
17

CHAPTER

Buses are one of the most widely used means of communicating between com-
ponents in a system-on-a-chip (SoC) design. The simplicity and effi ciency of
transferring data on buses has ensured that they remain the preferred intercon-
nection mechanism today. A bus connects possibly several components with a
single shared channel. The shared channel can be physically implemented as a
single wire (i.e., a serial bus or a set of wires) which makes up a parallel bus. This
parallel bus is the typical implementation choice for a bus in almost all widely
used on-chip bus-based communication architectures. Although a bus is essen-
tially a broadcast medium, in most cases data transmitted on the bus is meant for
a particular component and is ignored by the other components. Any data trans-
mitted by a component moves from its output pins to the bus wires and is then
received at the input pins of the destination component. The destination compo-
nent typically sends an acknowledgement back to the transmitting component to
indicate if the data was received. A bus protocol is used to explicitly defi ne a com-
munication transaction through its temporal (e.g., duration and sequence of mes-
sages exchanged) and spatial (e.g., message size) characteristics. The bus protocol
also determines which component may access the shared bus if multiple requests
to send (or receive) data appear on the bus at the same time. Bus-based com-
munication architectures usually consist of one or more shared buses as well as
logic components that implement the details of a particular bus protocol. In this
chapter, we review the basic concepts of bus-based communication architectures.
Section 2.1 presents the terminology and major components used in describing
bus-based communication architectures. In Section 2.2, we discuss the organiza-
tion and characteristics of buses. Section 2.3 presents different types of data trans-
fers on buses. Section 2.4 outlines the diverse topologies resulting from bus-based
communication architecture implementations. Section 2.5 briefl y describes issues
arising from the physical implementation of bus wires (or signals). Finally, Section
2.6 discusses deep submicron (DSM) effects that are becoming increasingly domi-
nant for on-chip buses with complementary metal-oxide semiconductor (CMOS)
technology scaling.

 Basic Concepts of Bus-Based
Communication Architectures 2

18 CHAPTER 2 Bus-Based Communication Architectures

 2.1 TERMINOLOGY
We begin by reviewing the basic terminology used to describe bus-based com-
munication architectures, and systems deploying these architectures. Figure 2.1
shows a simple SoC design in which several (computational) components are
interconnected using a bus-based communication architecture. Components
which initiate and control read and write data transfers are referred to as mas-
ters. The Processor and DSP (digital signal processor) components in Fig. 2.1 are
examples of master components that read/write data from/to other components
in the system. Every master component is connected to the bus using a set of
signals which are collectively referred to as a master port. The components that
simply respond to data transfer requests from masters (and cannot initiate trans-
fers themselves) are referred to as slaves, and have corresponding slave ports. The
three memory blocks in Fig. 2.1 are examples of slaves that can handle requests
for data read and write from other components (e.g., Processor, DSP), but cannot
initiate such transfers themselves. The component ports are actually a part of its
interface with the bus. An interface can be simple, consisting merely of the set of
connecting wires to the bus (i.e., master or slave ports). Or it could be more com-
plex, consisting of buffers, frequency converters, etc. in order to improve commu-
nication performance.

Decoder

Bus 1

Arbiter
Memory 1 Memory 2

DMA
DSP

Memory
controller Memory 3

Bus 2

Decoder Arbiter

Slave I/F Slave I/F

Slave I/FMaster/Slave I/F

Master I/F

Master/Slave I/F

I/F-Interface

Off-chip
memory

Processor

Master I/F

Bridge

Slave I/F

Master I/F

 FIGURE 2.1

 Example of an SoC with a bus-based communication architecture

19

Some components can have both master and slave ports, which means that
they can act as both masters and slaves. These components are master/slave
hybrid components. For instance, the DMA (direct memory access) component
in Fig. 2.1 has a slave port that allows the Processor to write into (and read from)
the DMA confi guration register fi le, in order to initialize and confi gure it. Once
confi gured, the DMA component uses its master port to initiate and control data
transfers between memory blocks (which would otherwise have been managed
by the Processor; as a result the Processor is freed up to perform other activity
which typically improves system performance). Similarly, the Memory Controller
component has a slave port which is used by the DSP component to initialize
and confi gure its functionality. Once confi gured, the Memory Controller can initi-
ate and control data transfers with external memory components connected to it,
using its master port.

In addition to the wires, a bus-based communication architecture also consists
of logic components such as decoders, arbiters, and bridges. A decoder is a logic
component that decodes the destination address of a data transfer initiated by a
master, and selects the appropriate slave to receive the data. It can either be a
separate logic component, or integrated into a component interface. An arbiter
is a logic component that determines which master to grant access to the bus, if
multiple masters access the bus simultaneously. Typically, some form of a priority
scheme is used, to ensure that critical data transfers in the system are not delayed.
Finally, a bridge is a logic component that is used to connect two buses. It can
have a fairly simple implementation if it connects two buses with the same pro-
tocols and clock frequencies. However, if the two buses have different protocols
or clock frequencies, some form of protocol or frequency conversion is required
in the bridge, which adds to its complexity. A bridge connects to a bus using a
master or a slave port, just like any other component. The type of port used to
connect to a bus depends on the direction of data transfers passing through it. For
instance, in the example shown in Fig. 2.1 , the DMA and Processor components
on Bus 1 initiate and control data transfers to Bus 2 by sending data to the slave
port of the bridge on Bus 1, which transfers it to its master port on Bus 2 and
sends the data to its destination. Since the DSP and Memory Controller do not
initiate and control data transfers to components on Bus 1, a single bridge is suf-
fi cient as shown in Fig. 2.1 . However, if these components needed to transfer data
to Bus 1, another bridge with a slave port on Bus 2 and a master port on Bus 1
would be required.

 2.2 CHARACTERISTICS OF BUS-BASED COMMUNICATION
ARCHITECTURES

Bus-based communication architectures are defi ned by various architectural and
physical characteristics that can have many different implementations. These
implementation choices have trade-offs that can signifi cantly affect the power,
performance, and occupied area of the communication architecture. In this

2.2 Characteristics of Bus-Based Communication Architectures

20 CHAPTER 2 Bus-Based Communication Architectures

section, we describe the major characteristics of bus-based communication archi-
tectures and discuss some of their common implementation choices.

 2.2.1 Bus Signal Types
Bus signals (or wires) are broadly classifi ed into three categories, as shown in Fig.
2.2 . Address signals are used to transmit the address of the destination for a data
transfer on the bus. The number of signals used to transmit the address is typically
a power of 2 (common values are 16, 32, or 64) and referred to as the address
bus width. However, in some cases, this number can also be an arbitrary value
(i.e., not a power of 2), depending on the number of components in a system.
The address signals are collectively referred to as the address bus. Although most
systems have a single shared address bus for both reads and writes, it is possible
to have separate address buses for read and write data transfers. Having multiple
address buses improves the concurrency in the system, since more data transfers
can occur in parallel. However, this comes at the cost of larger number of wires
which can increase area and power consumption.

 Data signals are used to transmit data values to their destination addresses.
The data signals are collectively referred to as the data bus. The typical number
of signals in a data bus is 16, 32, 64, 128, 256, 512, and 1024 signals (called data
bus width). However, this number can vary and have other values depending
upon specifi c requirements of systems. The choice of data bus width is important
because it determines whether any packing or unpacking of data is necessary at
component interfaces. For instance, consider a case where the memory word size
of a memory component is 64 bits and the data bus width is 32 bits. Then, every
time a master requests data from the memory, the read data needs to be unpacked
(or split) into two data items of 32 bits in width before being transmitted onto the
bus. The data also needs to be packed (or merged) at the master interface before
being sent to the master component. The packing and unpacking of data at the inter-
faces introduces an overhead in terms of power, performance, and area of the inter-
face logic. Alternatively, if the data bus width was set to 64 bits, no such packing
and unpacking of data would be required. Thus the size of the data bus is typically
application specifi c, and in many cases depends on the memory word size of the
memory components used in the system. Much like the address bus, the data buses
can either be implemented as a single shared bus for both reads and writes, or sepa-
rate data buses for reads and writes. Separate data buses improve concurrency and
performance in the system, at the overhead of additional bus wire area and power

Address signal lines

Data signal lines

Control signal lines

Bus

 FIGURE 2.2

 Classification of bus signals

21

consumption. It is also possible to combine the data and address buses by multi-
plexing them over a single set of wires. This may be useful for small, low cost SoCs
where high performance communication is not as important as low area footprint,
simplifi ed wire routing, and low pin counts at component interfaces.

 Control signals are used to send information about the data transfer, and are
typically bus protocol specifi c. Request and acknowledge signals are the most
common control signals, which transmit a data transfer request from a master,
and the acknowledgment for a request or data received, respectively. Data size (or
byte enable) control signals indicate the size of data being transmitted on the bus
(particularly useful when the size of the data being transmitted is smaller than
the data bus width). Sometimes slaves can signal an error condition to the master
over special status control signals, if data cannot be read or written at the slave.
Frequently, when multiple data items (called a data burst) need to be transmitted
on the data bus by a component, there are control signals to indicate the number
of data items to the destination. There are control signals that can transmit infor-
mation about the source of the transmitted data such as a unique ID value iden-
tifying the transmitting component. Control signals can also transmit information
about the data being transmitted to the destination, such as whether the data is
cacheable, bufferable, write-through, or write-back.

 2.2.2 Physical Structure
We now look at the structural implementation details of the shared bus signals.
Traditionally, shared buses have been implemented using tri-state buffers that
drive bidirectional lines, as shown in Fig. 2.3 (a). Tri-state implementations of buses
are commonly used in off-chip/backplane buses. The advantage of tri-state bidi-
rectional buses is that they take up fewer wires and have a smaller area footprint.
However, due to higher power consumption, higher delay (which can limit per-
formance), and problems with debugging tri-state buffers, their use is restricted
in modern bus-based on-chip communication architectures. Other effi cient (and

Master 1 Slave 1

Slave I/FMaster I/F

BUFFER BUFFER

Control

Bus

Control

Master 2 Slave 2

Slave I/FMaster I/F

BUFFER BUFFER

ControlControl

 FIGURE 2.3 (a)

 Shared bus implementation alternatives: tri-state buffer based bidirectional signals

2.2 Characteristics of Bus-Based Communication Architectures

22 CHAPTER 2 Bus-Based Communication Architectures

more commonly used) alternatives to the tri-state buffer implementation are a
multiplexer (MUX) based implementation, as shown in Fig. 2.3 (b) and an AND–OR
structure as shown in Fig. 2.3 (c).

 2.2.3 Clocking
An important characteristic of buses is the type of clocking used for data trans-
fers. A bus that includes a clock signal as one of the control signals is called a
synchronous bus. Transfers between components usually require some form of
handshaking. An example of a synchronous bus is shown in Fig. 2.4 (a), where a

M
U

X

M
U

X

M
as

te
r

1

M
as

te
r

I/F

S
la

ve
 1

S
la

ve
 I/

F

M
as

te
r

2

M
as

te
r

I/F

S
la

ve
 2

S
la

ve
 I/

F

Control

Control

 FIGURE 2.3 (b)

 MUX-based

Master 1 Slave 1

Slave I/FMaster I/F

Master 2 Slave 2

Slave I/FMaster I/F

AND AND AND AND

OR

Control Control Control Control

 FIGURE 2.3 (c)

 AND-OR bus

23

data item is written by a master and is received by its destination in a total of
two clock cycles. The master sends the address (ADDR) in the fi rst clock cycle,
and asserts the WRITE control signal which indicates to the destination that the
master wants to write data to it. The data to be written is sent at the beginning
of the second clock cycle, and is sampled off the bus by the destination slave
at the rising edge of the third clock cycle. The slave can then optionally assert a
response control signal (RESP) sending the bit value that corresponds to an OK,
which indicates to the master that there was no error and the write proceeded as
intended. The clock signal is essential for synchronization purposes. Synchronous
buses enable fast data transfers, but can require frequency converters at compo-
nent interfaces, since not all components connected to the bus can be expected
to run at the same clock frequency as the bus. Indeed, in modern bus-based SoC
designs, processors typically run at a clock frequency that is two to four times the
frequency of the bus clock. It might also be required to pipeline the synchronous
bus by inserting register slices (or buffers) [1] on it, because the signal delay for
long wire lengths can actually exceed the bus clock cycle time [2]. In such cases,
the register slices allow buffering of data to ensure that the destination can still
sample the data as expected at the end of a clock cycle (although not at the end
of the same cycle in which the data was transmitted). As an example, consider
a synchronous bus clocked at a frequency f ! 100 MHz. A signal on the bus has
1/f ! 10 ns to travel from source to destination. If the signal delay on this bus is
20ns, then a register slice inserted in the middle of the bus allows the signal to be
buffered at the end of the fi rst cycle, and then reach the destination at the end of
the next cycle. This is discussed in more detail in Section 2.5. Most standard bus-
based communication architectures [1, 3–5] (described in more detail in Chapter
3) use synchronous buses, since they provide high data throughput performance.
Synchronous buses are almost always used in the critical path of an SoC design,
such as the processor–memory interconnection.

2.2 Characteristics of Bus-Based Communication Architectures

CLK

Cycle 1 Cycle 2

ADDR

DATA

0xffff0000

0x10

WRITE

 FIGURE 2.4 (a)

 Clocking strategies for buses: synchronous bus

24 CHAPTER 2 Bus-Based Communication Architectures

In an asynchronous bus, shown in Fig. 2.4 (b), no clock signal is present in the
control signals of the bus. In this case, bus synchronization occurs with the help
of a handshake protocol that uses request-acknowledgement signals to ensure that
the data transfer was completed successfully. For instance, for the example in Fig.
2.4(b) in which a master must write a data to a slave, the address (ADDR) and data
(DATA) for the write data transfer is driven onto the bus by the master, along with
a control signal to indicate a write transaction (WRITE). The master also asserts
the request (REQ) control signal. When the destination slave sees the request sig-
nal, it samples the data off the bus, and then sends an acknowledgement (ACK)
signal to inform the master that the data was received. The transmitting master
then lowers the request (REQ) signal. The handshaking between the source and
destination components is usually more extensive in asynchronous buses than in
synchronous buses. An example of an asynchronous bus is the MARBLE bus, pro-
posed by Bainbridge and Furber [6]. Asynchronous buses are typically slower than
synchronous buses because of the additional overhead of the handshaking pro-
tocol, used for synchronization. They also require additional synchronization sig-
nals. However, they do not need additional frequency converters like synchronous
buses and thus consume less area than synchronous buses. Asynchronous buses
also do not suffer from clock skew (a phenomenon in which the clock signal from
the clock arrives at different components at different times, causing potential tim-
ing errors) or the overhead of clock power dissipation, unlike synchronous buses.

 2.2.4 Decoding
Whenever data needs to be transferred on a shared bus, the source component
transmits the address of the destination component and the data. Each component
in an SoC design is typically assigned an address map (i.e., a range of addresses).
It is the job of a decoder to decode the address and select the appropriate desti-
nation component to receive the data. Decoding can be implemented either in a
centralized or a distributed manner. Figure 2.5 (a) shows a centralized implemen-
tation of a decoder. The decoder takes the address of a data transfer issued by a

ADDR

DATA

0xffff0000

0×10

WRITE

ACK

REQ

 FIGURE 2.4(b)

 Asynchronous bus

25

master as its input and then sends a select signal to the appropriate slave com-
ponent to indicate that data needs to be read or written to the slave. The central-
ized implementation has the advantage that minimal change is required if new
components are added to the system, which makes this scheme easily extensi-
ble. Another implementation scheme for the decoder is the distributed decoding
approach, shown in Fig. 2.5 (b). All the slaves have their own separate decoders
in this scheme. When the address is transmitted on the shared bus by the master,
the decoders at every slave interface decode the address to determine if the trans-
fer is intended for them. Such a distributed scheme has the advantage of utilizing
fewer signals compared to the centralized approach, which needs extra signals
to connect the centralized decoder to every slave on the bus. However, there is
more hardware duplication in the distributed case, because every slave on the bus
now decodes the address, as opposed to a single decoder decoding the address
in the centralized scheme. Thus, distributed decoding usually requires more logic

Processor

DecoderArbiter

Memory 1 Memory 2

DMADSP

Slave I/F Slave I/FMaster I/F

Master/Slave I/FMaster I/F

 FIGURE 2.5 (a)

 Different implementation strategies for decoder and arbiter: centralized

 FIGURE 2.5 (b)

 Distributed

Processor

Decoder

Memory 1 Memory 2

DMADSP

Slave I/F Slave I/FMaster I/F

Master/Slave I/FMaster I/F

DecoderArbiter

Arbiter/DecoderArbiter

2.2 Characteristics of Bus-Based Communication Architectures

26 CHAPTER 2 Bus-Based Communication Architectures

and occupies more area. Also, for every new component added to the bus or in
case of a change in the address map, changes might be required in the decoders
at every slave interface.

 2.2.5 Arbitration
It is possible that two or more masters on a shared bus might initiate a data trans-
fer at the same time. Since the shared bus can only handle a single data transfer
at any given time, an arbitration mechanism is needed to determine which mas-
ter gets to proceed with its data transfer, and which has to wait. An arbiter is a
component on the shared bus that uses certain criteria to determine which mas-
ter gains access to the bus, if more than one master request access to it simul-
taneously. The criteria used to determine which master gains access to the bus
is called the arbitration scheme. Every time a master needs to transfer data, it
needs to fi rst request the arbiter to grant it access to the bus. The arbiter uses
its arbitration scheme to determine if the master is eligible to get access to the
bus, and only when the arbiter signals the master to proceed can the master initi-
ate the data transfer. Like the decoder, an arbiter can be implemented in either
a centralized or a distributed manner. Figure 2.5 (a) shows the case of an arbiter
implemented in a centralized confi guration, while Fig. 2.5 (b) shows the arbiter
in a distributed confi guration. The trade-offs for the two schemes are the same as
for the decoder. It should be noted that distributed arbitration for the more
complex arbitration schemes can be more complicated, and may require synchro-
nization signals between the arbiter logic at the interface of every master on the
shared bus.

There are several arbitration schemes that are commonly used in bus-based
communication architectures. Some of the basic underlying requirements for an
arbitration scheme are that it should guarantee fairness of access, ensure that criti-
cal data transfers are completed as soon as possible, and prevent any starvation
scenarios (for instance, due to a request from a master never getting access to the
bus, which stalls the master execution). One of the most commonly used arbitra-
tion schemes is the static priority (SP) scheme, in which masters on a bus are
assigned fi xed priority values. The master having the highest priority always gets
access to the bus. The SP scheme can be implemented in a pre-emptive or a non-
pre-emptive manner. In a pre-emptive implementation, an ongoing lower priority
data transfer is terminated immediately without being completed if a request for
bus access is received from a higher priority master. In a non-pre-emptive imple-
mentation, the ongoing lower priority data transfer is allowed to complete before
the bus is granted to a higher priority master. The SP scheme is simple to imple-
ment and can provide high performance by ensuring that critical data transfers,
such as between processor and memory, always get higher priority. However,
this scheme must be implemented carefully as it can lead to starvation of lower
priority masters, which might never be able to get access to the bus if there are
frequent bus accesses by higher priority masters. The round-robin (RR) arbitra-
tion scheme can ensure that there is no starvation in the system. In this scheme,
access to the bus is granted in a circular (round-robin) manner, to every master on

27

the bus, which guarantees that every master will eventually get access to the bus.
A master relinquishes control over the bus when it no longer has any data to send
(or has held the bus for the maximum allowed time) and passes the ownership
to the next master in line. The RR scheme is also simple to implement, and can
ensure equitable bandwidth distribution on a bus, but suffers from a drawback
compared to the SP scheme, in that critical data transfers may have to wait a long
time before they can proceed. The time division multiple access (TDMA) arbitra-
tion scheme is another popular scheme that can guarantee a fi xed, higher bus
bandwidth to masters with higher data transfer requirements, while also ensuring
that lower priority masters do not starve. In this scheme, each master is assigned
time slots (or time frames) of varying lengths, depending on the bandwidth
requirements of the master. The choice of number of time slots to assign to each
master is extremely important. The length of the allocated time frame should be
long enough to complete at least a single data transfer, but not so long that other
critical data transfers have to wait for a long time to get access.

While the schemes discussed above are essentially single level schemes, more
complex arbitration schemes have also been proposed. For instance, it is possi-
ble to combine two arbitration schemes to create a two level arbitration scheme:
Sonics SMART Interconnect [7] (described in Chapter 3) makes use of a two level
TDMA/RR arbitration scheme. In this scheme, a TDMA arbitration scheme allo-
cates time slots to various masters. If a master does not have any data to transfer
during its time slot, a second level RR scheme selects another master to grant bus
access to. Such a scheme thus enables better utilization of the bus, compared to
the TDMA scheme, at the cost of a more complex implementation requiring more
logic and occupying more area. Another complex, but highly effi cient arbitration
scheme is the dynamic priority (DP) scheme that can dynamically vary the pri-
orities of the masters at runtime (i.e., while the system is executing). Unlike the
SP scheme, additional logic is used to analyze data traffi c at runtime, and the pri-
orities are dynamically adapted to the changing traffi c profi les of an application.
Such a scheme can ensure better performance since it can effi ciently track chang-
ing traffi c profi les and ensure that masters that need to send larger amounts of
data get higher priority. However, the implementation cost of such a scheme can
be high, requiring several registers to keep track of priorities and data traffi c pro-
fi les at various points during execution. A simpler variant of the DP scheme is the
programmable priority (PP) scheme, which allows the application to write into
the arbiter ’s programmable registers and set the priority for masters on the bus
dynamically.

Since arbiters are invoked for every transfer on the bus, they are considered
to be in the critical path of a bus-based communication architecture and must
be designed with great care. An arbiter with a complex arbitration scheme imple-
mentation, that takes more than one cycle to make a decision, can severely reduce
performance. While it might make sense to use a complex multi-cycle arbitration
scheme for some applications, in other cases better performance can be achieved
by using a simpler, single cycle arbitration scheme. Sometimes pipelining a com-
plex multi-cycle arbiter implementation can also improve performance. These
scenarios motivate the need to profi le the application early in the design fl ow, to

2.2 Characteristics of Bus-Based Communication Architectures

28 CHAPTER 2 Bus-Based Communication Architectures

explore and select an appropriate arbiter implementation. Models for such per-
formance exploration of bus-based communication architectures are presented in
more detail in Chapter 4.

 2.3 DATA TRANSFER MODES
Typically, data can be transferred over a bus using one of possibly several trans-
fer modes. While some of the basic transfer modes are supported by all standard
bus-based communication architectures, other modes are more specialized and
specifi c to certain standard bus protocols. In this section, we review some of the
main data transfer modes used in bus-based communication architectures.

 2.3.1 Single Non-pipelined Transfer
The simplest form of data transfer on a bus is the single non-pipelined data trans-
fer mode. In this mode, the master fi rst requests access to the bus from the arbiter,
and when it is granted access, sends out the address in the next cycle, and then
writes data in the subsequent cycle (for a write data transfer) or waits for the
slave to send the read data in the subsequent cycle(s). Figure 2.6 shows an exam-
ple of a master performing two single read data transfers in a sequential manner.
The master requests access to the bus from the arbiter at the beginning of the
fi rst cycle by asserting the BUSREQ control signal. The arbiter grants access to
the master in the second cycle by asserting the GRANT control signal. Once the
master sees that it has been granted access to the bus, it sends out the address
(A1) of the slave to read data from at the beginning of the third cycle. The slave
samples the read request at the beginning of the fourth cycle and then sends back
the requested data (D_A1) in the same cycle. The read data is sampled off the bus
by the master at the beginning of the fi fth cycle. To read another data from the
slave, the master again requests access to the bus from the arbiter, at the beginning

T1
CLK

ADDR

RDATA

A1 A2

D A1 D A2

BUSREQ

GRANT

T2 T3 T4 T5 T6 T7 T8

 FIGURE 2.6

 Single non-pipelined data transfer mode

29

of the fi fth cycle. The sequence of events that follow are similar to that of the fi rst
data transfer, and the master samples the data from the slave at the beginning of
the ninth clock cycle. Note that unlike in this example, slaves typically take mul-
tiple cycles to return data and in some cases even to write data. Also note that in
the case where only one master is connected to the bus, arbitration is not needed
since there is no possibility of simultaneous bus transfers. In such a case, the fi rst
two cycles (bus request and grant) are absent and the data transfer will take only
two cycles. Conversely, it is possible that for the case when arbitration is required
(i.e., when there are multiple masters connected to the bus), the arbiter takes
multiple cycles to decide which master to grant bus access to, as discussed earlier.
Such a scenario is possible when the arbiter makes use of a complex arbitration
scheme, such as the DP-based one; or for the case when the bus clock frequency
is so high that it takes multiple clock cycles for the arbiter to get a response from
its chosen arbitration scheme. For the example shown in Fig. 2.6 , the single non-
pipelined data transfer mode takes as many as four cycles to complete a single
read data transfer, under the assumption that arbitration is needed and takes a
single cycle. Single non-pipelined transfers, as described in this section, typically
occur in bus-based communication architectures with multiplexed address and
data buses. We now look at transfer modes that allow us to reduce this number
of cycles.

 2.3.2 Pipelined Transfer
The pipelined data transfer mode overlaps the address and data phases of mul-
tiple data transfers to improve bus performance (i.e., bus throughput). Figure 2.7
shows an example of a pipelined data transfer for two write data transfers initi-
ated by separate masters. At the beginning of the fi rst cycle, both masters (M1,
M2) request access to the bus. The arbiter grants master M1 access to the bus
in the same cycle. Master M1 then sends the address of its destination slave (A1)
in the second cycle and the data to write (D_A1) in the third cycle. The arbiter
grants access to the bus to the second master M2, even before its write transfer
is fi nished. This allows M2 to send the address of its destination slave (A2) in the
third cycle. Notice that the address phase of the transfer by master M2 overlaps
with the data phase of master M1. Finally, master M2 sends the write data in the
fourth cycle, to complete the transfer. Such an overlapped transfer improves bus
utilization and reduces the time for a data transfer. Pipelined transfers typically
require a more complex arbiter implementation that can perform pipelined (or
overlapped) arbitration. Additionally, pipelined transfers are only possible in bus
implementations with separate address and data buses (i.e., with no multiplexing
of address and data signals).

 2.3.3 Burst Transfer
We saw in Fig. 2.6 that multiple data transfers from the same master required
arbitration for every individual data transfer. The burst transfer mode improves
bus performance by requesting arbitration only once for multiple data transfers.

2.3 Data Transfer Modes

30 CHAPTER 2 Bus-Based Communication Architectures

Figure 2.8 (a) shows an example of a non-pipelined, burst data transfer by a mas-
ter. The scenario depicted has a master needing to write four data items to a slave
on the bus. At the beginning of the fi rst cycle, a master requests access to the
bus for a “burst ” of four data items, and is granted the access by the arbiter at
the beginning of the second cycle. Typically, control signals (not shown in the fi g-
ure) from the master inform the arbiter of the length of the burst (four in this
case). The master then proceeds to send the address of the fi rst data (A1) item
in the third cycle, and then the data to write to the slave (D_A1) in the fourth
cycle. Since the arbiter has already granted bus access to the master for a burst
of four data items, re-arbitration at this point is not required, and the master sim-
ply proceeds to send the address of the next data item (A2) in the burst at the
beginning of the fi fth cycle. The data transfer continues till all four data items have
been sent to the slave. As can be seen from Fig. 2.8 (a), the overhead of arbitration
for each data item sent by the master is avoided in a burst transfer, which signifi -
cantly reduces data transfer time, compared to the single transfer mode shown in
Fig. 2.6 . Performance can be improved even further if pipelining is allowed within
the burst transfer. Figure 2.8 (b) shows the same case as Fig. 2.8 (a) where a master

T1 T2 T3 T4 T5
CLK

BUSREQ_M1

BUSREQ_M2

GRANT_M1

GRANT_M2

ADDR

WDATA

A1 A2

D_A1 D_A2

 FIGURE 2.7

 Pipelined data transfer mode

31

sends four data items to a slave, but this time the address and data phases of the
data transfers within the burst are overlapped. This pipelined burst mode reduces
the data transfer time compared to the non-pipelined burst mode in Fig. 2.8 (a),
and thus considerably improves bus utilization and performance.

 2.3.4 Split Transfer
During a data transfer on a bus, it is possible that a slave can take multiple cycles
to return the requested data or write the data. Since the bus in such a case is typi-
cally held by a master and no other master can gain access to it till the transfer is
completed, the bus remains idle for multiple cycles till the slave completes the
transfer. Such a scenario results in under-utilization of the bus and reduces perfor-
mance. A split transfer [4] is a special type of transfer mode that can improve bus
utilization in such cases by “ splitting ” the data transfer and allowing the idle cycles
that would otherwise be spent waiting for the slave to be utilized for data trans-
fers by other masters. A split transfer mode typically works as follows. When a data

T1
CLK

BUSREQ

GRANT

ADDR

WDATA D_A2D_A1 D_A3 D_A4

A1 A2 A3 A4

T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

 FIGURE 2.8 (a)

 Example of master writing four data items in burst transfer mode: non-pipelined burst transfer
mode

 FIGURE 2.8 (b)

 Pipelined burst transfer mode

T1
CLK

BUSREQ

GRANT

ADDR

WDATA D_A2D_A1 D_A3 D_A3

A1 A2 A3 A4

T2 T3 T4 T5 T6 T7 T8

2.3 Data Transfer Modes

32 CHAPTER 2 Bus-Based Communication Architectures

transfer occurs, a slave can decide to issue a SPLIT response to the arbiter if it
believes that the transfer will take a large number of cycles to perform. Once the
arbiter receives a SPLIT signal from a slave, it masks the request from the master
that initiated the transfer (preventing the master from getting any further access
to the bus) and uses its arbitration scheme to grant bus access to one of the other
masters potentially waiting to initiate data transfers on the bus. Later, when the
slave is ready to complete the transfer, it signals the arbiter to “un-split” the master.
The arbiter un-masks the request from the master, and in due time the master gets
access to the bus again. The slave can then fi nally complete the transfer. The split
transfer mode thus allows the idle cycles in a data transfer to be utilized for other
data transfers, and is therefore an effective mechanism for improving the commu-
nication performance in bus-based systems. Of course a prerequisite for using this
transfer mode is the presence of split capable slaves and arbiters.

 2.3.5 Out-of-Order Transfer
An extension of the SPLIT transfer mode described above is to allow multiple
transfers from different masters, or even from the same master, to be SPLIT by
a slave and be in progress simultaneously on a single bus. This is the basic idea
behind out-of-order (OO) data transfers [1]. In this mode, masters can initiate data
transfers without waiting for earlier data transfers to complete, which improves
system performance because multiple data transfers can be processed in paral-
lel. Each data transfer has an ID associated with it, and can complete in any order.
This implies that even if a master issues two data transfers, in a sequential manner,
it is possible for the second data transfer to complete before the fi rst one. Data
transfers having the same ID must complete in the same order in which the mas-
ter issued them. However, data transfers originating from different masters or from
the same master but having different IDs have no ordering restrictions and can
complete in any order. This ability to complete data transfers out of order means
that data transfers to faster memory blocks can be completed without waiting for
earlier transfers to slower memory blocks. As a result, bus utilization and overall
system performance are improved signifi cantly.

Predictably, there is overhead involved in the implementation of such an
advanced and complex data transfer scheme. Firstly, additional signals are needed
to transmit IDs for every data transfer in the system. Secondly, master interfaces
need to be extended to handle data transfer IDs and be able to reorder received
data. Thirdly, slaves require additional logic at their interface to decode and pro-
cess IDs, and ensure that the proper data transfer ordering is maintained. The
read (or write) data reordering depth is a parameter that specifi es the maximum
number of read (or write) data transfers pending in the slave that can be reor-
dered. Larger reordering depths can signifi cantly improve performance, but also
require more logic and increase system cost. Therefore, a designer must be care-
ful in deciding a value for this parameter. There is typically a maximum value of
reordering depth beyond which the performance does not improve for a given
application [8]. This threshold corresponds to the maximum level of data traffi c
parallelism in the application, and can be obtained after performance profi ling

33

(described in more detail in Chapter 4). Finally, additional bus logic must also be
added (to the arbiter module, or separately) to ensure that data transfer ordering
is maintained, for transfers originating from multiple masters.

 2.3.6 Broadcast Transfer
Typically, data transfers on the bus involve just two components—a master and
a slave. Appropriate select signals ensure that only the source and destination
components sample data onto and off the bus. However, it is possible for the data
on the bus to be “ visible ” to other components on the bus, besides the two that
are involved in the transfer. This is because every time a data item is transmitted
over a bus, it is physically broadcast to every component on the bus. A broadcast
transfer is one that involves a source component transmitting data on the bus,
and multiple components sampling the data off the bus. One of the uses of this
transfer mode is for snooping and cache coherence protocols. When several com-
ponents on the bus have a private cache which is fed from a single memory mod-
ule, a problem arises when the memory is updated (for instance, when a cache
line is written to memory by a component). In such a case it is essential that the
private caches of the components on the bus invalidate (or update) their cache
entries to prevent reading incorrect values. Broadcasting allows the address of the
memory location (or cache line) being updated to be transmitted to all the com-
ponents on the bus, so that they can invalidate (or update) their local copies.

 2.4 BUS TOPOLOGY TYPES
Bus-based communication architectures can have several different types of bus
arrangements or topology structures which affect the cost, complexity, power, and
performance profi les of the communication architecture. Figure 2.9 shows the
major bus topology types that are used in SoC designs. The simplest scheme for
component interconnection is the single bus topology shown in Fig. 2.9 (a). All
the components in the system are connected to a single shared bus. An example
of a commercial SoC with a shared bus is the DaVinci family of digital video pro-
cessing SoCs from Texas Instruments [25]. While such a confi guration is suffi cient
for very small SoCs having only a few components, it does not scale well to handle
larger systems. This is because a single bus allows only a single data transfer at a
time. A more effi cient topology that allows multiple data transfers in parallel is the
hierarchical bus topology shown in Fig. 2.9 (b). In this topology, the components
are connected to multiple buses that interface with each other using a bridge
component. Concurrent data transfers are possible on each bus, provided that the
components are allocated to the buses in such a manner that there is minimum
interaction between components on different buses. Since buses can have dif-
ferent clock frequencies, the bridge component can be quite complex, to handle
interbus transactions, data buffering, frequency conversion, etc. There are several
commercial SoCs today that make use of the hierarchical bus topology, such as
the customizable multiprocessor ARM PrimeXsys SoCs [27] that are widely used

2.4 Bus Topology Types

34 CHAPTER 2 Bus-Based Communication Architectures

Master 1 Slave 1 Master 3 Slave 3

Master 2 Slave 2 Master 4 Slave 4

 FIGURE 2.9 (a)

 Different bus-based communication architecture topology structures: single bus

Master 1 Slave 1 Master 3 Slave 3

Master 2 Slave 2 Master 4 Slave 4

 FIGURE 2.9(c)

 Split bus

Master 1 Slave 1 Master 3 Slave 3

Master 2 Slave 2

Master 4 Slave 4

Bridge 2

B
rid

ge
 1

 FIGURE 2.9 (b)

 Hierarchical bus

35

Slave 1 Slave 3Slave 2 Slave 4

Master 1 Master 3Master 2 Master 4

 FIGURE 2.9(d)

 Full bus crossbar (or point-to-point bus)

 FIGURE 2.9 (e)

 Partial bus crossbar

Slave 1 Slave 3Slave 2 Slave 4

Master 1 Master 3Master 2 Master 4

Master 1 Slave 1

Master 2 Slave 2 Master 4 Slave 4

Master 1 Slave 1

 FIGURE 2.9 (f)

 Ring bus

2.4 Bus Topology Types

36 CHAPTER 2 Bus-Based Communication Architectures

in handheld devices such as mobile phones, PDAs (personal digital assistants),
GPS (global positioning system) units, and PMPs (personal media players). A sim-
pler variant of the hierarchical bus is the split bus topology shown in Fig. 2.9 (c).
This topology also uses multiple buses, but the interface between these buses is a
simple tri-state buffer-based scheme. This prevents using a more complex protocol
as in the case of the hierarchical bus topology, but the simpler tri-state interface
can be more effi cient as far as energy consumption is concerned [9].

For high performance systems that require extensive data transfer parallelism,
the full bus crossbar (also called full bus matrix) topology shown in Fig. 2.9 (d)
is a suitable choice. An example of a commercial SoC with a full bus crossbar
topology is the Niagara multiprocessor SoC from SUN [26], which connects eight
SPARC processor cores (each having hardware support for up to four threads) to
four L2-cache banks, an I/O bridge, and an FPU (fl oating point unit). While this
solution might be excessive for smaller systems [10], several research efforts
 [11–13] have shown the utility of a full bus crossbar in providing signifi cantly
higher data throughput rates compared to single and hierarchical bus architec-
ture alternatives. In this topology, every master is connected to every slave in the
system with a separate bus, which can be considered to be a kind of point-to-
point interconnection. The large number of buses allows multiple data transfers
to proceed in parallel. Note that unlike the previously presented topologies, a full
crossbar system requires separate arbitration for every slave. While a full crossbar
bus topology offers superior parallel response, the excessive number of buses can
take up a large area, increase power consumption, and make it practically impos-
sible to achieve routing closure [14]. To overcome these limitations, one alterna-
tive is to use a hybrid shared bus/point-to-point topology, which clusters some
of the components in the full crossbar bus, as shown in Fig. 2.9 (e). Such a par-
tial crossbar bus topology has a fewer number of buses, a smaller area, reduced
power consumption, and less wire congestion than a full crossbar bus topology
 [14–16] . However, the clustering of components in the partial crossbar bus topol-
ogy also reduces the parallelism in the system, which in turn reduces perfor-
mance. Designers must therefore carefully trade-off these factors while designing
a partial crossbar bus topology. Chapter 6 describes research efforts that attempt
to optimally trade-off design cost and performance while designing crossbar bus
architectures.

Finally, another commonly used high performance bus topology is the ring
bus topology, shown in Fig. 2.9 (f). In this topology, components are connected
to one or more concentric ring buses. Data can be transferred from the source
to the destination either in a clockwise or an anti-clockwise direction, depend-
ing on factors such as bus segment availability and shortest distance to destina-
tion. An example of such a ring bus can be found in the IBM Cell multiprocessor
SoC [28] that has been used in the PlayStation 3 gaming console. The element
interconnect bus (EIB) in the Cell multiprocessor consists of four ring buses, two
of which transfer data in the clockwise direction and two in the anti-clockwise
direction. The EIB connects the PPE (power processor element), eight SPEs (syn-
ergistic processor elements), a MIC (memory interface controller), and an external
BIC (bus interface controller). The EIB ring bus was chosen over a full crossbar

37

bus primarily because of its lower area footprint, while still offering an acceptable
bandwidth.

 2.5 PHYSICAL IMPLEMENTATION OF BUS WIRES
With the rising complexity and ever increasing levels of component integration in
SoC designs, the volume of data transfers between components has also increased.
To meet performance requirements, bus clock frequencies have been steadily
increasing, since data throughput is a function of bus clock frequency, as given by
the relation:

throughput bus ! width bus " clock_frequency bus

where the throughput is in terms of megabits per second if the width is speci-
fi ed in terms of bits and the frequency in terms of megahertz (MHz). Now, a rise
in bus clock frequency implies a shorter bus clock cycle period. For instance, a
bus with a clock frequency of 100 MHz has a bus clock cycle duration of 10 ns,
whereas a bus with a higher clock frequency of 500 MHz has a bus clock cycle
duration of only 2 ns. This has major implications as CMOS process technology
continues to shrink. Bus wires are implemented as long metal lines on a silicon
wafer, and transmit data using electromagnetic waves which cannot travel faster
than a fi nite speed limit. With shrinking process technology, logic components
such as gates have also correspondingly decreased in size. However, the wire
lengths have not shrunk accordingly, resulting in relatively longer communication
path lengths between logic components in newer technologies. Worse, due to
increasing bus clock frequencies, the time allowed for a signal on the bus to travel
from the source to its destination in a single bus clock cycle has reduced consid-
erably, as discussed above. Another way of stating this fact is that the distance that
can be covered by a signal on the bus in a single clock cycle has been reduced
with increasing clock frequencies and shrinking CMOS process technology.
Consequently, it can take multiple cycles to send a signal across a chip. For instance,
it has been estimated that in the 50 nm process technology node, the signal
propagation delay will be as high as 6–10 bus clock cycles [17] to send a signal
from one end of the SoC to the other. This increase and unpredictability in
signal propagation time can have serious consequences for the performance and
correct functioning of the SoC design.

Several ways of tackling this problem have been proposed. Hierarchical [4, 5]
or split bus [9] communication architectures partition otherwise long bus lines
into shorter ones, separated by bridges, or tri-state buffer structures, respectively.
This makes it possible for signals to traverse a bus segment in a single clock cycle.
Hierarchical bus architectures such as AMBA 2.0 [4] allow different buses to oper-
ate at different bus clock frequencies. Utilizing multiple clock domains separated
by bridge logic components allows better signal propagation management, since
signals need to traverse smaller wire lengths. Another commonly used technique
makes use of register slices [1] or buffers to pipeline long bus wires. Such a
scheme enables a signal to be in fl ight for several cycles, taking a single clock

2.5 Physical Implementation of Bus Wires

38 CHAPTER 2 Bus-Based Communication Architectures

cycle to move between successive pipeline stages, before fi nally reaching its des-
tination. Carloni and Sangiovanni-Vincentelli [18] described one such approach to
pipeline long wires having a latency of more than one cycle. Pipeline logic elements
(called relay stations) were inserted into long wires after the physical layout phase,
to ensure latency insensitive design. Yet another technique is to make use of asyn-
chronous buses which discard the clock signal altogether, in favor of more elaborate
handshaking based synchronization mechanism. The MARBLE bus architecture [6] is
one example of an asynchronous communication architecture. It is also possible to
make use of globally asynchronous, locally synchronous (GALS) techniques for com-
munication, which use asynchronous handshaking synchronization for long wires
that interconnect smaller synchronous regions, consisting of components con-
nected via a synchronous bus. Finally, there are several low level techniques that are
commonly used to reduce signal propagation delay on any wire, such as by insert-
ing repeaters, or varying the dimensions of the wires (wire sizing) [19].

 2.6 DISCUSSION: BUSES IN THE DSM ERA
With the scaling of CMOS technology below 90 nm, SoC designs have entered
the DSM era, characterized by high levels of component integration, high clock
frequencies, and low signal voltages. In addition to an increase in signal propa-
gation delay, which requires making architectural changes to buses (as discussed
in Section 2.5), DSM effects will create severe signal integrity problems that will
make it harder to guarantee error-free data communication on buses. The signal
integrity problem can be defi ned as the scenario where the received signal at
the destination is different from the transmitted signal at the source driver, for
a bus wire. This happens because of signal degradation caused by various DSM
effects that create noise (i.e., a deviation of a signal from its intended or ideal
value). Some of the important DSM effects that can cause noise on buses include
crosstalk, external electromagnetic interference, transmission line effects, and soft
errors. These effects are described below.

 Crosstalk is the phenomenon of noise being caused on a signal A due to the
coupling with another signal B. Due to the close proximity of bus wires, near-fi eld
electromagnetic coupling causes inductive and capacitive crosstalk on the bus sig-
nals. Even when wires are far apart, crosstalk can still be present between signals
due to coupling facilitated by the common substrate, a shared power supply or
ground, or a shared signal return path. As wires become narrower (with technol-
ogy scaling) and clock frequencies increase, fringing fi eld effects and inductance
effects become larger for wires, leading to higher inductive and capacitive cross-
talk. Electromagnetic interference (EMI) from large external electric and magnetic
fi elds can couple into circuits and create unwanted noise. As highly integrated,
portable wireless communication SoCs increasingly consist of analog, RF, and digi-
tal circuits, EMI due to external and internal coupling will increase. Long on-chip
buses in particular will be the sources and receptors of EMI noise. Transmission
line effects will arise due to discontinuities in wires that are modeled as transmis-
sion lines. In DSM technologies, when a wire is longer than 1/10 of the wavelength

39

of the signal frequency component that is transmitted, the wave nature of the prop-
agated signal must be modeled, otherwise signifi cant errors may result. Wires will
thus have to be modeled as transmission lines to avoid errors during signal analysis.
Discontinuities in these transmission lines (due to various factors such as capaci-
tive loads, vias, wire bends, package pins, crossover wires, and non-ideal receivers)
can result in impendence mismatches. Such mismatches will create noise as a result
of signal refl ections at the discontinuities. Finally, signal integrity will also be infl u-
enced by soft errors that are caused by a collision of thermal neutrons (produced
by the decay of cosmic ray showers) and/or alpha particles (produced by impuri-
ties in the substrate). Highly integrated SoCs will be particularly susceptible to soft
errors that will create spurious pulses and interfere with signals on buses.

As a result of all the DSM effects described above, it will become harder to
guarantee error-free data transfers on buses. Reduced signal swings in DSM tech-
nologies will result in a further reduction of voltage noise margins, increasing the
probability of transmission errors in the presence of even the smallest sources
of noise. Many other factors such as increasing wire resistance due to skin effect
at high frequencies, increasing number of metal layers that increase cross-layer
coupling, and timing errors due to jitters will cause new challenges in DSM tech-
nologies. These problems have been well summarized in several books [20–24]. It
is very important that emerging tools and methodologies for on-chip communica-
tion architecture design be able to handle not only the increased number of wires,
but also allow designers to predict and address DSM issues as early in the design
fl ow as possible, to reduce design iterations (instead of fi nding and fi xing the
problems in post-layout). We will revisit DSM-aware methodologies, techniques,
and architectures throughout this book.

 2.7 SUMMARY
In this chapter, we presented some of the basic concepts of bus-based communi-
cation architectures. We fi rst introduced the components and terminology used
to describe these communication architectures and then covered some of their
major characteristics such as bus signal types, physical structure, clocking, decod-
ing, and arbitration. We presented an overview of some of the basic data trans-
fer modes that are used during data transfers, and then described some of the
more advanced transfer modes intended to improve bus utilization and through-
put performance. Some commonly used bus topology structures were described,
and fi nally we discussed some of the issues in the physical implementation of bus
wires. In the next chapter, we will look at examples of some standard bus-based
communication architectures that are widely used in SoC designs.

 REFERENCES
 [1] ARM AMBA AXI Specifi cation www.arm.com/armtech/AXI .

 [2] S. Pasricha , N. Dutt , E. Bozorgzadeh and M. Ben-Romdhane , “ FABSYN: Floorplan-aware bus
architecture synthesis ,” IEEE Transactions on Very Large Scale Integration Systems (TVLSI) ,
Vol. 14 , No. 3 , March 2006 , pp. 241 – 253 .

References

40 CHAPTER 2 Bus-Based Communication Architectures

 [3] “ STBus Communication System: Concepts and Defi nitions, ” Reference Guide,
STMicroelectronics, May 2003.

 [4] ARM AMBA Specifi cation and Multi layer AHB Specifi cation (rev2.0), http://www.arm.com ,
2001.

 [5] IBMCoreConnect Specifi cation, http://www.ibm.com/chips/techlib/techlib.nsf/productfamilies/
CoreConnect_Bus_Architecture .

 [6] W. J. Bainbridge and S. B. Furber, “ Asynchronous macrocell interconnect using MARBLE, ” in
Proceedings of Fourth International Symposium on Advanced Research in Asynchronous
Circuits and Systems , 1998, pp. 122–132.

 [7] Sonics, “Sonics ! Networks technical overview, ” Sonics Inc, June 2000.

 [8] S. Pasricha, N. Dutt and M. Ben-Romdhane, “Extending the transaction level modeling
approach for fast communication architecture exploration, ” Design and Automation
Conference (DAC 2004) , San Diego, CA, June 2004, pp. 113–118.

 [9] Cheng-Ta Hsieh and M. Pedram , “Architectural energy optimization by bus splitting ,” in
Proceedings of IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (IEEE TCAD) , Vol. 21 , No. 4 ,April 2002 , pp. 408 – 414 .

 [10] S. Brini, D. Benjelloun and F. Castanier, “A fl exible virtual platform for computational and
communication architecture exploration of DMT VDSL modems, ” in Proceedings of DATE,
2003, pp. 164–169.

 [11] V. Lahtinen, E. Salminen, K. Kuusilinna and T. Hamalainen, “Comparison of synthesized bus
and crossbar interconnection architectures, ” in Proceedings of the 2003 International
Symposium on Circuits and Systems , 2003, pp. 433–436.

 [12] Y. Zhang and M. J. Irwin, “Power and performance comparison of crossbars and buses as
on-chip interconnect structures, ” in Conference Record of the Thirty-Third Asilomar
Conference on Signals, Systems, and Computers , 1999, pp. 378–383.

 [13] M. Loghi, F. Angiolini, D. Bertozzi, L. Benini and R. Zafalon, “Analyzing on-chip communica-
tion in a MPSoC environment, ” in Proceedings of Design, Automation and Test in Europe
Conference and Exhibition , 2004, pp. 752–757.

 [14] S. Pasricha, N. Dutt and M. Ben-Romdhane, “Constraint-driven bus matrix synthesis for
MPSoC, ” Asia and South Pacifi c Design Automation Conference (ASPDAC 2006),
Yokohama, Japan, January 2006, pp. 30–35.

 [15] S. Murali and G. De Micheli, “An application-specifi c design methodology for STbus crossbar
generation, ” in Proceedings of Design, Automation and Test in Europe (DATE), 2005, pp.
1176–1181.

 [16] S. Pasricha, Y. Park, F. Kurdahi and N. Dutt, “System-level power-performance trade-offs in bus
matrix communication architecture synthesis, ” International Conference on Hardware/
Software Codesign and System Synthesis (CODES#ISSS 2006), Seoul, Korea, October
2006.

 [17] R. Ho , K. W. Mai and M. A. Horowitz , “ The future of wires ,” Proceedings of the IEEE , Vol. 89 ,
 April 2001 , pp. 490–504.

 [18] L. P. Carloni and A. L. Sangiovanni-Vincentelli , “ Coping with latency in SoC design ,” IEEE
Micro , Vol. 22 , No. 5 , September/October 2002 , pp. 24 – 35 .

 [19] A. B. Kahng, S. Muddu and E. Sarto, “Interconnect optimization strategies for high-
performance VLSI designs, ” in Proceedings of Twelfth International Conference on VLSI
Design , 1999, pp. 464–469.

 [20] H. B. Bakoglu , Circuits, Interconnections, and Packaging for VLSI ,Addison-Wesley , Reading,
MA , 1990 .

41

 [21] W. J. Dally and J. H. Poulton , Digital Systems Engineering , Cambridge University Press ,
 Cambridge, UK , 1998 .

 [22] C.-K. Cheng , J. Lillis , S. Lin and N. Chang , Interconnect Analysis and Synthesis , Wiley-
Interscience , 1999 .

 [23] Q. K. Zhu , Interconnect RC and Layout Extraction for VLSI ,Trafford , 2002 .

 [24] M. Nakhla and R. Achar , Introduction to High-Speed Circuit and Interconnect Analysis ,
 Omniz Global Knowledge Corporation , 2002 .

 [25] D. Talla, “An innovative HD video and digital image processor for low-cost digital entertain-
ment products, ”Proceedings, HotChips , 2007.

 [26] S. Phillips, “VictoriaFalls: Scaling highly-threaded processor cores, ” Proceedings, HotChips,
2007.

 [27] ARM PrimeXsys Platform, http://www.arm.com .

 [28] IBM Cell Project, http://www.research.ibm.com/cell .

References

