8, and INCR16) access sequential locations, and
the address of each transfer in the burst is simply an increment of the previ-
ous address. Wrapping bursts are similar to incrementing bursts, but if the start
address of the data transfer is not aligned to the total number of bytes in the
burst, then the address of the transfers in the burst will wrap when the bound-
ary is reached. For instance, a wrapping burst of length 4, transferring word-sized
(4 byte) data items will wrap at 16 byte boundaries. So if the start address of a
transfer is 0x64 h, then the four addresses in the burst will be 0x64 h, 0x68 h,
0x6Ch, and 0x60 h. Figure 3.9 presents an example of a wrapping burst of length
4 (WRAP4). Notice the wait state inserted by the slave (by lowering the HREADY
signal) for the fi rst data transfer. Since the burst of word transfers will wrap at 16
byte boundaries, the transfer to address 0x3C is followed by a transfer to address
0x30 h. An incrementing burst of length 4 (INCR4) on the other hand would
have continued beyond the 16 byte boundary, and would access the following
sequence of addresses: 0x38 h, 0x3Ch, 0x40 h, and 0x44 h.

It is possible for an AHB burst to be interrupted by the arbiter, in case a higher
priority master needs to transfer data on the bus. If a master loses access to the
bus in the middle of a burst, it must reassert its HBUSREQ signal to again arbitrate

HBURST[2:0] Type Description

000

001

010

011

100

101

110

111

SINGLE Single transfer

INCR

WRAP4

INCR4

WRAP8

INCR8

WRAP16

INCR16

Incrementing burst of unspecified length

4-beat wrapping burst

4-beat incrementing burst

8-beat incrementing burst

8-beat wrapping burst

16-beat wrapping burst

16-beat incrementing burst

 FIGURE 3.8

 Different burst modes on the AHB bus [1]
 Source: ARM Inc.

51

for access to the bus. Master and slave module AHB interfaces must be designed to
correctly handle early burst termination. If a master requires that its burst transfer
not be interrupted, it must assert the HLOCK signal when requesting the bus from
the arbiter, to indicate that the bus needs to be locked away from other masters,
for the duration of the burst transfer. When the arbiter sees the HLOCK signal for
a master request, it must ensure that no other master is granted access to the bus
once this master is granted access to the bus and its fi rst data transfer has com-
menced. In addition to HLOCK, there are several other control signals used during
data transfers, such as:

 ! HWRITE: A 1-bit signal generated by the master that indicates the transfer
direction—a write when it is high, or a read when it is low.

 ! HSIZE: A 3-bit signal generated by the master that indicates the size of the
data transfer. There are 8 possible allowed values for data transfer size rang-
ing from 8 bits (000) to 1024 bits (111). This signal is particularly useful if
the size of data being transmitted on the bus is smaller than the bus width.

 ! HTRANS: A 2-bit signal generated by a master to indicate the type of a trans-
action. There are four types of transfers possible in AHB: (i) NONSEQ, which
is usually a single transfer or the fi rst transfer in a burst, (ii) SEQ, which
specifi es the remaining transfers in a burst, (iii) IDLE, which indicates that
no data transfer is required and is generally used when a master is granted
access to the bus, but does not need to transfer any data, and (iv) BUSY,
which indicates that the master is continuing with a burst transfer, but the

T1 T2 T3 T4 T5 T6 T7

HCLK

HTRANS[1:0]

HADDR[31:0]

HWDATA[31:0]

HRDATA[31:0]

HBURST[2:0]

HWRITE
HSIZE[2:0]

HPROT[3:0]

HREADY

NONSEQ SEQ SEQ SEQ

0 × 38 0 × 3C 0 × 30 0 × 34

WRAP4

Control for burst
size = Word

Data
(0 × 38)

Data
(0 × 38)

Data
(0 ×3 0)

Data
(0 × 34)

Data
(0 × 3C)

Data
(0 × 3C)

Data
(0 × 30)

Data
(0 × 34)

 FIGURE 3.9

 Example of a burst transfer—a wrapping burst of length 4 on the AHB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

52 CHAPTER 3 On-Chip Communication Architecture Standards

next transfer cannot take place immediately (e.g., when the master needs
to process a read data for multiple cycles before being ready to receive the
next data item in the burst; or when a write data in a burst takes multiple
cycles to be generated).

 ! HRESP: A 2-bit signal generated by the slave that specifi es the status of a
data transfer. If the data transfer completes successfully, an OKAY response
is returned on these signals. Otherwise, if an error occurs (e.g., an attempt
to write to a ROM region), an ERROR response is returned. The master can
choose to continue a burst transfer if an error occurs in the middle of the
burst and rectify the error afterward, or it may decide to cancel the remain-
ing transfers in the burst and handle the error immediately. The SPLIT and
RETRY responses are used by slaves to free up the AHB bus when they are
unable to provide the requested data immediately. The difference between
these two responses is that when an arbiter sees a RETRY response, it
will continue to use the normal priority scheme and grant access to the
bus to higher priority masters, as usual; whereas on a SPLIT response, the
arbiter adjusts the priority scheme and allows any other requesting mas-
ter (even one with a lower priority) to gain access to the bus. To complete
a SPLIT transfer, the slave must inform the arbiter when it has the data
available.

 ! HPROT: A 4-bit protection signal that provides additional information about
a data transfer. It is typically used by a component requiring some level of
protection control, and can be used to specify, for instance, if the transfer is
an opcode (OPC) fetch or a data access. Other possible uses include indica-
tions for a privileged mode access or a user mode access, and specifying if a
transfer is bufferable or cacheable.

As mentioned above, a SPLIT transfer enables a slave to free up access to a bus,
if it believes that the data requested from it (by the master) will not be available
for several cycles. In such a scenario, the slave records the ID of the master from
which the request initiated (to restart the transfer again at a later time) and asserts
an HSPLIT signal to the arbiter. The arbiter then masks (i.e., ignores) requests from
the master that was SPLIT, and grants other masters access to the bus. This pro-
cess is shown in Fig. 3.10 , where a SPLIT on the second cycle causes the arbiter
to grant bus access to another master. When the slave is ready to complete the
transfer, it signals the arbiter and sends the ID of the master that was involved in
the split transfer. The arbiter unmasks the master, and eventually grants the master
access to the bus, to complete the data transfer. The entire process is transparent
to the masters making the request. Thus SPLIT transfers allow the time that would
have otherwise been spent waiting for the data from the slave, to be utilized in
completing another transfer, which enables better utilization of the bus. Note that
an AHB master can only have a single outstanding transaction at any given time.
If more than one outstanding transaction needs to be handled by a master com-
ponent, it requires an additional set of request and grant signals for each such
outstanding transaction. Both SPLIT and RETRY transfers can cause bus deadlocks,
and therefore care must be taken while implementing them.

53

 AHB Bus Matrix Topology
In addition to the basic hierarchical bus topology, where an AHB bus uses a
bridge to interface with an APB bus, AHB bus-based communication architectures
can have other topologies as well, such as a hierarchical bus topology with mul-
tiple AHB (and APB) buses interfacing with each other through bridges. For SoC
designs that require very high bandwidths and require multiple concurrent data
transfers, the hierarchical bus architecture may be insuffi cient. For such designs,
an AHB multi-layer bus matrix [8] topology offers a more suitable communication
infrastructure. Figure 3.11 (a) shows an example of a 2 master, 4 slave AHB full
bus matrix topology, that has multiple buses in parallel, to support concurrent
data transfers and high bandwidths. The Input Stage is used to handle interrupted
bursts, and to register and hold incoming transfers from masters if the destination
slaves cannot accept them immediately. The Decoder generates select signals for
slaves, and also selects which control and read data inputs received from slaves
are to be sent to the master. The Output Stage selects the address, control and
write data to send to a slave. It calls the Arbiter component, which uses an arbi-
tration scheme to select the master that gets to access a slave, if there are simulta-
neous requests from several masters. Unlike in traditional hierarchical shared bus
architectures, arbitration in a bus matrix is not centralized, but distributed so that
every slave has its own arbitration. One drawback of the full bus matrix scheme is

T1 T2 T3 T4 T5

Slave
signals

split

Arbiter
changes

grant

New master
drives

address

HCLK

HGRANT

HTRAN[1:0]

HADDR[31:0]

HBURST[2:0]
HWRITE

HSIZE[2:0]
HPROT[3:0]

HREADY

HRESP[1:0]

NONSEQ NONSEQSEQ IDLE

A A + 4 B

Control (A) Control (B)

SPLIT SPLIT OKAY

 FIGURE 3.10

 SPLIT transfer on the AHB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

54 CHAPTER 3 On-Chip Communication Architecture Standards

that it connects every master to every slave in the system, resulting in a very large
number of buses (and consequently wires and bus logic components). Such a
confi guration, therefore, achieves high performance at the cost of high power con-
sumption and a larger area footprint. For systems that have less stringent perfor-
mance requirements, a partial AHB bus matrix [8, 9] topology can be used. Figure
3.11(b) shows a partial AHB bus matrix confi guration that clusters components
onto shared buses, to reduce the number of buses in the matrix. This partial matrix
confi guration offers less potential bandwidth due to the likelihood of data traffi c
confl icts on the shared buses, when compared to the full bus matrix. However,
the partial matrix confi guration consumes less power and takes up a smaller
chip area, which is a desirable characteristic for communication architectures.
Pasricha et al. [10] showed how a full AHB bus matrix can be reduced to a

S1

S2

MEM1

MEM2

!P1

!P2

Decode

Decode

Input
stage

Input
stage

Masters Matrix Arbiter

Output
stage

Slaves

Arbiter

Output
stage

Arbiter

Output
stage

Arbiter

Output
stage

 FIGURE 3.11(a)

 An example of a 2 master, 4 slave AHB: full bus matrix topology

S1

S2

MEM1

MEM2

!P1

!P2

Decode

Decode

Input
stage

Input
stage

Masters Matrix

Arbiter
Output
stage

Slaves

Arbiter
Output
stage

 FIGURE 3.11(b)

 Partial bus matrix topology

55

partial bus matrix topology for a multiprocessor system-on-chip (MPSoC) design,
by optimally reducing the number of buses while still meeting all application per-
formance constraints. This methodology is described in more detail in Chapter 6.

 3.1.1.2 Advanced Peripheral Bus
The APB bus standard defi nes a bus that is optimized for reduced interface com-
plexity and low power consumption. This bus is meant to interface with the AHB
(via a bridge), connecting low bandwidth (or high latency) peripheral compo-
nents that do not require the advanced features of high performance buses such
as the AHB. The APB allows only non-pipelined data transfers, and has only a single
master—the bridge that connects the AHB bus to the APB bus. Typically, the APB
bus operates at a much lower clock frequency (which helps reduce power con-
sumption) and has a smaller bus width, compared to the AHB bus. Figure 3.12
depicts a state diagram that represents the activity on an APB bus. The IDLE state
is the default state, in which the APB bus remains when there are no transfer
requests from the AHB bus. When a transfer request arrives from the AHB bus via
the AHB–APB bridge, the APB bus moves to the SETUP state and asserts the appro-
priate slave select signal to select the slave on the APB bus that is required to
participate in the transfer. The APB bus remains in the SETUP state for one cycle,
and this time is spent in decoding the address of the destination peripheral com-
ponent. The APB bus moves to the ENABLE state on the next rising edge of the
clock and asserts the PENABLE signal to indicate that the transfer is ready to be
performed. This state also typically lasts for one cycle, after which it can go back

No transfer

No transfer

Transfer

Transfer

ENABLE
PSELx = 1

PENABLE = 1

SETUP
PSELx = 1

PENABLE = 0

IDLE
PSELx = 0

PENABLE = 0

 FIGURE 3.12

 State diagram representing activity of the APB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

56 CHAPTER 3 On-Chip Communication Architecture Standards

to the SETUP stage if another transfer follows the current transfer or to the IDLE
state if no further transfers are required.

 Figure 3.13 illustrates a read request as it propagates from the AHB to the APB
bus. The top four signals belong to the AHB bus while the four signals at the bot-
tom belong to the APB bus. The master component on the AHB bus drives the
address and control signals onto the AHB bus in the fi rst cycle. These are sampled
by the AHB–APB bridge component on the rising edge of the next clock cycle
(T2). Since the transfer is intended for the APB bus, the appropriate select signal
(PSEL) is asserted and the APB bus transitions from the IDLE state to the SETUP
state in cycle T2. This is followed by the ENABLE state in cycle T3, in which the
slave receives the request and returns the read data. The returned data can usu-
ally be directly routed back to the master on the AHB bus, where it will be sam-
pled off the bus at the next rising clock edge (T4). However, for high performance
systems, the returned data can be fi rst registered at the bridge, and then driven
to the appropriate master in the following cycle. While this approach requires
an extra cycle, it can allow the AHB bus to operate at a much higher clock fre-
quency, which allows an overall improvement in system performance. Figure 3.14

T1 T2 T3 T4 T5

HADDR

HWRITE

HRDATA

HREADY

PADDR

PWRITE

PSEL

PENABLE

PRDATA

Addr 1

Addr 1

Data 1

Data 1

 FIGURE 3.13

 Read data request from the AHB to the APB bus [1]
 Source: ARM Inc.

57

shows a similar scenario, for a write transfer on the APB bus. The bridge samples
the address, control, and data signals from the master, holding these values for the
duration of the write transfer on the APB bus (as it switches through the SETUP
and ENABLE states).

 3.1.2 AMBA 3.0
The AMBA 3.0 bus architecture specifi cation [2] introduces the Advanced eXen-
sible Interface (AXI) bus that extends the AHB bus with advanced features to sup-
port the next generation of high performance MPSoC designs. The goals of the AXI
bus protocol include supporting high frequency operation without using com-
plex bridges, fl exibility in meeting the interface, and performance requirements of
a diverse set of components, and backward compatibility with AMBA 2.0 AHB and
APB interfaces. We now look at the AXI specifi cation in more detail (Figure 3.15).

 3.1.2.1 Advanced Exensible Interface
The AXI bus standard proposes a burst-based, pipelined data transfer bus, similar
to the AHB bus, but with additional advanced features and enhancements. The
main features of AXI and its differences with the AHB standard are presented in
 Table 3.1 , and elaborated in more detail below.

The AXI specifi cation describes a high level channel-based architecture for
communicating between masters and slaves on a bus. Five separate channels are
defi ned: read address, read data, write address, write data, and write response.

HADDR

HWRITE

HWDATA

HREADY

PADDR

PWRITE

PSEL

PENABLE

PWDATA

T1 T2 T3 T4 T5 T6

Addr 1

Addr 1

Data 1

Data 1

 FIGURE 3.14

 Write data request from the AHB to the APB bus [1]
 Source: ARM Inc.

3.1 Standard On-Chip Bus-Based Communication Architectures

58 CHAPTER 3 On-Chip Communication Architecture Standards

Just like for the data bus in AHB, the data channel width in AXI can range from 8
to 1024 bits. The read channels are shown in Fig. 3.15 (a). The address and control
information for a read transfer is sent by the master on the read channel, while
the read data and response information from the slave is received on the read
data channel. Figure 3.15 (b) shows the write data channels. The address and con-
trol information for a write transfer is sent on the write address channel, while
the write data is transmitted on the write data channel. A one byte strobe signal is

Read address channel

Read data channel

Address
and

control

Master
interface

Read
data

Read
data

Read
data

Read
data

Slave
interface

 FIGURE 3.15(a)

 AMBA AXI channel architecture: read address and read data channels

Read address channel

Write data channel

Write response channel

Address
and

control

Master
interface

Write
data

Write
data

Write
data

Write
data

Slave
interface

Write
response

 FIGURE 3.15(b)

 Write address, write data, and write response channels [2]
 Source: ARM Inc.

59

included for every 8 bits of write data, to indicate which bytes of the data bus are
valid. This is useful for cases where there is a mismatch between the size of the
data being transferred and the data bus width. A separate write response channel
provides the slave a means to respond to write transactions. A write completion
signal occurs once for every burst (and not for every data transfer) to indicate the
status of the write at the slave. The fi ve separate channels provide implementation
fl exibility to a designer and can be implemented in any one of three ways:

 1. Shared address bus and shared data buses (SASD): A single shared address
bus is coupled with a bidirectional data bus that handles both reads and
writes. Such a confi guration is typically useful for smaller, low complexity
embedded systems.

 2. Shared address bus and multiple data buses (SAMD): A single shared
address bus is coupled with separate, unidirectional read and write data
buses. Since the address bus bandwidth is typically less than that of the data
buses (as only one address needs to be sent for a burst data transfer), inter-
connect complexity can be reduced while still maintaining performance,
by using a shared address bus.

 Table 3.1 Contrasting features of AXI and AHB

 AMBA 3.0 AXI AMBA 2.0 AHB

 Channel-based specification, with five
separate channels for read address,
read data, write address, write data,
and write response enabling flexibility in
implementation.

 Explicit bus-based specification, with
single shared address bus and separate
read and write data buses.

 Burst mode requires transmitting address
of only first data item on the bus.

 Requires transmitting address of every
data item transmitted on the bus.

 OO transaction completion provides
native support for multiple, outstanding
transactions.

 Simpler SPLIT transaction scheme
provides limited and rudimentary
outstanding transaction completion.

 Fixed burst mode for memory mapped I/O
peripherals.

 No fixed burst mode.

 Exclusive data access (semaphore
operation) support.

 No exclusive access support.

 Advanced security and cache hint
support.

 Simple protection and cache hint
support.

 Register slice support for timing isolation. No inherent support for timing isolation.

 Native low-power clock control interface. No low-power interface.

 Default bus matrix topology support. Default hierarchical bus topology
support.

3.1 Standard On-Chip Bus-Based Communication Architectures

60 CHAPTER 3 On-Chip Communication Architecture Standards

 3. Multiple address buses, multiple data buses (MAMD): A separate address
bus for reads and writes is coupled with separate read and write data buses.
This confi guration has the largest interconnect complexity, but also the best
performance of the three implementation alternatives.

The MAMD mode in particular allows multiple concurrent read and write trans-
actions to occur independent of each other, which can be very useful for high
performance SoC designs. In contrast, AHB only explicitly supports the SAMD
implementation mode.

One signifi cant difference between AXI and AHB is the way addressing is han-
dled during burst data transfers. In AHB, every data transfer in a burst requires an
address to be transmitted on the address bus. In contrast, AXI requires the address
of only the fi rst data item in the burst to be transmitted. Figure 3.16 (a) shows burst
data transfers on an AHB bus that require an address for every data item transmitted.
Contrast this with the same scenario on an AXI bus, shown in Fig. 3.16 (b), where
only the address of the fi rst data item in a burst is transmitted. It is the responsi-
bility of the slave to calculate the address of the subsequent transfers in the burst.
Because only a single address is transmitted per burst, the address buses in AXI are
freed up to handle other transactions. Figure 3.17 shows how read and write trans-
actions can occur simultaneously in an SAMD implementation of AXI, because the
address bus is freed up during a burst. The AHB in contrast must wait for a burst
to complete before initiating another transfer, which results in under-utilization of
its data buses. Another enhancement in AXI, compared to AHB, comes in the form
of support for an additional burst type. AXI not only supports all the incrementing
and wrapping burst types present in AHB, but also an additional fi xed burst mode.
In this mode, the address of every data item transferred in a burst remains the same.
This burst type is very useful for repeated accesses to the same location, such as for
data transfers with an I/O peripheral FIFO (fi rst-in-fi rst-out).

A11 A12 A13 A14 A21 A22 A23 D31

D23D22D21D14D13D12D11 D31DATA

ADDRESS

 FIGURE 3.16(a)

 Burst addressing modes for AMBA 2.0 AHB bus

ADDRESS

DATA

A11

D11 D12 D13 D23 D31D14 D21 D22

A21 D31

 FIGURE 3.16(b)

 AMBA 3.0 AXI bus

61

Another important AXI feature is its support for out-of-order (OO) transac-
tion completion which is an advanced feature that maximizes data throughput
and improves system effi ciency. AXI masters have the ability to issue multiple out-
standing addresses, which means that transaction addresses can be issued without
waiting for earlier transactions to complete. This is accomplished by assigned IDs
to read and write transactions issued by the masters. The AXI specifi cation lays
down certain guidelines to govern the ordering of transactions. Transactions from
different masters have no ordering restrictions and can complete in any order.
Transactions from the same master but with different ID values can complete in
any order. However, a sequence of write transactions with the same ID value must
complete in the same order in which the master issued them. For a sequence of
read transactions with the same ID value, two possible scenarios exist: (i) reads
with the same ID value are from the same slave, in which case it is the responsi-
bility of the slave to ensure that the read data returns in the same order in which
the addresses are received; and (ii) reads with the same ID value are from differ-
ent slaves, in which case the AXI bus logic must ensure that the read data returns
in the same order that the master issued the addresses in.

The ability to fi nish transactions OO allows completion of transactions to faster
regions of a memory (or peripheral), without waiting for earlier transactions to
slower regions. This feature reduces the effect of transaction latency and improves
system performance. Figure 3.18 shows a comparison between AHB and AXI for a
scenario where a master must access a slow (i.e., high latency) slave. Figure 3.18 (a)
shows how an access to a slow slave in AHB holds up the master and the bus till
the slave is ready to return the data. Note that using SPLIT transactions on AHB can
free up the bus, but not the master, which is still stalled. In contrast, in the AXI case,
as shown in Fig. 3.18 (b), the master need not wait to get the data back from the
slave before issuing other transactions. Both the bus and the master are freed up in
AXI, which allows better performance, higher effi ciency, and greater bus utilization.
Although theoretically any number of transactions can be reordered on the AXI bus,
a practical limit is placed by the read/write data reordering depth at the slave inter-
faces. The read or write data reordering depth of a slave is the number of addresses
pending in the slave that can be reordered. A slave that processes all transactions
in order is said to have a data reordering depth of 1. This reordering depth must
be specifi ed by the designer for both reads and writes, and involves a trade-off
between hardware complexity and parallelism in the system—a larger reordering

D11 D12 D13 D21 D23 D31

AR11 AR21 AR31AW11 AW21 AW31

D11 D12 D13 D14 D21 D22 D31 D32

ADDRESS

RDATA

WDATA

D14 D22

 FIGURE 3.17

 Better utilization of data buses in AXI

3.1 Standard On-Chip Bus-based Communication Architectures

62 CHAPTER 3 On-Chip Communication Architecture Standards

depth requires greater hardware complexity, but also improves parallelism and pos-
sibly overall system performance. However, there is a limit beyond which increas-
ing the reordering depth for a slave does not improve performance because there
is typically a limit to the maximum number of concurrent transfers possible in an
application, as shown by Pasricha et al. [11].

Other areas where AXI improves on and differs from the AHB feature set
include:

 ! Semaphore operations: AXI provides support for semaphore type operations
using an exclusive access mechanism that does not require the bus to remain
locked to a particular master for the duration of the transaction. The support
for semaphore type operations in AXI therefore does not affect maximum
achievable bandwidth or data access latency. In contrast, AHB does not pro-
vide any support for semaphore type operations. An exclusive access on AXI
is initiated when a master performs an exclusive read from a slave address
location. At some later time, the master attempts to complete the exclusive
access by attempting to write to the same location. The exclusive write access
is signaled by the slave as successful if no other master has written to the
location between the read and write accesses, or as a failure if another mas-
ter has written to the location between the read and write accesses. A slave is
required to have additional logic (such as a monitor unit for each exclusive-
capable master ID that can access it) if it supports exclusive accesses.

 ! Cache support: AXI provides support for system level caches and other per-
formance enhancing components with the help of two 4-bit cache hint sig-
nals, one for each of the read and write channels. These cache hint signals
provide additional information about how the transaction can be processed.
While AHB provides support for basic cache hints (with a 2-bit signal) such
as if data is bufferable or cacheable, AXI extends this by providing additional

D11 D12

A11 A12 A13 A14 A21 A22 A23 D31ADDRESS

DATA

 FIGURE 3.18(a)

 Transaction sequence for access to a slow slave on AHB bus

A11 A21 D31

D13D12D31D23D22D21 D11 D14

ADDRESS

DATA

 FIGURE 3.18(b)

 AXI bus

63

signals to specify write-through and write-back cache allocation strategies for
reads and writes, as well as providing the designer the option of customizing
the hint signals for other purposes such as fl ushing cache and page tables.

 ! Protection support: AXI utilizes two 3-bit signals, one each for the read
and write data channels, to provide protection against illegal transactions.
There are three levels of protection possible, each represented by a single
bit of the protection signals: (i) normal or privileged access, used by cer-
tain masters to indicate their processing mode and to obtain access to spe-
cial resources in a system, since privileged accesses typically provide greater
access within a system, (ii) secure or non-secure accesses, used in systems
where a greater degree of differentiation between processing modes is
required, and (iii) instruction or data accesses, to indicate if the transac-
tion is an instruction or a data access. In comparison, AHB provides support
for normal/privileged accesses and instruction/data accesses, but not for
secure/non-secure accesses.

 ! Low power support: AXI supports an optional set of signals for low power
operation. These signals target two classes of peripherals. The fi rst consists of
peripherals that require a power-down sequence, and can have their clocks
turned off (to save power) only after they enter a low power state. These
peripherals require a signal from the system clock controller to determine
when to begin the power-down sequence. The second type of peripherals
are those that do not require a power-down sequence, and can assert a sig-
nal to indicate when it is acceptable to turn off their clock. AXI provides
support for both types of signals. In contrast, AHB does not include any sig-
nals for low power peripheral operation support.

 ! Recommended topology: The AXI specifi cation assumes a default bus matrix
topology implementation, without any requirement for complex bridges.
Such an implementation is in keeping with the advanced feature set of AXI,
and is suitable for contemporary high performance designs. However, this
does not limit AXI in any way from being used in a hierarchical bus topol-
ogy, if required. The AHB specifi cation, on the other hand, assumes a default
hierarchical bus topology arrangement, involving an AHB bus interfacing
with an APB bus via a bridge. This is in keeping with the comparatively less
advanced AHB feature set, but does not limit it from being implemented in a
bus matrix topology.

 ! Register slice support: The clock frequency on a bus puts a limit on the length
of its bus wires during physical layout. This is because a signal can only travel
a fi nite distance on the chip in a single clock cycle [12]. As the clock fre-
quency of the bus is increased, the clock cycle period (which is the inverse
of the clock frequency) is reduced, and the distance that can be traveled by a
signal shrinks. In fact, it can take multiple cycles for a signal to travel between
the ends of a chip [13] in Deep Submicron (DSM) process technologies. For
high performance SoC designs, high clock frequencies on the bus are essen-
tial to meet performance constraints. To sustain these high bus clock frequen-
cies and ensure correct operation on long interconnects, AXI proposes using
one or more register slices on a bus. These register slices latch signal informa-
tion coming from the source and then retransmit it toward the destination.

3.1 Standard On-Chip Bus-Based Communication Architectures

64 CHAPTER 3 On-Chip Communication Architecture Standards

The advantage here is that the signal need only cover the distance between
latches in a single clock cycle. Thus, by inserting register slices, timing closure
(i.e., ensuring timing requirements of a design are met) becomes relatively
easier. Introducing the register slices will of course increase the latency (in
terms of number of cycles required) for communicating on the bus. However,
the bus can now be operated at a much higher frequency (compared to a bus
with no register slices inserted) which can improve overall system perfor-
mance. AHB, in contrast, does not provide any such means of alleviating the
problem of meeting timing for high performance, high frequency systems.

 AXI Bus Matrix Topology
Just like the AHB protocol, AXI can be connected in a bus matrix topology. ARM
distributes an AXI confi gurable interconnect (ACI) IP at the register transfer level
(RTL) called PL300 [30] (recently superseded by the next version— PL301 [31])
that allows designers to connect several masters and slaves together with a confi g-
urable AXI bus matrix fabric. The structure of the AXI bus matrix is somewhat sim-
ilar to that of the AHB bus matrix described earlier, but differs in its support for
additional features of the AXI protocol such as independent control for decoupled
read, write, and response channels, and OO transaction completion. Components
are connected to the AXI bus matrix using interface routers. Each master is con-
nected to a slave interface router, and each slave is connected to a master inter-
face router. The interface routers are part of the AXI bus matrix fabric. These
routers essentially consist of multiplexing and de-multiplexing elements to ensure
appropriate connectivity with other components connected to the bus matrix.
The select signal for each router is generated from a control block that is unique
for each channel and interface. The control blocks store the routing information
necessary to enforce the ordering constraints within the AXI protocol, and con-
sist of arbiters, decoders, content addressable buffers (CABs), and FIFO elements.
The bus matrix fabric does not buffer addresses and data—slaves supporting out-
standing transactions must provide the required storage locally. Much like in the
case of the AHB bus matrix, a full AXI bus matrix (that connects all the masters
to all the slaves in a system) supports high bandwidth but can be prohibitively
expensive as it requires a very large number of wires and bus logic components.
In a lot of cases where a somewhat lower performance is acceptable, a partial AXI
bus matrix that clusters components onto shared buses to reduce the number
of wires and bus logic components in the matrix may be more suitable. Pasricha
et al. [9] showed how a partial AXI bus matrix can be automatically synthesized
from a full AXI bus matrix for MPSoC designs. This methodology, which reduces
the number of buses in the matrix while satisfying all application performance
constraints, is described in more detail in Chapter 6.

 3.1.3 IBM CoreConnect
The IBM CoreConnect [3] on-chip communication architecture standard is
another popular synchronous bus-based standard that shares many similarities

65

with the AMBA standard. It defi nes three types of buses: (i) processor local bus
(PLB), which is a high performance bus used to connect high speed processor
and memory components, (ii) on-chip peripheral bus (OPB), which is used to
connect lower performance peripheral components, and (iii) device control reg-
ister (DCR) bus, which is a simple, high latency bus used to access the status and
control registers of the PLB and OPB masters. The CoreConnect standard targets a
hierarchical bus topology implementation, similar to AMBA 2.0, with the OPB and
PLB buses interfacing with each other using a bridge as shown in Fig. 3.19 . We
now look at the specifi cations of the PLB, OPB, and DCR buses in more detail.

 3.1.3.1 Processor Local Bus
The PLB is a synchronous, high performance bus, similar in many aspects to the
AMBA 2.0 AHB, and used to interconnect high performance processor, ASIC, and
memory cores. The main features of PLB are summarized below:

 ! Shared address, separate read and write data buses (SAMD).
 ! Decoupled address, read data, write data buses.
 ! Support for 32-bit address, 16, 32, 64, and 128-bit data bus widths.
 ! Dynamic bus sizing—byte, half-word, word, and double-word transfers.
 ! Up to 16 masters and any number of slaves.
 ! AND–OR implementation structure.
 ! Pipelined transfers.
 ! Variable or fi xed length burst transfers.
 ! Support for 16–64 byte bursts.
 ! SPLIT transfer support.

Processor core

Data
cache unit

Instruction
cache unit

DMA
controller

PLB to OPB
bridge

OPB to PLB
bridge

External peripheral controller

SRAM
ROM

External
peripheral

External
bus master

D
C

R
 b

us
D

C
R

 b
us

P
LB

ar
bi

te
r

Processor local bus

Memory controller

SDRAM
controller

DCR bus

DCR bus

Internal
peripheral

OPB
slave

OPB
arbiter

OPB
master

O
n-

ch
ip

 p
er

ip
he

ra
l

bu
s

 FIGURE 3.19

 An example of CoreConnect-based SoC design [3]
 Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

3.1 Standard On-Chip Bus-Based Communication Architectures

66 CHAPTER 3 On-Chip Communication Architecture Standards

 ! Overlapped read and write transfers (up to 2 transfers per cycle).
 ! Centralized arbiter.
 ! Four levels of request priority for each master, programmable secondary

arbitration.
 ! Locked transfer support for atomic accesses.
 ! Latency timer (to limit a master ’s tenure on PLB during bursts).

A PLB transaction consists of two cycles: address and data, as shown in Fig. 3.20 .
The address cycle has three phases: request, transfer, and address acknowledge. A
PLB bus transaction is initiated when a master drives its address and control signals,
and sends a bus access request to the arbiter, during the request phase. Once the
arbiter grants the master access to the bus, the address and control information is
sent to the slave in the transfer phase. The address cycle is terminated by the slave
latching the address and control information during the acknowledge phase. The
data cycle has two phases: transfer and acknowledge. The master drives the write
data or samples the read data bus, during the transfer phase. Data acknowledge sig-
naling is required for every data item transmitted on the bus, during the acknowl-
edge phase.

 Figure 3.21 shows an example of overlapped transfers on the PLB bus, where
two masters perform a single read and a single write transfer each. Due to the decou-
pled nature of the address, read data, and write data buses, the address cycles can be
overlapped with the read or write data cycles, and the read data cycles can be over-
lapped with the write data cycles. The split bus capability allows for the address and
data buses to have different masters at the same time. Support for address pipelining
allows a new transfer to begin even before the current transfer has fi nished. This
reduces bus latency by allowing the latency associated with a new transfer request
to be overlapped with an ongoing data transfer in the same direction.

A simple write transfer on the PLB bus is shown in Fig. 3.22 . A master requests
access to the bus for a single write transfer in the fi rst cycle. Due to the slave assert-
ing its wait signal (SI_wait) to the arbiter, which indicates that the slave is unable
to participate in the transaction, the transaction is stalled. The arbiter continues to
drive the address and control signals to the slave through this entire period, till it
receives the slave address acknowledge (SI_AddrAck) signal in the fourth cycle. The
slave then asserts the write data acknowledge (SI_wrDAck) and write transfer com-
plete (SI_wrComp) signals to indicate the end of the transaction.

Request
phase

Transfer
phase

Transfer
phase

Address-acknowledge
phase

Data-acknowledge
phaseData cycle

Address cycle

 FIGURE 3.20

 PLB address and data cycles [3]
 Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

1 2 3 4 5 6Cycle

SYS_plbClk

Master A

Master B

Address phase

Write data phase

Read data phase

Read Write

Req

Req Req

Xfer

XferXfer

Xfer Xfer

Xfer

Xfer

XferAAck

DAck Xfer DAck

Xfer DAck

Xfer DAck

Xfer DAck

Xfer DAck

Xfer DAckDAck

AAck

AAck AAck Xfer AAck Xfer AAck

AAck

AAckReq

Read Write

Pri Read B Pri Write BSec Read A Sec Write A

 FIGURE 3.21

 Example of overlapped PLB transfers [3]
 Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

Valid

0 1 2 3 4 5 6 7 8 9Cycle

SYS_plbClk

Transfer qualifiers

Mn_request

Mn_priority(0:1)

Mn_busLock

Mn_RNW

Mn_BE(0:3)

Mn_size(0:3)

Mn_type(0:2)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

PLB_PAValid

Mn_abort

SI_wait

SI_AddrAck

SI_wrDAck

SI_wrComp

Mn_wrBurst

Write data bus

D(A0)

Next Rd Availd Next Wr Availd

1111

0000

000

A0

 FIGURE 3.22

 Example of a single write transfer on a PLB bus [3]
Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

68 CHAPTER 3 On-Chip Communication Architecture Standards

 Figure 3.23 illustrates a read burst transfer of length 4 on the PLB bus. The mas-
ter asserts the request for bus access to the arbiter in the fi rst cycle and is granted
access in the same cycle. The slave receives the address and control information
and drives the address acknowledge (SI_addrAck) signal to the arbiter in the
same cycle. The read data is driven onto the read data bus starting from the third
cycle, along with a read data acknowledge (SI_rdDAck) signal for each data item.
The slave asserts the read transaction complete signal (SI_rdComp) in the cycle
prior to the last read data acknowledge (SI_rdDAck). Note that only the address of
the fi rst burst data needs to be transmitted by the master and it is the responsibil-
ity of the slave to internally increment the addresses sequentially for each transfer
(just like in AMBA 3.0 AXI).

0 1 2 3 4 5 6 7 8 9

Valid

0000

1000

000

A0

Next Wr Avalid Next Rd Avalid

Next Rd AddrAckNext Wr AddrAck

0000

0000

D(A0) D(A0+1) D(A0+2) D(A0+3) 0000

0000

Cycle

SYS_plbClk

Transfer qualifiers

Mn_request

Mn_priority(0:1)

Mn_busLock

Mn_RNW

Mn_BE(0:3)

Mn_size(0:3)

Mn_type(0:2)

Mn_ABus(0:31)

Mn_wrDBus(0:31)

PLB_PAValid

SI_AddrAck

SI_wrDAck

SI_rdComp

SI_rdBTerm

SI_rdDBus(0:31)

SI_rdDAck

SI_rdWdAddr(0:3)

SI_wrComp

Mn_wrBurst

Mn_rdBurst

Write data bus

Read data bus

 FIGURE 3.23

 Read burst transfer (of length 4) on a PLB bus [3]
Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

69

 Figure 3.24 shows a block diagram of the PLB arbiter that handles arbitration for
up to eight masters. It consists of several components that are described below:

 ! Bus control unit (BCU): This supports arbitration for masters on the PLB
bus. Each master typically drives a 2-bit signal that encodes four priority levels
(highest, high, low, lowest), indicating the priority of the request to the arbiter.
The arbiter uses this information, in conjunction with the requests from other
masters to decide which master to grant the bus access to. In case of a tie, the
arbiter provides a choice of using either a fi xed (static) priority scheme or a
fair, round-robin (RR) priority scheme. The BCU consists of four 32-bit DCRs to
control and report its status: (i) PLB arbiter control register (PACR), which is
used to program the choice of static or RR priority schemes to be used in case
of an arbitration tie, (ii) PLB error address register (PEAR), which contains
the address of the access where a bus time-out error occurred, (iii) PLB error
status register (PESR), which contains bits to identify time-out errors on PLB
bus transfers, the master initiating the transfer, and the type of transfer (read
or write), and (iv) PLB revision ID register (PREV), that contains the revision
ID of the PLB arbiter core.

 ! Address Path Unit: It contains necessary MUXes to select master address
that will be driven to the slaves.

 ! Read Data Path Unit: It contains necessary steering logic for the read data
bus.

 ! Write Data Path Unit: It contains necessary steering logic for the write data
bus.

 ! Watchdog Timer: It provides the necessary handshake to complete a trans-
fer, if a master ’s request times out on the PLB.

3.1 Standard On-Chip Bus-based Communication Architectures

Master
ports

Master
ports

Master
ports

Master
portsSlave

port
Slave
port

Slave
port

Address
path

Write data
path

Read data
path

DCR bus
interface

Bus control unit
Watchdog

timer
Slave
port

 FIGURE 3.24

 PLB arbiter block diagram [3]
Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

70 CHAPTER 3 On-Chip Communication Architecture Standards

To control the maximum latency of a particular application, PLB supports a
master latency timer in each master. This latency timer consists of two 8-bit reg-
isters: a Latency Count Register and a Latency Counter. The Latency Count
Register is software programmable, with the option of hardwiring the lower 4 bits
to ensure a minimum latency of 16 clock cycles. The Latency Counter is used as
a clock cycle counter and is not accessible via software code. It is enabled and
begins counting the clock cycles during burst data transfers. Once the value of
the Latency Counter reaches the value programmed in the Latency Count Register,
the master is required to terminate its burst if a request to the bus arrives from
another master of equal or higher priority. This timeout mechanism ensures that
no master remains parked on the bus for excessive periods of time, and ensures
that high priority requests are serviced with low latency.

 3.1.3.2 On-Chip Peripheral Bus
The OPB is a synchronous bus used to connect high latency peripherals, and alle-
viate system performance bottlenecks by reducing the capacitive loading on the
PLB (since connecting a large number of components on a bus results in high
capacitive loading of the bus that increases signal propagation delay and reduces
performance). A bridge module is used to interface the OPB bus with a PLB bus.
The OPB is more advanced than the simple APB peripheral bus used in AMBA, as
indicated by its main features, summarized below:

 ! Shared address bus, multiple data buses (SAMD).
 ! Up to a 64-bit address bus width.
 ! 32- or 64-bit read, write data bus width support.
 ! Support for multiple masters.
 ! Bus parking (or locking) for reduced transfer latency.
 ! Sequential address transfers (burst mode).
 ! Dynamic bus sizing—byte, half-word, word, and double-word transfers.
 ! MUX-based (or AND–OR) structural implementation.
 ! Single cycle data transfer between OPB masters and slaves.
 ! 16 cycle fi xed timeout provided by arbiter, to reduce transfer latency (can

be disabled by a slave).
 ! Slave retry support, to break possible arbitration deadlocks.

A basic data transfer on an OPB bus is shown in Fig. 3.25 . A master requests
access to the bus for a read data transfer in the second cycle. The arbiter grants
access to the bus, based on its arbitration scheme, and the master subsequently
assumes ownership of the bus by asserting the select (M1_select) signal. The mas-
ter then drives the address and control signals, which is sampled off the bus by
the slave. The slave drives the read data onto the data bus and asserts the transfer
acknowledge (SI2_xferAck) signal in the next cycle. The master latches the data
off the bus in the following cycle and de-asserts select to end the transaction.

For reducing arbitration latency during multiple transfers, a master can park or
lock itself on the OPB bus. The parked master is allowed to access the bus without
any delay due to an arbitration cycle, as long as no request is asserted by another
master. Like in the case of the PLB, the OPB masters capable of long parked/locked

71

access have Latency Counters to insure a low latency response for requests from
other masters. Multiple data transfers to sequential addresses can take advantage of
the sequential transfer mode in OPB, which is similar to a burst transfer. Unlike the
PLB, a master on the OPB bus must drive addresses for each data item transferred
on the bus. OPB also allows the overlapping of a new arbitration request with the
fi nal cycle of an ongoing data transfer, to avoid wasting a cycle for bus request
and improve performance. The arbiter module is simpler than the PLB arbiter, with
only two registers: one for programmable priority and another for controlling bus
parking. There is fl exibility in choosing either a fi xed (static) scheme or a fair, RR
scheme. These options are dynamically programmable, allowing for adjustments in
priority based on varying traffi c profi les or operation modes. The watchdog timer
module in the arbiter implements a timeout feature if a slave does not respond to
a master request within 16 clock cycles. If a slave must take longer to complete
the transfer, it is allowed to inhibit the timer counter in the watchdog.

To alleviate possible deadlock scenarios on the bus, OPB supports the slave
retry operation. This allows an OPB slave to assert a retry signal if the slave cannot

1 2 3 4 5 6

Valid address

Valid data

Cycles

OPB_Clk

OPB_M1Grant

OPB_select

M1_request

M1_select

M1_RNW

M1_ABus

M1_fwXfer

M1_hwXfer

SI2_xferAck

SI2_fwAck

SI2_hwAck

SI2_DBus

SI2_DBusEn

 FIGURE 3.25

 Basic read data transfer on OPB [3]
Reprint Courtesy of International Business Machines Corporation copyright (2001) © International Business
Machines Corporation

3.1 Standard On-Chip Bus-Based Communication Architectures

72 CHAPTER 3 On-Chip Communication Architecture Standards

perform the required bus operation at a particular instant of time. The bus master
responds to this signal by immediately terminating its transfer and relinquishing
control of the bus for at least one cycle, so that the arbiter can re-arbitrate the bus.
This allows the slave a chance to access the OPB in order to resolve the deadlock
condition. Note that this mechanism may still be insuffi cient to guarantee that all
possible deadlock conditions will be alleviated. However, the retry operation does
provide OPB masters with suffi cient information to detect a deadlock situation,
and to take corrective action.

OPB, much like PLB, also supports dynamic bus sizing which allows compo-
nents that have different data interface widths than the OPB data bus to operate
seamlessly. When a master transfers data that is wider than the data bus width, it
must split the transfer into two or more operations. Similarly, if a data item being
transferred has a smaller width than the data bus width, it must be appropriately
aligned on a subset of the bus lines. The OPB bus permits byte (8-bit), half-word
(16-bit), full-word (32-bit), and double-word (64-bit) sized transfers.

 3.1.3.3 Device Control Register Bus
The DCR bus is a synchronous bus designed to transfer data between a CPU ’s
general-purpose registers (GPRs) and the device control registers (DCRs) of the
slave components in the system. The DCR bus removes device confi guration regis-
ters from the global memory address map. It allows the lower performance status
and control read/write transfers to occur separately, and concurrently with high
speed transfers on the PLB and OPB buses, thus improving system response time
and overall performance. It is assumed that in a typical SoC environment where
DCR master and slave components are operating at different clock frequencies,
the slower clock ’s rising edge always corresponds to the faster clock ’s rising edge.
DCR transactions control the confi guration of on-chip peripherals such as inter-
rupt controllers, timers, arbiters, bridges, etc. The main features of the DCR bus
are summarized below:

 ! 10-bit, up to 32-bit address bus.
 ! 32-bit read and write data buses.
 ! 4-cycle minimum read or write transfers (extendable by slave or master).
 ! Slave bus timeout inhibit capability.
 ! Multi-master arbitration.
 ! Privileged and non-privileged transfers.
 ! Daisy-chain (serial) or distributed-OR (parallel) bus topologies.

The DCR bus consists of the address, read and write data buses, and the DCR
read, DCR write, master ID, privilege level, timeout wait, and acknowledge signals.
Slaves can have privileged registers that can only be accessed by privileged transac-
tions from a master. Any non-privileged transaction meant for a privileged DCR is
ignored by the slave and results in a timeout. A typical transfer on the DCR bus is
initiated by a master asserting the DCR read or write command signals, and driving
the address and appropriate control signals. Slaves decode the command, address,
privilege level, and master ID to determine whether to claim the transfer or not.

73

A slave can claim a transfer by asserting the timeout wait or acknowledge signals.
Since requests can time out if a response is not received by the master, a slave that
takes longer to complete the transfer must assert the timeout wait signal to prevent
a timeout. Asserting the acknowledge signal implies that a write operation is com-
plete, or that read data has been driven onto the read data bus. If no slave responds
to the transfer request, a timeout occurs and the master terminates the command.

The DCR bus can be implemented by daisy-chaining the slave components
or by creating a distributed-OR structure out of the slave devices. The daisy-chain
approach allows for easier chip level wiring while the distributed-OR approach
allows for easier chip level timing closure. For the case of the daisy-chain con-
fi guration, data moves along the ring-like network connecting all the slave compo-
nents, and each slave component either passes along the unmodifi ed data input,
or puts its data onto its data bus output. In the distributed-OR implementation,
each slave directly receives data from the master, and places its data output onto
the system OR logic. It is possible for multiple masters to be connected to the
DCR bus. In such a case, an arbiter is required to negotiate access to the DCR bus.

 3.1.4 STMicroelectronics STBus
 STMicroelectronics ’ STBus [4] on-chip communication architecture is an evolu-
tionary on-chip interconnection standard developed for microcontroller consumer
applications such as set-top boxes, ATM networks, digital cameras, etc. It is closely
related to the VSIA (virtual sockets interface alliance; described in Section 3.2.2)
industry interface standard [14] to ease compatibility and integration with third
party IP blocks. The STBus standard defi nes three types of synchronous buses
(or bus protocols) having varying levels of complexity in terms of performance
and implementation: (i) Type 1, which is the simplest bus protocol intended for
peripheral register access, (ii) Type 2, which is a more complex bus protocol that
supports pipelined operations and SPLIT transactions, and (iii) Type 3, which is
the most advanced bus that implements OO transactions, compound operations,
and transaction labeling/hints. These buses are implemented with a MUX-based
structure, and can be arranged in either a shared bus, partial crossbar (partial bus
matrix), or a full crossbar (full bus matrix) topology. We describe each of these
bus protocols in more detail below.

 3.1.4.1 Type 1
The Type 1 or peripheral STBus standard is the simplest protocol in the STBus family
that is meant to interconnect components such as general-purpose input/output
(GPIO), UARTs, and simple controllers that require medium data-rate communi-
cation with the rest of the system. A simple handshaking mechanism is used to
ensure correct transmission. Operations on the buses are defi ned in terms of OPCs
which defi ne, for instance, whether an operation is a read or a write. The Type 1
bus supports the LOAD (read) and STORE (write) data operations, with an address
bus size of 32 bits, and a possible data size of a byte (8-bit), half-word (16-bit),
word (32-bit), and double-word (64-bit). Figure 3.26 shows a simple data transfer
on the Type 1 bus. The initiator (master) sends a data transfer request (REQ) to

3.1 Standard On-Chip Bus-Based Communication Architectures

74 CHAPTER 3 On-Chip Communication Architecture Standards

the target (slave) by sending the OPC for the transfer (either read or write), the
transfer address (ADD), and the byte enable (BE) to specify which bytes in the
bus are signifi cant, based on the width of the data involved in the transfer (1–8
bytes). The write data bus (DATA) to send the write data (for a write data transfer).
The slave indicates it has received the transfer request by asserting the handshake
signal (R_REQ), and then proceeds to return the read data on the read data bus
(R_DATA) or write data in its address space for a write data transfer. The slave
returns an optional response opcode (R_OPC) to indicate any errors during the
transaction.

The Type 1 bus is similar to the IBM CoreConnect DCR bus, since it is also
used to program the internal confi guration registers of components connected
to the STBus communication architecture. A register decoder block is responsible
for performing address decoding, data transfer routing, and arbitration (if more
than one master is connected to the bus) for transfers on the Type 1 bus.

 3.1.4.2 Type 2
The Type 2 or the basic STBus standard supports all the Type 1 functionality, and
additionally provides support for pipelined operations, SPLIT transactions, com-
pound operations, source labeling, and some priority and labeling/hint informa-
tion. This bus protocol is targeted at high performance components. The use of
SPLIT transactions and pipelined operation improves bus effi ciency and perfor-
mance. The Type 2 standard supports the basic LOAD (read) and STORE (write)
operations, with an address bus size of 32 bits and allowed data bus sizes of 8, 16,
32, 64, 128, or 256 bits. Additionally, the Type 2 standard also supports compound
operations which are built from one or more primitives. The supported standard
compound operations include:

 ! READMODWRITE: An atomic operation that transfers read data from the
slave to the master, but leaves the slave locked until a write transfer from the
same master completes, replacing the information at the specifi ed address in
the slave.

opc

add
be

data

r_opc

r_data

System

Request

Response

CLOCK

REQ

EOP
OPC
ADD
BE

DATA

R_REQ
R_OPC
R_DATA

 FIGURE 3.26

 Basic data transfer on STBus Type 1 bus [4]
 Source: STMicroelectronics

75

 ! SWAP: An atomic operation that exchanges a data value from the master
with the data held in a specifi ed location in a slave.

 ! FLUSH: An operation used to ensure the coherence of main memory while
allowing local copies associated with a slave to remain coherent. The opera-
tion returns a response when any copies of the data associated with a physi-
cal address (which are held by a slave module) are coherent with the actual
data at the physical address. The slave may retain a copy of the data.

 ! PURGE: An operation used to ensure the coherence of main memory while
ensuring that stale local copies are destroyed. The operation returns a
response when any copies of the data associated with a physical address
(which are held by a slave module) are coherent with the actual data at the
physical address, while removing any copies of the data held by the slave.

 ! USER: This is reserved for user defi ned operations that can implement use-
ful operations specifi c to particular applications.

 3.1.4.3 Type 3
The Type 3 or advanced STBus standard supports all Type 1 and Type 2 function-
ality, but additionally supports packet shaping and OO transaction completion.
These features make this bus protocol suitable for very high performance compo-
nents. The Type 3 supports the same basic and compound operations as the Type
2 standard. Packet shaping allows optimum bandwidth allocation in Type 3 buses,
with only the minimum number of clock cycles required to carry out a transaction
being used. In Type 1 and Type 2 buses, every request requires a response, which
wastes bandwidth. In contrast, a Type 3 requires only a single response from a slave
for multiple write data operations by a master, or a single read request from a mas-
ter for multiple data reads from a slave. Due to this asymmetry between request
and response phases, the bandwidth allocation in the Type 3 protocol is optimized
compared to the Type 1 and Type 2 protocols. The use of OO transaction comple-
tion further reduces latency on the bus since a master waiting for a response from
a slave no longer blocks access to other slaves. Transaction IDs associated with data
transfers allow the components to have up to 16 transactions in progress.

 3.1.4.4 STBus Components
The STBus node shown in Fig. 3.27 is the main component of the STBus on-chip
communication architecture. It consists of two main blocks: the control logic and
the data path. The control logic is responsible for the arbitration, decoding, and
contains other bus logic required for implementing advanced protocol features
(such as OO transaction completion), while the data path represents the topology
of the communication architecture, which can be a shared bus, a full crossbar, or
a partial crossbar confi guration. Master components connect to the initiator inter-
faces, while slaves connect to the target interfaces of this node architecture.

The control logic is responsible for arbitration, and supports several arbitration
schemes which are described below:

 ! Fixed priority : The priorities of the masters are static or hardwired.
 ! Variable priority: The priorities of the masters can be dynamically changed

during system operation by writing to special programmable priority registers

3.1 Standard On-Chip Bus-Based Communication Architectures

76 CHAPTER 3 On-Chip Communication Architecture Standards

in the node. If two or more masters have the same priority value stored in
their registers, the master with the higher fi xed (hardwired) priority gets
preference.

 ! Least recently used (LRU): Masters are granted access to the bus in the
order of the longest time since the last grant. If two or more masters have
been waiting for the same amount of time, the master with the higher fi xed
(hardwired) priority gets preference.

 ! Latency-based: Each master has a register associated with it containing the
maximum allowed latency in clock cycles. If the value is 0, then it needs
to have zero cycle latency when a request is received, and such a master
must be granted bus access as soon as possible. Each master also has a coun-
ter, which is loaded with its maximum latency value each time the master

Initiator
interface

Initiator
interface

Initiator
interface

Initiator
interface

Target
interface

Target
interface

Target
interface

Target
interface

Data path

STBus node

Control logic

Request
selectors

Response
selectors

4 4

 FIGURE 3.27

 Block diagram of STBus node [4]
 Source: STMicroelectronics

77

makes a request. At every subsequent cycle, the counter is decremented. The
arbiter grants bus access to the master having the lowest counter value. If
two or more masters have the same counter values, the grant will be given
to the master with the higher fi xed (hardwired) priority.

 ! Bandwidth-based: Each master has a register associated with it containing
its bandwidth, expressed in terms of clock cycles per fi xed period. Each
master also has a counter, loaded with a starting value obtained from its
bandwidth register. At the beginning of an operation, the counter for the
fi rst master (selected based on the hardwired priority) starts decrementing
for the entire duration of the time slot allocated to this master. If during this
period the fi rst master makes any requests, they are granted. If during this
period no master makes any requests, the fi rst master eventually loses its
slot, and the next master based on hardwired priority is selected. However,
if during this period the fi rst master makes no requests but requests are
received from other masters, its counter is stopped and the bus is granted
to the next master in order of hardwired priority (whose counter subse-
quently begins to decrement since it is now using bandwidth). If a master
consumes its bandwidth (i.e., its bandwidth counter has reached 0), it can-
not be granted bus access again till the end of the fi xed time period. This
process continues till all masters have consumed their allocated bandwidth,
at which point the arbitration process starts again. This scheme is similar to
a TDMA/static-priority two level arbitration scheme.

 ! STB: This is a hybrid of the latency-based and variable priority schemes. In its
normal state, arbitration proceeds just like in a variable priority scheme. As in
the latency-based scheme, masters also have an associated maximum latency
register and counter. Each master also has an additional latency-counter-enable
bit. If this latency-counter-enable bit is set, and the counter value is 0, then a
master is said to be in panic state. In the case when one or more masters are
in a panic state, the normal variable priority scheme is overridden, and the mas-
ters in panic state are granted bus access, in the order of highest priority.

 ! Message-based: This is a fi xed priority scheme which allows masters having
a higher priority and a priority fl ag set, to interrupt the message transfer on
the bus. Note that in the normal fi xed priority scheme, a message transfer
cannot be interrupted while it is in progress.

From the description of the supported arbitration schemes in STBus, it can be
seen that the control unit requires several registers to hold the latency, bandwidth,
and/or priority values for the masters in the system. In addition to the node, other
components used in the STBus communication architecture include:

 ! Size converters: Components used to allow communication between two
STBus IP blocks having different data bus widths.

 ! Type converters: Components used to allow communication between two
STBus IPs following different STBus protocol types (e.g., between Type 1
and Type 3).

 ! Buffer: A FIFO-based component that is used as a retiming stage between
two IPs following the Type 2 or Type 3 protocol. A buffer is useful to break

3.1 Standard On-Chip Bus-Based Communication Architectures

78 CHAPTER 3 On-Chip Communication Architecture Standards

critical paths between components that are far apart from each other on the
system fl oorplan. In this aspect, it is similar to the register slice proposed in
AMBA 3.0 AXI.

 3.1.5 Sonics SMART Interconnect
The Sonics SMART Interconnect [5] is another on-chip communication archi-
tecture standard designed to ease component interoperability and provide high
performance for a wide range of applications. The standard comprises of three
synchronous bus-based interconnect specifi cations which differ in their level of
complexity and performance: (i) SonicsMX, which is a high performance intercon-
nect fabric with advanced features; (ii) SonicsLX, which is also a high performance
interconnect fabric, but with less advanced features compared to SonicsMX;
and (iii) S3220, which is a peripheral interconnect, designed to connect slower
peripheral components. Both SonicsMX and SonicsLX natively support the open
core protocol (OCP) version 2.0 [15] wrapper-based interface standard (described
in Section 3.2.1). Additionally, components with AMBA 2.0 AHB and AMBA 3.0 AXI
natives interfaces can also be plugged into these interconnection fabrics using
pre-designed interface bridge logic components. These features are crucial in
maximizing reuse of IP cores. Sonics SMART Interconnect provides a highly con-
fi gurable communication architecture solution for contemporary SoC designs. It
is supported by the SonicsStudio development environment [5] that allows auto-
mated confi guration, data analysis, and performance verifi cation for the commu-
nication architecture. We now examine the specifi cations of the three bus-based
interconnect fabrics that make up the Sonics SMART Interconnect, in more detail.

 3.1.5.1 SonicsMX
SonicsMX is the third generation of socket-based (described in Section 3.2) syn-
chronous interconnect fabrics from Sonics, targeted at high performance, sophis-
ticated SoC applications such as WCDMA/3G wireless headsets, video game
consoles, and portable multimedia players. Its main features are summarized
below:

 ! Pipelined, non-blocking, and multi-threaded communication support.
 ! Split/outstanding transactions for high performance.
 ! Confi gurable data bus width: 32, 64, or 128 bits.
 ! Multiple topology support—shared bus, full crossbar, partial crossbar.
 ! Socket-based connection support, using native OCP 2.0 [15] interface between

components and interconnect.
 ! Bandwidth and latency-based arbitration schemes to obtain desired quality

of service (QoS) for components threads.
 ! Register points (RPs) for pipelining long interconnects and providing timing

isolation.
 ! Protection mode support.
 ! Advanced error handling support.
 ! Fine-grained power management support.

79

SonicsMX supports the full crossbar, partial crossbar, and shared bus intercon-
nection topology. A crossbar confi guration can have a maximum size of 8 " 8,
with a maximum of 8 masters connected to 8 slaves. A shared bus confi guration
can connect up to 32 components with up to 16 masters connected to 16 slaves.
Protocol points (PPs) are used to interconnect different topology confi gurations,
and consist of logic for frequency and data width conversion. Up to 4 crossbar
and shared buses can be joined in a single instance of SonicsMX, to support up to
64 cores. A single register target (RT) component is used as interface to the inter-
nal confi guration registers of a SonicsMX instance, for any dynamic reconfi gura-
tion. Multiple SonicsMX instances (interconnected via bridges) can be used in an
SoC design. SonicsMX makes use of RPs to pipeline long interconnects in order
to break long combinatorial timing paths and achieve the desired bus clock fre-
quency of operation. RPs are essentially small FIFOs with a depth that is confi gu-
rable, to provide queuing support if needed. This is similar in concept to register
slices in AMBA 3.0 AXI and buffers in STMicroelectronics ’ STBus.

 Initiator (master) and target (slave) components are connected to the inter-
connect fabric (which natively support the OCP 2.0 interface) through initia-
tor and target agents (TAs), respectively. An agent contains bus logic such as a
bridge to connect a component with a mismatched OCP version 1.0 [16], AMBA
AHB [1] or AXI [2] interface, data width converters to handle mismatched com-
ponent and interconnect data widths, fl ip-fl ops to adapt component timing to
the interconnect clock frequency, and RPs, which provide FIFO-based transaction
buffering if required. Figure 3.28 shows an example of a SonicsMX instance that
consists of a crossbar topology (XB) and a shared link/bus (SL) topology inter-
connected using PP connectors. The initiators connect to the architecture via ini-
tiator agents (IAs) while the targets connect to it via the TA. Components with a

3.1 Standard On-Chip Bus-Based Communication Architectures

IAIA

TA

TA

Bridge

IA
Bridge

RP RPRP RP

TA RT
Bridge

RP RP

IA
Bridge

RP RP

OCP 2.0
socket

OCP 2.0
socket

OCP 2.0
socket

OCP 1.0
socket

AHB 2.0
socket

OCP 1.0
socket

AHB 2.0
socket

AXI
socket

P
P

P
P

PP

XB Fabric

EL

Bridge

RP RP RP RP

FabricSL

TA

 FIGURE 3.28

 Example of SonicsMX system with crossbar (XB) and shared bus (SL) topologies
interconnected using PP connectors [5]
 Source: Sonics Inc.

80 CHAPTER 3 On-Chip Communication Architecture Standards

non-native (i.e., non-OCP 2.0) interface require a bridge at their respective agents.
RPs provide FIFO buffering/queuing between the components and the intercon-
nect. An extender link (EL) is used to connect a target (or initiator) that lies far
away from the interconnect fabric on the system fl oorplan. ELs are optimized to
span large distances, and use PP connectors to interface with the interconnection
fabric. An RT component is used for interfacing with the internal confi guration
registers of the SonicsMX instance. Note that all the buffering components in the
SonicsMX interconnect fabric can increase the transaction latency, and must be
used judiciously. For instance, there is typically at least a one cycle penalty for
using fl ip-fl ops, RPs , and PPs.

For multi-threaded components in a system, SonicsMX supports defi ning map-
pings between initiator threads and target threads. Resources within the intercon-
nect fabric such as RPs and PPs are allocated for each of the thread mappings.
For cases where independent resources and fl ow control is not required for
every thread (e.g., for multi-threaded initiator components with limited concur-
rency), thread collapsing at the initiator socket is supported. This can reduce the
overhead of allocating unnecessary resources in the interconnect fabric, without
degrading performance.

The arbitration schemes used in SonicsMX guarantee QoS requirements for an
application. Three QoS levels are defi ned for use, each characterized by a different
arbitration policy:

 ! Weighted QoS: This mode uses a bandwidth-based arbitration scheme,
where the available bandwidth is distributed among initiators, based on the
ratio of bandwidth weights confi gured at each initiator agent.

 ! Priority QoS: This mode uses two arbitration schemes. It extends the
bandwidth-based arbitration scheme from the weighted QoS mode, by add-
ing support for static priority. One or two threads are allowed to be assigned
a static priority instead of bandwidth weights, and always get preference over
other threads that are allocated bandwidth weights. These threads that are
assigned bandwidth weights may starve for bandwidth, if there is excessive
traffi c from priority threads. The bandwidth-based weight allocation scheme
can therefore be considered to be a kind of best-effort bandwidth scheme.

 ! Controlled QoS: This mode uses three arbitration schemes, which dynami-
cally switch among each other based on traffi c characteristics. In addition
to the priority and best-effort bandwidth scheme from the priority QoS
mode, an additional allocated bandwidth scheme is used to ensure that cer-
tain threads are guaranteed a certain bandwidth during operation.

For power management, SonicsMX utilizes several mechanisms to reduce idle
and active power levels. A fi ne grained internally implemented clock gating mech-
anism is used to remove the clock from inactive portions of the interconnect to
reduce power consumption. Power management interfaces (signals) at each inter-
face socket allow its activity status to be observed externally, and enable activity-
dependent power management (e.g., waking up powered-down targets). Coarse
grain power management is supported by using power control logic external
to the SonicsMX instance. The external power control logic manages power by

81

removing clock or supply voltage from the entire interconnect. Every SonicsMX
instance provides a single power management interface for the entire intercon-
nect, which allows the external power control logic to know when the clock or
supply voltage can be restored or removed without disrupting communications.

An optional access protection mechanism is implemented in SonicsMX to des-
ignate protected regions within the address spaces of certain targets. This mecha-
nism can dynamically specify protected region sizes and locations at runtime. The
mechanism can defi ne access permissions as a function of which initiator can
access a protected region, the type of transaction (read or write) being requested,
or what state the target is currently in. Each target is allowed to have up to eight
protection regions.

 3.1.5.2 SonicsLX
SonicsLX is a third generation of socket-based synchronous interconnect fabrics
from Sonics, targeted at mid-range SoC designs. It supports pipelined, multi-
threaded, and non-blocking communication on its buses. It also has support for
SPLIT transactions to improve bus utilization. SonicsLX can be arranged in a full or
partial crossbar topology and supports the weighted and priority QoS modes, as
described above for SonicsMX. The SonicsLX features are a subset of the SonicsMX
feature set. Table 3.2 summarizes the main differences between SonicsMX and
SonicsLX.

 3.1.5.3 Sonics Synapse 3220
The Sonics Synapse 3220 synchronous interconnect fabric is targeted at low band-
width, physically dispersed peripheral target (slave) cores. The main features of
the 3220 interconnect are a subset of the SonicsMX and SonicsLX interconnect
fabrics. Its main characteristics are summarized below:

 ! Up to 4 OCP-compliant initiators, and 63 OCP-compliant targets.
 ! Up to 24-bit confi gurable address bus.
 ! Confi gurable data bus widths—8, 16, 32 bits.
 ! Fair arbitration scheme, with high priority allowed for a single initiator

thread.

3.1 Standard On-Chip Bus-Based Communication Architectures

 Table 3.2 Comparison of SonicsMX and SonicsLX feature set

 Features SonicsMX SonicsLX

 Data Width Conversion Full Full

 Quality of Service Management Multi-level QoS Two level QoS

 Advanced Power Management Configurable Fixed

 Advanced Security Management Full Reduced

 Interrupt and Error Management Full Reduced

 Side Band Signaling Management Full None

82 CHAPTER 3 On-Chip Communication Architecture Standards

 ! Power management interface.
 ! Exclusive (semaphore) access support.
 ! Error detection and recovery—watchdog timer to identify unresponsive

peripherals.
 ! Protection mode support.

 Figure 3.29 shows some of the typical peripheral targets that are connected to
the Synapse 3220 interconnect fabric. The fabric interfaces with the main inter-
connect fabric (SonicsMX or another proprietary interconnect) using a DMA type
block that acts like a bridge.

 3.1.6 OpenCores Wishbone
The Wishbone bus-based on-chip communication architecture standard [6] is an
open-source standard that proposes a single, high speed synchronous bus specifi ca-
tion to connect all the components in an SoC design. Since it is open source, design-
ers can download synthesizable Wishbone RTL components available for free from
the OpenCores website [6]. However, due to lack of default support for advanced
features (e.g., OO transaction completion, SPLIT transactions, power management,
etc.), its scope is limited to small- and mid-range embedded systems. The main fea-
tures of the Wishbone high speed bus standard are summarized below:

 ! Multiple master support.
 ! Up to 64-bit address bus width.
 ! Confi gurable data bus width 8- to 64-bit (expandable).
 ! Supports single or block read/write operations.
 ! Read–modify–write (RMW) support for semaphore type operations.

Proprietary interconnect

DMA

Real
time
clock

Watch
dog
timer

AC97 UART Smart
cards

GPIO I2C

Synapse™3220 SMART Interconnect IP™

802.11
(a,b)

3G
Modem keyboard Bluetooth™ USB

1.1
IrDA
2.0I2S

 FIGURE 3.29

 Example of Synapse 3220 interconnect fabric interfacing with the rest of the system [5]
 Source: Sonics Inc.

83

 ! Supports point-to-point, data fl ow, shared bus, or crossbar topology.
 ! Retry mode support.
 ! User defi ned tags, for error signaling, cache hints, etc.
 ! Flexible arbitration scheme (fi xed priority, RR, etc.).

The Wishbone interface is highly confi gurable, and allows a user to customize
tags or signals to support specifi c application requirements. Thus, designers can
create their own customized version of the Wishbone standard to suit a particu-
lar applications need. While this customizability is desirable, it can make devel-
oping generic components (e.g., bridges to interface with other standards such
as AMBA) more diffi cult. Figure 3.30 shows the different possible topologies in
which the Wishbone on-chip communication architecture can be structured. For
very small systems, the master and slaves can be directly connected using point-
to-point bus links, as shown in Fig. 3.30 (a). For systems with a sequential data fl ow,
where data fl ows from component to components, the data fl ow topology is rec-
ommended, as shown in Fig. 3.30 (b). Data fl ows in a pipelined manner, exploiting
parallelism and thus speeding up execution. To interconnect several masters and
slaves effectively and with the fewest resources, a shared bus topology can be
used, as shown in Fig. 3.30 (c). The arbitration scheme of the arbiter (not shown
in the fi gure) is left up to the system designer. The shared bus can have either a
tri-state-based, or a MUX-based implementation. For higher performance systems,
a crossbar topology can be used, as shown in Fig. 3.30 (d). While this topology
offers better performance due to higher parallelism, it requires more logic and

Wishbone
master

Wishbone
slave

 FIGURE 3.30(a)

 Different topologies of the Wishbone bus architecture: point-to-point

Direction of data flow

IP CORE ‘A’ IP CORE ‘B’ IP CORE ‘C’

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

W
is

hb
on

e
sl

av
e

W
is

hb
on

e
m

as
te

r

 FIGURE 3.30(b)

 Data flow

3.1 Standard On-Chip Bus-based Communication Architectures

84 CHAPTER 3 On-Chip Communication Architecture Standards

routing resources. As a rule of thumb, a crossbar switch with two masters and two
slaves takes up twice the interconnect logic as a similar shared bus system with
the two masters and two slaves.

Wishbone supports the basic single read/write data transfers with handshak-
ing, and block (burst) read/write data transfers, like the other standards. Semaphore
type operations, that allow multiple components to share common resources, are
supported via the RMW operation. This type of operation is commonly used in disk

Wishbone
master
“MA”

Wishbone
slave
“SA”

Wishbone
slave
“SB”

Wishbone
slave
“SC”

Wishbone
master
“MB”

Shared bus

 FIGURE 3.30(c)

 Shared bus

Wishbone
master
“MA”

Wishbone
master
“MB”

Wishbone
slave
“SC”

Wishbone
slave
“SB”

Wishbone
slave
“SA”

Note: dotted lines
indicate one possible

connection option

Crossbar switch
interconnection

 FIGURE 3.30(d)

 Full or partial crossbar [6]

85

controllers, serial ports, and memories. In this operation, once an arbiter grants the
bus to a master, no other master is allowed to access the bus till the selected master
has read, modifi ed, and written back data to the slave. Such a locking of the bus can
be ineffi cient, especially if the slave takes multiple cycles to respond. More effi cient
semaphore type operation support was discussed earlier in the context of other bus
standards such as AMBA 3.0 AXI and STBus Type 3, where the bus need not remain
locked for the entire duration of the semaphore operation.

 3.1.7 Altera Avalon
The Altera Avalon [7] synchronous bus-based communication architecture is
targeted at system-on-programmable-chip (SoPC) designs, and is comprised of
two standards: Avalon memory mapped (Avalon-MM) [32] and Avalon streaming
(Avalon-ST) [33] .

 3.1.7.1 Avalon-MM
The Avalon-MM standard defi nes an interface to connect memory-mapped mas-
ter and slave peripherals such as microprocessors, UARTS, memory, timers, etc.
Confi gurability is an important attribute of the Avalon-MM interface, and compo-
nents can choose to use a small set of signals if they only support simple trans-
fers (e.g., a simple ROM interface requiring only address, read-data, and control
signals). Components requiring more complex transfer types will support a larger
set of signals (e.g., high speed memory controller that supports pipelined bursts).
The Avalon-MM signals are a superset of several other bus standards. For example,
most Wishbone interface signals can be mapped to Avalon-MM signals types, mak-
ing it easy to include Wishbone components into Avalon-MM systems.

Avalon-MM is implemented as a synchronous bus crossbar, as shown in Fig. 3.31 .
The crossbar has an integrated interrupt controller, and supports optional logic to
transfer data across multiple clock domains, and across multiple interface widths.
Pipeline registers can be added at any point on a crossbar bus to increase the value
of the maximum allowed clock frequency on the bus. Separate read and write data
buses can have widths of up to 128 bits. The crossbar buses support the burst
transfer mode to hide arbitration latency for individual transfers, as well as fi xed
latency and variable latency pipelined reads. For the fi xed latency case, with a speci-
fi ed pipeline latency of N, the slave must present valid read data on the Nth rising
clock edge after the end of the address phase. Figure 3.32 (a) shows an example of
pipelined read data transfers with a fi xed latency of 2 cycles. In the variable latency
case, the slave can take an arbitrary number of cycles after the address phase to
put the read data on the bus, as shown in Fig. 3.32 (b). An additional signal is used by
the slave in this case to signal to the switch fabric when valid data has been put on
the read data bus.

Several arbitration schemes are allowed in the Avalon-MM crossbar, such as:

 ! Fairness-based shares: This scheme assigns each master port with an inte-
ger value of transfer shares with respect to a slave port. One share signifi es
permission to perform one transfer. As an example, if Master 1 is assigned

3.1 Standard On-Chip Bus-Based Communication Architectures

S
Control

DMA controller
Read

M

DataInstruction

Processor

M M

M

MUX

Arbitrator Arbitrator

Tri-state bridge

Flash
memory

chip

Ethernet
MAC/PHY

chip

SDRAM
controller

Data
memory

S S S

S

S S
Instruction

memory

SDRAM chip

Write data and control signals Avalon-MM master port

Avalon-MM slave portInterface to off-chip device

Read data

System
interconnect

fabric

M

Write

 FIGURE 3.31

 Avalon-MM crossbar switch implementation example [7]
 Altera is a trademark and service mark of Altera Corporation in the United States and other countries. Altera
products are the intellectual property of Altera Corporation and are protected by copyright laws and one or
more U.S. and foreign patents and patent applications

A B C D E F G H I

Address 1 Address 2 Address 3

Data 1 Data 2 Data 3

clk

Address

Read

Chipselect

Waitrequest

Readdata

 FIGURE 3.32(a)

 Pipelined read data transfer in Avalon-MM, with fixed latency # 2 cycles
 Altera is a trademark and service mark of Altera Corporation in the United States and other countries. Altera
products are the intellectual property of Altera Corporation and are protected by copyright laws and one or
more U.S. and foreign patents and patent applications

87

3 shares and Master 2 is assigned 4 shares, then the arbiter grants Master 1
access for 3 transfers, followed by a grant to Master 2 for 4 transfers. The arbi-
ter cycles through this process indefi nitely. If a master stops requesting trans-
fers before it exhausts its shares, it forfeits all of its remaining shares, and the
arbiter grants access to another requesting master.

 ! RR: Masters are granted access to a slave in a cyclic, RR manner, ensuring a
fair bus access distribution among requesting masters.

 ! RR with minimum share values: In this scheme, a slave port can defi ne a
value for the minimum number of shares in each RR cycle. This results in
the arbiter granting at least N shares to any master port when it begins a
sequence of transfers. By declaring a minimum share value N, a slave indi-
cates that it is more effi cient at handling continuous sequential transfers of
length N. Since burst transfers provide even higher performance for contin-
uous transfers to sequential addresses, the minimum share value does not
apply for slave ports that support burst transfers—the burst length takes
precedence over minimum share value.

 3.1.7.2 Avalon-ST
The Avalon-ST standard defi nes an interface optimized for the unidirectional fl ow
of data, with support for multiplexed streams, packets, and DSP (digital signal pro-
cessor) data. Avalon-ST is implemented as a synchronous point-to-point commu-
nication bus. The interface signals can be used to describe traditional streaming
interfaces that consist of a single stream of data without knowledge of channels or
packet boundaries. The interface can also support more complex protocols such
as burst and packet transfers with packets interleaved across multiple channels.
Packet transfer between the source and destination components is supported by
using three interface signals: startofpacket, which is used by the source to indicate
the cycle with the start of packet; endofpacket, which indicates the cycle contain-
ing the end of the packet; and the optional empty signal, which indicates the num-
ber of symbols that are empty during the cycles that mark the end of a packet. At
the time of publishing of this book, Avalon-ST is a relatively new standard and its
specifi cation document is sparse on advanced features and supported modes.

A B C D E F G H I

clk

Address

Read

Chipselect

Waitrequest

Readdata

Readdatavalid

J K

Data 1 Data 2 Data 3 Data 4 Data 5

Address 1 Address 2 Address 3 Address 4 Address 5

 FIGURE 3.32(b)

 Variable latency [7]
 Altera is a trademark and service mark of Altera Corporation in the United States and other countries. Altera
products are the intellectual property of Altera Corporation and are protected by copyright laws and one or
more U.S. and foreign patents and patent applications

3.1 Standard On-Chip Bus-Based Communication Architectures

88 CHAPTER 3 On-Chip Communication Architecture Standards

 3.2 SOCKET-BASED ON-CHIP BUS INTERFACE STANDARDS
A socket-based on-chip bus interface standard defi nes the interface of a compo-
nent that connects to a bus-based communication architecture. Unlike the bus-
based communication architecture standards described in the previous section
that defi ne the bus–component interface and the architectural implementation
of the bus, socket-based bus interface standards only defi ne the interface and do
not address the bus architecture implementation. The computational components
are truly decoupled from the communication architecture and its implementation
in this scenario. Figure 3.33 illustrates an example of a system utilizing a socket-
based bus interface standard. The standard interface defi nitions allow compo-
nents to be designed with a standard interface, without committing to a particular
communication architecture implementation. This improves IP reuse fl exibility,
since components can now be connected to any of the wide array of standard
bus-based communication architectures described previously. Figure 3.33 shows
how designers are free to choose any standard or proprietary bus architecture
(e.g., AMBA, CoreConnect, STBus) to implement the actual communication primi-
tives, when using a socket-based interface (I/F) standard. The only requirement for
seamless component and bus architecture integration in this case is adapter logic
components that can map the component interface to the bus architecture fab-
ric protocol. Such adapter or translation logic is not required if the bus architec-
ture implementation natively supports the socket-based interface defi nition. As an
example, since the Sonics SMART Interconnect [5] bus architecture fabric natively
supports the signals in the OCP 2.0 [15] socket-based interface standard, no trans-
lation logic is required between the bus and components that have an OCP 2.0
socket interface.

Socket-based interface standards must be generic, comprehensive, and confi g-
urable to capture the basic functionality and advanced features supported by a

DMAMemory 2

Socket I/FSocket I/F

AdaptorAdaptor

Bus architecture fabric (AMBA, CoreConnect, STBus, etc.)

Memory 1

Adaptor

CPU 1 CPU 2

Socket I/F Socket I/FSocket I/F

AdaptorAdaptor

 FIGURE 3.33

 Example of system implemented with socket-based interface standards

89

wide array of standard bus-based communication architectures. This ensures that
there are no possible incompatibilities when a component with a socket-based
interface is connected to the bus-based communication architecture that actually
implements the communication primitives. Socket-based interface standards have
the disadvantage of requiring adapter or translation logic at the bus–component
interface. This results in additional design time to create the adapter logic, an
increase in chip area, and possible performance penalties due to every data trans-
fer propagating through the adapter logic that has an intrinsic delay associated
with it. However, the adapter logic only needs to be created once and can be sub-
sequently reused in several designs. The benefi ts that accrue from using socket-
based bus interface standards such as improved IP reusability across designs and
greater fl exibility to explore (or change) diverse bus architecture implementations
should not be underestimated.

Several socket-based bus interface standards have been proposed over the years.
Some of the popular interface standards include OCP [15], virtual component inter-
face (VCI) [14], and device transaction level (DTL) [17]. Because of the implementa-
tion fl exibility it offers, AMBA 3.0 AXI [2] can also be considered to be a type of bus
interface standard. OCP, however, is by far the most popular industry standard as far
as socket-based bus interface specifi cations go. Because the VCI interface standard is
a subset of the OCP, and DTL is a proprietary standard with very little publicly avail-
able information, we will only briefl y review these two interface standards. We now
present a comprehensive overview of the OCP socket-based interface standard.

 3.2.1 Open Core Protocol
The OCP version 2.0 [15] socket-based bus interface standard defi nes a high per-
formance, synchronous, bus architecture-independent interface between IP cores.
It promotes IP design reuse by allowing IP cores to be independent of the archi-
tecture and design of the systems in which they are used. It is also highly con-
fi gurable and can be optimized to use only the necessary features required for
communicating between two components, which saves chip area. OCP essentially
defi nes a point-to-point interface between two components, one of which must
be a master and the other a slave. Its key features include:

 ! Point-to-point synchronous interface.
 ! Bus architecture independent.
 ! Confi gurable data fl ow (address, data, control) signals for area-effi cient

implementation.
 ! Confi gurable sideband signals to support additional communication

re-quirements.
 ! Pipelined transfer support.
 ! Burst transfer support.
 ! OO transaction completion support.
 ! Multiple threads.

 Figure 3.34 shows an example of a simple SoC system consisting of three
IP cores with OCP interfaces connected to an on-chip bus. The on-chip bus can

3.2 Socket-Based On-Chip Bus Interface Standards

90 CHAPTER 3 On-Chip Communication Architecture Standards

belong to any one of the standard bus-based on chip communication architec-
tures such as AMBA 2.0/3.0, CoreConnect or STBus, described in Section 3.1. A
bus wrapper interface module is required to translate and map the OCP interface
signals of the IP cores, to the signals of the on-chip bus. The wrapper interface
module must act as the complementary side of the point-to-point OCP connection
for each IP core port that is connected to the bus that is, for the case of a master
port on the IP core, the connected wrapper module must act as a slave, and for a
slave port on the IP core, the connected wrapper module must act as a master (as
shown in Fig. 3.34). A data transfer in such a system proceeds as follows: the mas-
ter (initiator) sends address, data and control information via the OCP interface
signals to its corresponding slave (target) bus wrapper interface module. The inter-
face module converts the OCP request to an on-chip bus request, which is then
transmitted to the destination. The request is received by the wrapper interface
module at the destination, and converted from an on-chip bus request to an OCP
request. This OCP request is then transferred from the (master) wrapper interface
module to the (slave) destination, which takes the appropriate action.

 3.2.1.1 OCP Signals
The OCP interface is synchronous, with a single clock signal. Thus all its signals
are driven with respect to, and sampled by the rising edge of the clock. The OCP
interface signals are divided into three categories: data fl ow, sideband, and test sig-
nals. A small subset of the data fl ow signals are required to be supported by all
OCP interfaces. The remaining data fl ow signals, as well as all the sideband and
test signals are optional. With the exception of the clock, all OCP signals are unidi-
rectional and point-to-point.

 Data fl ow signals consist of a set of signals, some of which are used for data
transfers, while others are confi gured to support any additional communication
requirements between the master and slave components. Data fl ow signals can be
divided into the following categories:

 ! Basic signals: These include the clock, address (separate), read and write
data, transfer type, and handshaking/response signals between the master and
the slave. Only the clock and transfer type signals are mandatory for an OCP

CoreCore Core

Master

Master Master

Master Slave Slave

System initiator System initiator/target System target

Slave
Bus initiator Bus target

Slave
Bus initiator/target

OCP

On-chip bus

Response
Request

Bus wrapper
interface
module

 FIGURE 3.34

 Example of system implemented with OCP socket-based interface standard [15]
 Source: OCP-IP

91

interface, the remaining signals being optional. The widths of the address, read
data, and write data are confi gurable, and not limited to being multiples of
eight. The transfer type indicates the type of data transfer operation issued by
a thread running on a master, and can be any one of the following:
 — Read: Reads data from the addressed location in a slave.
 — Write: Writes data to the addressed location in a slave.
 — Idle : No operation is required to be performed.
 — Broadcast: Writes data to the addressed location, which may be mapped

to more than one slave.
 — Exclusive read: Reads from a location in a slave and locks it, preventing

other masters from writing to the location (exclusive access). The loca-
tion is unlocked after a write to it from the original master that caused
the lock to be set.

 — Linked read: Reads data from the addressed location in a slave, and sets a
reservation in a monitor for the corresponding thread, for the addressed
location. Read or write requests from other masters to the reserved loca-
tion are not blocked from proceeding, but may clear the reservation.

 — Non-posted write: Writes data to the addressed location in a slave, unlock-
ing the location if it was locked by an exclusive read, and clearing any
reservations set by other threads.

 — Conditional write: Only writes to the addressed location in a slave if a
reservation is set for the corresponding thread. Also clears all reservations
on the location. If no reservation is present for the corresponding thread,
no write is performed, no reservations are cleared, and a FAIL response is
returned.

The handshaking signals are used by the master and the slave to synchronize
data transfers, and the response signals are used by the slave to signal whether a
request is valid or if an error occurred.

 ! Simple extensions: These include signals to indicate the address region (e.g.,
register or memory), BEs for partial transfers and core-specifi c confi gurable
signals that send additional information with the transfer request, read data,
write data, and the response from the slave. The confi gurable signals can
transmit information about data byte parity, error correction code values,
FIFO full or empty status, and cacheable storage attributes.

 ! Burst extensions: These signals are used to support burst transfers. They
specify details about the data burst, such as
 — whether it is a precise length or unknown length burst;
 — burst length (for a precise length burst);
 — wrapping, incrementing, exclusive-OR (used by some processors for

critical-word fi rst cache line fi ll from wide and slow memory systems) or
streaming (fi xed address) burst mode;

 — packing or non-packing mode – for the scenario where data is transferred
between OCP interfaces having different widths, the packing mode aggre-
gates data when translating from a narrow to wide OCP interface, while
the non-packing mode performs stripping when translating from a wide
to narrow OCP interface;

3.2 Socket-Based On-Chip Bus Interface Standards

92 CHAPTER 3 On-Chip Communication Architecture Standards

 — minimum number of transfers to be kept together as an atomic unit when
interleaving requests from different masters onto a single thread at the
slave;

 — whether a single request is suffi cient for multiple data transfers, or if a
request needs to be sent for every data transfer in the burst;

 — the last request, write data, or response in a burst.
 ! Tag extensions: These signals are used to assign tags (or IDs) to OCP trans-

fers to enable OO responses and to indicate which transfers should be pro-
cessed in order.

 ! Thread extensions: These signals are used to assign IDs to threads in the
master and slave, and for a component to indicate which threads are busy
and unable to accept any new requests or responses.

 Sideband signals are optional OCP signals that are not part of the data fl ow
phases, and can change independent of the request/response fl ow (but are still
synchronous to the rising edge of the clock). These signals are used to transmit
control information such as interrupts, resets, errors, and other component-
specifi c information. They are also used to exchange status and control informa-
tion between a component and the rest of the system. Finally, the OCP Test signals
are also a set of optional signals, and are responsible for supporting scan, clock
control, and IEEE 1149.1 (JTAG), for testing purposes.

Some of the OCP signals can be grouped together because they must be active
at the same time. The OCP data fl ow signals can be combined into three groups of
request, response, and data handshake signals. These groups in turn map one-on-
one onto their respective protocol phases—request, response, and data handshake
phases. An OCP transfer consists of several phases, and different types of trans-
fers are made up of different combinations of phases. Every transfer must have a
request phase. Read type requests always have a response phase, but write type
transfers can be confi gured to with or without the response and data handshake
phases. Generally, in an OCP read or write transfer, the request phase must pre-
cede the data handshake phase which in turn must precede the response phase.
Burst transactions are comprised of a set of transfers linked together, and having
a defi ned address sequence and number of transfers. This hierarchy of elements
that are part of OCP is summarized in Fig. 3.35 .

 3.2.1.2 OCP Profiles
As mentioned earlier, the OCP interface can be confi gured to meet the require-
ments of the communicating components. The OCP 2.0 specifi cation [15] intro-
duces several pre-defi ned profi les that defi ne a confi guration of an OCP interface.
These profi les consist of OCP interface signals, specifi c protocol features, and
application guidelines. Two sets of profi les are provided:

 1. Native OCP profi les: These profi les are meant for new components imple-
menting native OCP interfaces. There are three profi les defi ned in this set:
 ! Block data fl ow profi le: Master type (read-only, read–write, or write-only)

interface for components that require exchanging data blocks with memory.

93

This profi le is useful for managing pipelined access of defi ned-length traf-
fi c (e.g., MPEG macro-blocks) to and from memory.

 ! Sequential undefi ned length data fl ow profi le: Master type (read-only,
read–write, or write-only) interface for cores that communicate data
streams with memory.

 ! Register access profi le: Supports programmable register interfaces across
a wide range of IP cores, such as simple peripherals, DMA, or register-
controlled processing engines. Offers a control processor the ability to
program the functionality of an attached component.

 2. Bridging profi les: These profi les are meant to simplify or automate the cre-
ation of bridges between OCP and other bus protocol interfaces. There are
three profi les in this set:
 ! Simple H-bus profi le: Intended to provide a connection through an exter-

nal bridge to a CPU with a non-OCP interface (e.g., ARM9 processor [34]
with AMBA 2.0 AHB native interface). This profi le thus allows creation of
OCP master wrappers to native interfaces of simple CPU type masters
with multiple-request/multiple-data, read and write transactions.

 ! X-bus packet write profi le: Supports cacheable and non-cacheable instruc-
tion and data write traffi c between a CPU and the memories and register
interfaces of other slaves. Allows creation of OCP master wrappers to native
interfaces of CPU type masters (e.g., ARM11 CPU master with AMBA 3.0 AXI
native interface) with single-request/multiple-data, write-only transactions.

 ! X-bus packet read profi le: Supports cacheable and non-cacheable instruc-
tion and data read traffi c between a CPU and the memories and register
interfaces of other slaves. Allows creation of OCP master wrappers for
native interfaces of CPU type masters (e.g., ARM11 CPU [35] master with
AMBA 3.0 AXI native interface) with single-request multiple-data, read-
only transactions.

These profi les are useful in several ways such as simplifying the task of integrat-
ing OCP components from different vendors, reducing the learning curve when
applying OCP for standard purposes, simplifying logic needed to bridge an OCP

Transaction

TransferTransferTransfer

Phase Phase Phase

Timing informationGroup

Signal Signal Signal…

…

…

 FIGURE 3.35

 Hierarchy of elements that compose the OCP [15]
 Source: OCP-IP

3.2 Socket-Based On-Chip Bus Interface Standards

94 CHAPTER 3 On-Chip Communication Architecture Standards

component with another communication interface standard, improving compo-
nent maintenance, and easing test bench creation. Figure 3.36 shows an example
of an SoC design using the two types of profi les: the CPU and the CPU subsys-
tem make use of the bridging profi les, whereas the rest of the components use
the native OCP profi les. The X-bus packet read and X-bus packet write profi les
used by the CPU (that might internally support a native AMBA 3.0 AXI interface,
for instance) support cacheable and non-cacheable instruction and data traffi c
between the memories and register interfaces of other slaves. The CPU bus subsys-
tem (which might consist of a native AMBA 2.0 AHB interface, for instance) con-
nects to the OCP-based interconnect using the H-bus profi le, through an external
bridge. The MPEG2 decoder component uses multiple OCP interfaces. It has two
OCP master interfaces that make use of the block data fl ow profi le that is suitable
for managing pipelined access of defi ned-length traffi c (e.g., MPEG macro-blocks)
to and from memory. The reason for using two master interfaces is to improve
parallelism and achieve higher performance. The decoder also has an OCP slave
interface that uses the register access profi le, to allow the CPU to program its
operation. The DMA and media controllers also have OCP slave interfaces that use
the register access profi le for the same purpose. The DMA controller has an OCP
master interface that can use either a block data fl ow profi le or an OO system
interface profi le (TBD—to be defi ned in future revisions [15]) depending on the
amount of parallelism required. The media controller has an OCP master interface
that uses the sequential undefi ned length data fl ow profi le which is a good fi t
for the controller because it needs to communicate a data stream with a mem-
ory-based buffer. Finally, the shared synchronous dynamic random access memory
(SDRAM) controller optimizes bank and page accesses to SDRAM and can maxi-
mize performance (and minimize latency) by reordering requests. Therefore its
slave OCP interface uses the OO memory interface profi le (TBD—to be defi ned
in future revisions [15]).

CPU MPEG2
decoder DMA

OCP-Based interconnect

CPU bus
subsystem

H-bus profile
Bridge

DRAM
controller

Request

Response

OO memory
interface TBD

Register
access

Media
controller

Block data flow or OO
system interface TBD

Sequential undefined
length data flow

X-bus packet read

X-bus packet write

Bridge
Block data

flow
Register
access

UART USB PCI

 FIGURE 3.36

 Example of SoC using several OCP profiles [15]
Source: OCP-IP

95

 3.2.2 VSIA Virtual Component Interface
The virtual socket interface alliance (VSIA) VCI [14] is another point-to-point, syn-
chronous, socket-based bus interface standard. It defi nes three types of interfaces
having varying levels of complexity:

 1. Peripheral VCI (PVCI): Defi nes a simple handshake interface for data trans-
fers, with support for burst transfers, address bus widths up to 64 bits, and
data bus widths up to 32 bits.

 2. Basic VCI (BVCI): Superset of PVCI; adds support for SPLIT transactions,
additional burst modes (e.g., wrapped, fi xed), additional data transfer modes
(e.g., locked/exclusive read), and data bus widths up to 128 bits.

 3. Advanced VCI (AVCI): Superset of BVCI; adds additional data transfer modes
(e.g., new wrap, defi ned transfer modes), and support for advanced features
such as OO transaction completion and multiple threads.

As can be seen, each of the interfaces described above is an enhanced and
enriched version of the previous one. The interfaces proposed by the AMBA APB,
AHB, and AXI bus architecture standards can be considered as somewhat analo-
gous to the Peripheral, Basic, and AVCI interfaces, respectively. VCI actually shares
many parallels with the OCP 2.0 socket-based interface standard. Unlike OCP 2.0,
however, the VCI interface only contains data fl ow signals and does not address
issues pertaining to test and control. Since the data fl ow signals in the VCI inter-
face are quite similar to the OCP 2.0 interface signals (although AVCI has some
additional features not found in OCP 2.0; however these have yet to be tested
in silicon or verifi ed in any form), OCP 2.0 is generally considered a functional
superset of VCI.

 3.2.3 Philips Device Transaction Level Protocol
The Philips DTL standard [17] defi nes another point-to-point, synchronous data
transfer protocol. The DTL interface supports all the basic signals for single
and block (or burst) data transfers, error signaling, and subword operations.
Additionally, an extended DTL interface protocol specifi cation defi nes optional
application (or domain) specifi c extensions to the basic protocol. These exten-
sions include signals for:

 ! Addressing modes: Wrapped, fi xed, or decrementing addresses for block
transfers.

 ! 2-D block operations: Useful when operating on data stored in memory that
represents a large 2-D area such as a frame buffer, and smaller 2-D accesses
(such as a JPEG 8 " 8 block) are required.

 ! Secure operations : To indicate if a particular transaction is secure or not.
 ! Buffer management: To allow a component to request a fl ush of a write

buffer, or to request notifi cation when a certain data element reaches its
destination.

3.2 Socket-Based On-Chip Bus Interface Standards

96 CHAPTER 3 On-Chip Communication Architecture Standards

Four major applications or OCP-like profi les related to traffi c types are supported
by DTL. Each of these four profi les has requirements for signals that must be
implemented at the component interfaces. These profi les are presented below:

 1. Memory-mapped input/output (MMIO): For low bandwidth and latency
critical control traffi c.

 2. Memory-mapped block data (MMBD): For moving a block of data between
a CPU (or any other component) and memory. Examples include cache
line fi lls or cache line write-back on a CPU. This type of traffi c may be both
bandwidth and latency critical.

 3. Memory-mapped streaming data (MMSD): For moving a sequence of data
items between components and memory. Such traffi c is usually bandwidth
critical, while latency may be less important.

 4. Peer-to-peer streaming data (PPSD): For moving a sequence of data items
between two components. Like with the MMSD case, such traffi c is usually
bandwidth critical, while latency may be less important.

DTL is a proprietary interface standard (unlike OCP 2.0 and VCI which are open
standards) developed by Philips, and has been used in the popular Philips
Nexperia platform [29]. Although currently support for some of the more
advanced features such as SPLIT or OO transaction completion, semaphore type
operations, cache coherency, and read buffer management is not present, it is
planned to be incorporated in future revisions of the DTL specifi cation [17].

 3.3 DISCUSSION: OFF-CHIP BUS ARCHITECTURE STANDARDS
While the focus of this book is on on-chip bus-based communication architec-
tures, we include a brief discussion of off-chip bus architecture standards here for
the sake of completeness. Off-chip buses are used to connect an SoC with exter-
nal components, the most common of which are off-chip DRAM memory compo-
nents such as synchronous dynamic random access memory (SDRAM), dual data
rate DRAM (DDR DRAM), and Rambus DRAM (RDRAM). While on-chip embed-
ded DRAM is beginning to become more ubiquitous in SoCs, it is more expen-
sive. Applications with large memory requirements still rely on cheaper off-chip
memories to meet storage requirements. An important motivation for the design
of off-chip interconnects to connect an SoC with off-chip memory is the need to
reduce pin counts, because a large number of pins can signifi cantly increase pack-
aging costs and system complexity. Therefore, unlike on-chip buses that make use
of unidirectional multiplexed or AND–OR implementations, off-chip buses prefer
bidirectional tri-state implementations to reduce pin counts.

Several off-chip, shared bus standards such as S-100 [18], PC-AT [19], Multi-Bus
(II) [20], VME [20], PCI [21], and PCI-X (PCI Extended) [22] have been proposed
and used in designs. PCI has undoubtedly been the most popular standard in this
category, with almost the entire software infrastructure of the computer industry
tied to the PCI interconnect model. However, these shared, parallel off-chip inter-
connects have inherent limitations such as crosstalk, excessive circuit capacitive

97

loading, delays due to capacitive loads, high power dissipation, signal skew effects
due to large distances covered, and reliability issues. As performance requirements
of applications increase, higher bus clock speeds and shrinking process technol-
ogy make crosstalk and capacitive delays more signifi cant, and limit the maximum
bus clock speed achievable. To alleviate the problems faced by shared parallel
interconnects, switched parallel interconnect standards such as HyperTransport
 [23] and RapidIO [24] have been proposed, which use narrow, point-to-point
connections. HyperTransport, for instance, supports narrower widths between 2
and 32 bits, and higher clock frequencies up to 800 MHz. These switched, point-
to-point parallel interconnects solve the electrical loading, speed, and reliability
issues of shared parallel interconnects. However, crosstalk and signal skew are still
a problem. Switched serial interconnect standards such as PCIe (PCI Express) [25]
and Infi niband [26] use a single signal for transmission and can achieve very high
speeds, without suffering from any crosstalk effects. PCIe is fast becoming one of
the most dominant off-chip standards in system design, especially because of its
support for legacy PCI infrastructure. The emerging trend of using optical inter-
connects instead of copper-cabling for chip-to-chip interconnection is also well
suited to a serial communication approach. The interested reader is directed to
surveys of off-chip communication architectures by Mayhew and Krishnan [27]
and Sassone [28] for related discussions on this topic.

 3.4 SUMMARY
In this chapter, we presented the prevailing standards for on-chip communication
architectures. Standards are essential in order to promote IP reuse and reduce the
design time of the increasingly complex SoC designs today. On-chip bus-based
communication architecture standards defi ne the interface signals for components,
as well as bus logic components such as arbiters, decoders, and bridges that are
needed to implement the features of the proposed standard. We looked at some
of the popular on-chip bus architecture standards such as ARM ’s AMBA 2.0 and
3.0, IBM ’s CoreConnect, STMicroelectronics ’ STBus, Sonics ’ SMART Interconnect,
OpenCores ’ Wishbone, and Altera ’s Avalon. Another set of standards focuses on
defi ning the component interface, but not the architecture implementation (which
is left to the designer). These are the socket-based bus interface standards. Since
these standards only defi ne the component interface, the designer is free to use
either a proprietary, custom bus architecture implementation, or any one of the
bus architecture standards described above, such as AMBA 2.0/3.0 or CoreConnect.
Socket-based bus interface standards require additional adapter logic to interface
components to non-native bus architectures, and this can increase area, cost, and
delay. However, the benefi ts of improved IP reusability across designs and greater
fl exibility to explore (or change) diverse bus architecture implementations is also
substantial. We described some of the popular socket-based bus interface standards
such as OCP, VCI, and DTL in this chapter. Finally, we briefl y covered popular off-
chip buses and standards which are used to connect SoCs to external DRAM mem-
ory blocks and other SoCs.

3.4 Summary

98 CHAPTER 3 On-Chip Communication Architecture Standards

With a background on bus-based communication architectures in the last
chapter (Chapter 2), and a description of prevalent communication architecture
standards in this chapter, we now proceed to address the important problem of
understanding the on-chip communication architecture design space, to aid in
selecting the best communication architecture confi guration for an application.
The next chapter (Chapter 4) presents models for the performance estimation of
communication architectures. These models capture details of the communica-
tion architecture design space and allow designers to estimate the performance
of different communication architecture confi gurations. The subsequent chapter
(Chapter 5) presents models for power estimation of communication architec-
tures that allow designers to know more about the power characteristics of dif-
ferent communication architecture confi gurations. These performance and power
models for communication architectures are used as part of various techniques
(presented in Chapter 6) to select, confi gure and design a communication archi-
tecture that meets the requirements of a given application.

 Brief Discussion: Evolution of On-Chip Communication Protocols

As the trend for SoCs moves toward multiple processors on a chip, on-chip com-
munication protocols are continuously evolving. Most of the popular commu-
nication architecture (e.g., AMBA) and socket-based standards (e.g., OCP) have
evolved over the last few years to accommodate the need for high performance
and customizable on-chip data communication. Going forward, these standards
will likely continue to evolve further, to handle the many needs of multiprocessor
SoC (MPSoC) designs. Support for cache coherence mechanisms will be impor-
tant in the next generation communication protocols, as multiple processors will
frequently access shared memories both on and off the chip. The excessive power
consumption of complex communication architectures will also necessitate
more explicit support for dynamic power management, to switch off parts of the
communication architecture fabric when not in use via power/clock gating.
Finally, the number of on-chip communication standards has been growing over
the past few years, and will possibly continue to grow in the coming years, requir-
ing more emphasis on techniques to handle interface mismatches. Some recent
research in the area of handling interface mismatches between different protocols
is presented in Chapter 9.

 REFERENCES
 [1] ARM AMBA Specifi cation and Multi layer AHB Specifi cation (rev2.0), http://www.arm.com,

2001.

 [2] ARM AMBA 3.0 AXI Specifi cation, www.arm.com/armtech/AXI.

 [3] IBM CoreConnect Specifi cation, http://www.ibm.com/chips/techlib/techlib.nsf/product
families/CoreConnect_Bus_Architecture.

 [4] “ STBus Communication System: Concepts and Defi nitions, ” Reference Guide, STMicro
electronics, May 2003.

99

 [5] Sonics SMART Interconnect, http://www.sonicsinc.com.

 [6] Wishbone Specifi cation, http://www.opencores.org/wishbone.

 [7] Altera Avalon Interface Specifi cation, April 2006, http://www.altera.com/.

 [8] AMBA AHB Interconnection Matrix, www.synopsys.com/products/designware/amba_solu-
tions.html.

 [9] S. Pasricha, N. Dutt and M. Ben-Romdhane, “Constraint-driven bus matrix synthesis for
MPSoC, ” Asia and South Pacifi c Design Automation Conference (ASPDAC 2006),
Yokohama, Japan, January 2006, pp. 30–35.

 [10] S. Pasricha, Y. Park, F. Kurdahi and N. Dutt, “System-level power-performance trade-offs in bus
matrix communication architecture synthesis, ” International Conference on Hardware/
Software Codesign and System Synthesis (CODES $ ISSS 2006), Seoul, Korea, October 2006
pp. 300–305..

 [11] S. Pasricha, N. Dutt and M. Ben-Romdhane, “Extending the transaction level modeling
approach for fast communication architecture exploration, ” Design and Automation
Conference (DAC 2004) , San Diego, CA, June 2004, pp. 113–118.

 [12] S. Pasricha , N. Dutt , E. Bozorgzadeh and M. Ben-Romdhane , “ FABSYN: Floorplan-aware bus
architecture synthesis ,” IEEE Transactions on Very Large Scale Integration Systems
(TVLSI) , Vol. 14 , No. 2 , March 2006 , pp. 241 – 253 .

 [13] R. Ho, K. W. Mai and M. A. Horowitz , “The future of wires ,” Proceedings of the IEEE , Vol. 89 ,
2001 .

 [14] VSI Alliance™ On-Chip Bus Development Working Group, Virtual Component Interface
Standard Version 2 (OCB 2 2.0), April 2001.

 [15] Open Core Protocol International Partnership (OCP-IP). OCP Datasheet, Release Version
2.0/2.1, http://www.ocpip.org.

 [16] Open Core Protocol International Partnership (OCP-IP). OCP Datasheet, Release Version
1.0, http://www.ocpip.org.

 [17] Philips Semiconductors. Device Transaction Level (DTL) Protocol Specifi cation, Version 2.4,
February 2005.

 [18] “ IEEE Standard 696 Interface Devices, ” IEEE Computer Society, June 1982.

 [19] “ PC/104 Specifi cation, ” PC/104 Embedded Consortium, August 2001.

 [20] J. Zalewski , Advanced Multimicroprocessor Bus Architectures , IEEE Computer Society
Press , 1995 .

 [21] PCI Special Interest Group, “ PCI Local Bus Specifi cation, Revision 2.2, ” December 1998.

 [22] PCI Special Interest Group, “ PCI-X 2.0 Protocol Specifi cation Revision 2.0, ” July 2003.

 [23] HyperTransport Consortium, “HyperTransport Technology: Simplifying System Design, ”
October 2002, http://www.hypertransport.org.

 [24] RapidIO Trade Association, “RapidIO Technical Whitepaper Rev 3, ” http://www.rapidio.org.

 [25] PCI Special Interest Group, “ PCI Express Base Specifi cation Revision 1.0a, ” April 2003.

 [26] Infi niband Trade Association, “ Infi niband Architecture Specifi cation, Release 1.0, ” October
2000. http://www.infi nibandta.org.

 [27] D. Mayhew and V. Krishnan, “PCI express and advanced switching: evolutionary path to
building next generation interconnects, ” in Proceedings of 11th Symposium on High
Performance Interconnects , 2003, pp. 21–29.

 [28] P. Sassone, “Commercial trends in off-chip communication, ” Technical Report, Georgia
Institute of Technology, May 2003.

References

100 CHAPTER 3 On-Chip Communication Architecture Standards

 [29] J. A. de Oliveira and H. van Antwerpen , “The Philips Nexperia digital video platform ,” Winning
the SoC Revolution , G. Martin and H. Chang (Eds.) , Kluwer Academic Publishers , 2003 .

 [30] PrimeCell ® AXI Confi gurable Interconnect (PL300) Technical Reference Manual, http://
www.arm.com/products/solutions/AXISystemComponents.html.

 [31] PrimeCell ® AXI Confi gurable Interconnect (PL301) Technical Reference Manual, http://
www.arm.com/products/solutions/AXISystemComponents.html.

 [32] Avalon Memory Mapped Interface Specifi cation, May 2007, http://www.altera.com/.

 [33] Avalon Streaming Interface Specifi cation, June 2007, http://www.altera.com/.

 [34] ARM9 Processor Family, http://www.arm.com/products/CPUs/families/ARM9Family.html.

 [35] ARM11 Processor Family, http://www.arm.com/products/CPUs/families/ARM11Family.
html.

