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CHAPTER

Buses are one of the most widely used means of communicating between com-
ponents in a system-on-a-chip (SoC) design. The simplicity and effi ciency of 
transferring data on buses has ensured that they remain the preferred intercon-
nection mechanism today. A bus connects possibly several components with a 
single shared channel. The shared channel can be physically implemented as a 
single wire (i.e., a serial bus or a set of wires) which makes up a parallel bus. This
parallel bus is the typical implementation choice for a bus in almost all widely 
used on-chip bus-based communication architectures. Although a bus is essen-
tially a broadcast medium, in most cases data transmitted on the bus is meant for
a particular component and is ignored by the other components. Any data trans-
mitted by a component moves from its output pins to the bus wires and is then 
received at the input pins of the destination component. The destination compo-
nent typically sends an acknowledgement back to the transmitting component to 
indicate if the data was received. A  bus protocol is used to explicitly defi ne a com-
munication transaction through its temporal (e.g., duration and sequence of mes-
sages exchanged) and spatial (e.g., message size) characteristics. The bus protocol 
also determines which component may access the shared bus if multiple requests 
to send (or receive) data appear on the bus at the same time. Bus-based com-
munication architectures usually consist of one or more shared buses as well as 
logic components that implement the details of a particular bus protocol. In this 
chapter, we review the basic concepts of bus-based communication architectures. 
Section 2.1 presents the terminology and major components used in describing 
bus-based communication architectures. In Section 2.2, we discuss the organiza-
tion and characteristics of buses. Section 2.3 presents different types of data trans-
fers on buses. Section 2.4 outlines the diverse topologies resulting from bus-based 
communication architecture implementations. Section 2.5 briefl y describes issues 
arising from the physical implementation of bus wires (or signals). Finally, Section 
2.6 discusses deep submicron (DSM) effects that are becoming increasingly domi-
nant for on-chip buses with complementary metal-oxide semiconductor (CMOS) 
technology scaling. 

                  Basic Concepts of Bus-Based 
Communication Architectures     2  
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  2.1   TERMINOLOGY 
We begin by reviewing the basic terminology used to describe bus-based com-
munication architectures, and systems deploying these architectures.  Figure 2.1    
shows a simple SoC design in which several (computational) components are 
interconnected using a bus-based communication architecture. Components 
which initiate and control read and write data transfers are referred to as  mas-
ters. The  Processor and DSP ( digital signal processor) components in Fig. 2.1  are 
examples of master components that read/write data from/to other components 
in the system. Every master component is connected to the bus using a set of 
signals which are collectively referred to as a  master port. The components that 
simply respond to data transfer requests from masters (and cannot initiate trans-
fers themselves) are referred to as  slaves, and have corresponding  slave ports. The 
three memory blocks in  Fig. 2.1  are examples of slaves that can handle requests 
for data read and write from other components (e.g., Processor, DSP), but cannot 
initiate such transfers themselves. The component ports are actually a part of its 
interface with the bus. An interface can be simple, consisting merely of the set of 
connecting wires to the bus (i.e., master or slave ports). Or it could be more com-
plex, consisting of buffers, frequency converters, etc. in order to improve commu-
nication performance. 
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Some components can have both master and slave ports, which means that 
they can act as both masters and slaves. These components are  master/slave 
hybrid components. For instance, the  DMA ( direct memory access) component 
in  Fig. 2.1  has a slave port that allows the  Processor to write into (and read from) 
the DMA confi guration register fi le, in order to initialize and confi gure it. Once 
confi gured, the  DMA component uses its master port to initiate and control data 
transfers between memory blocks (which would otherwise have been managed 
by the  Processor; as a result the  Processor is freed up to perform other activity 
which typically improves system performance). Similarly, the  Memory Controller  
component has a slave port which is used by the DSP component to initialize 
and confi gure its functionality. Once confi gured, the Memory Controller can initi-
ate and control data transfers with external memory components connected to it, 
using its master port. 

In addition to the wires, a bus-based communication architecture also consists 
of logic components such as  decoders, arbiters, and  bridges. A  decoder is a logic 
component that decodes the destination address of a data transfer initiated by a 
master, and selects the appropriate slave to receive the data. It can either be a 
separate logic component, or integrated into a component interface. An  arbiter  
is a logic component that determines which master to grant access to the bus, if 
multiple masters access the bus simultaneously. Typically, some form of a priority 
scheme is used, to ensure that critical data transfers in the system are not delayed. 
Finally, a  bridge is a logic component that is used to connect two buses. It can 
have a fairly simple implementation if it connects two buses with the same pro-
tocols and clock frequencies. However, if the two buses have different protocols 
or clock frequencies, some form of protocol or frequency conversion is required 
in the bridge, which adds to its complexity. A bridge connects to a bus using a 
master or a slave port, just like any other component. The type of port used to 
connect to a bus depends on the direction of data transfers passing through it. For 
instance, in the example shown in  Fig. 2.1 , the  DMA and Processor components 
on Bus 1 initiate and control data transfers to  Bus 2 by sending data to the slave 
port of the bridge on  Bus 1, which transfers it to its master port on  Bus 2 and 
sends the data to its destination. Since the  DSP and Memory Controller do not 
initiate and control data transfers to components on  Bus 1, a single bridge is suf-
fi cient as shown in  Fig. 2.1 . However, if these components needed to transfer data 
to Bus 1, another bridge with a slave port on  Bus 2 and a master port on  Bus 1  
would be required.  

  2.2   CHARACTERISTICS OF BUS-BASED COMMUNICATION 
ARCHITECTURES

Bus-based communication architectures are defi ned by various architectural and 
physical characteristics that can have many different implementations. These 
implementation choices have trade-offs that can signifi cantly affect the power, 
performance, and occupied area of the communication architecture. In this

2.2 Characteristics of Bus-Based Communication Architectures
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section, we describe the major characteristics of bus-based communication archi-
tectures and discuss some of their common implementation choices. 

  2.2.1   Bus Signal Types 
Bus signals (or wires) are broadly classifi ed into three categories, as shown in  Fig. 
2.2  . Address signals are used to transmit the address of the destination for a data 
transfer on the bus. The number of signals used to transmit the address is typically 
a power of 2 (common values are 16, 32, or 64) and referred to as the address 
bus width. However, in some cases, this number can also be an arbitrary value 
(i.e., not a power of 2), depending on the number of components in a system. 
The address signals are collectively referred to as the  address bus. Although most 
systems have a single shared address bus for both reads and writes, it is possible 
to have separate address buses for read and write data transfers. Having multiple 
address buses improves the concurrency in the system, since more data transfers 
can occur in parallel. However, this comes at the cost of larger number of wires 
which can increase area and power consumption. 

  Data signals are used to transmit data values to their destination addresses. 
The data signals are collectively referred to as the  data bus. The typical number 
of signals in a data bus is 16, 32, 64, 128, 256, 512, and 1024 signals (called data 
bus width). However, this number can vary and have other values depending 
upon specifi c requirements of systems. The choice of data bus width is important 
because it determines whether any packing or unpacking of data is necessary at 
component interfaces. For instance, consider a case where the memory word size 
of a memory component is 64 bits and the data bus width is 32 bits. Then, every 
time a master requests data from the memory, the read data needs to be unpacked 
(or split) into two data items of 32 bits in width before being transmitted onto the 
bus. The data also needs to be packed (or merged) at the master interface before 
being sent to the master component. The packing and unpacking of data at the inter-
faces introduces an overhead in terms of power, performance, and area of the inter-
face logic. Alternatively, if the data bus width was set to 64 bits, no such packing 
and unpacking of data would be required. Thus the size of the data bus is typically 
application specifi c, and in many cases depends on the memory word size of the 
memory components used in the system. Much like the address bus, the data buses 
can either be implemented as a single shared bus for both reads and writes, or sepa-
rate data buses for reads and writes. Separate data buses improve concurrency and 
performance in the system, at the overhead of additional bus wire area and power 
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consumption. It is also possible to combine the data and address buses by multi-
plexing them over a single set of wires. This may be useful for small, low cost SoCs 
where high performance communication is not as important as low area footprint, 
simplifi ed wire routing, and low pin counts at component interfaces. 

  Control signals are used to send information about the data transfer, and are 
typically bus protocol specifi c.  Request and acknowledge signals are the most 
common control signals, which transmit a data transfer request from a master, 
and the acknowledgment for a request or data received, respectively. Data size (or 
byte enable) control signals indicate the size of data being transmitted on the bus 
(particularly useful when the size of the data being transmitted is smaller than 
the data bus width). Sometimes slaves can signal an error condition to the master 
over special status control signals, if data cannot be read or written at the slave. 
Frequently, when multiple data items (called a  data burst) need to be transmitted 
on the data bus by a component, there are control signals to indicate the number 
of data items to the destination. There are control signals that can transmit infor-
mation about the source of the transmitted data such as a unique ID value iden-
tifying the transmitting component. Control signals can also transmit information 
about the data being transmitted to the destination, such as whether the data is 
cacheable, bufferable, write-through, or write-back.  

  2.2.2   Physical Structure 
We now look at the structural implementation details of the shared bus signals. 
Traditionally, shared buses have been implemented using tri-state buffers that 
drive bidirectional lines, as shown in  Fig. 2.3   (a). Tri-state implementations of buses 
are commonly used in off-chip/backplane buses. The advantage of tri-state bidi-
rectional buses is that they take up fewer wires and have a smaller area footprint. 
However, due to higher power consumption, higher delay (which can limit per-
formance), and problems with debugging tri-state buffers, their use is restricted 
in modern bus-based on-chip communication architectures. Other effi cient (and 
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    Shared bus implementation alternatives: tri-state buffer based bidirectional signals        
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more commonly used) alternatives to the tri-state buffer implementation are a 
multiplexer (MUX) based implementation, as shown in  Fig. 2.3 (b) and an AND–OR
structure as shown in  Fig. 2.3 (c). 

  2.2.3   Clocking 
An important characteristic of buses is the type of clocking used for data trans-
fers. A bus that includes a clock signal as one of the control signals is called a 
synchronous bus. Transfers between components usually require some form of 
handshaking. An example of a synchronous bus is shown in  Fig. 2.4   (a), where a 
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data item is written by a master and is received by its destination in a total of 
two clock cycles. The master sends the address ( ADDR) in the fi rst clock cycle, 
and asserts the  WRITE control signal which indicates to the destination that the 
master wants to write data to it. The data to be written is sent at the beginning 
of the second clock cycle, and is sampled off the bus by the destination slave 
at the rising edge of the third clock cycle. The slave can then optionally assert a 
response control signal ( RESP) sending the bit value that corresponds to an  OK,
which indicates to the master that there was no error and the write proceeded as 
intended. The clock signal is essential for synchronization purposes. Synchronous 
buses enable fast data transfers, but can require frequency converters at compo-
nent interfaces, since not all components connected to the bus can be expected 
to run at the same clock frequency as the bus. Indeed, in modern bus-based SoC 
designs, processors typically run at a clock frequency that is two to four times the 
frequency of the bus clock. It might also be required to pipeline the synchronous 
bus by inserting register slices (or buffers)  [1] on it, because the signal delay for 
long wire lengths can actually exceed the bus clock cycle time  [2]. In such cases, 
the register slices allow buffering of data to ensure that the destination can still 
sample the data as expected at the end of a clock cycle (although not at the end 
of the same cycle in which the data was transmitted). As an example, consider 
a synchronous bus clocked at a frequency  f  ! 100   MHz. A signal on the bus has 
1/f  ! 10   ns to travel from source to destination. If the signal delay on this bus is 
20ns, then a register slice inserted in the middle of the bus allows the signal to be 
buffered at the end of the fi rst cycle, and then reach the destination at the end of 
the next cycle. This is discussed in more detail in Section 2.5. Most standard bus-
based communication architectures  [1, 3–5]  (described in more detail in Chapter 
3) use synchronous buses, since they provide high data throughput performance. 
Synchronous buses are almost always used in the critical path of an SoC design, 
such as the processor–memory interconnection. 
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In an asynchronous bus, shown in  Fig. 2.4 (b), no clock signal is present in the 
control signals of the bus. In this case, bus synchronization occurs with the help 
of a handshake protocol that uses request-acknowledgement signals to ensure that 
the data transfer was completed successfully. For instance, for the example in  Fig. 
2.4(b) in which a master must write a data to a slave, the address ( ADDR) and data 
(DATA) for the write data transfer is driven onto the bus by the master, along with 
a control signal to indicate a write transaction ( WRITE). The master also asserts 
the request ( REQ) control signal. When the destination slave sees the request sig-
nal, it samples the data off the bus, and then sends an acknowledgement ( ACK ) 
signal to inform the master that the data was received. The transmitting master 
then lowers the request ( REQ) signal. The handshaking between the source and 
destination components is usually more extensive in asynchronous buses than in 
synchronous buses. An example of an asynchronous bus is the MARBLE bus, pro-
posed by Bainbridge and Furber  [6]. Asynchronous buses are typically slower than 
synchronous buses because of the additional overhead of the handshaking pro-
tocol, used for synchronization. They also require additional synchronization sig-
nals. However, they do not need additional frequency converters like synchronous 
buses and thus consume less area than synchronous buses. Asynchronous buses 
also do not suffer from  clock skew (a phenomenon in which the clock signal from 
the clock arrives at different components at different times, causing potential tim-
ing errors) or the overhead of clock power dissipation, unlike synchronous buses. 

  2.2.4   Decoding 
Whenever data needs to be transferred on a shared bus, the source component 
transmits the address of the destination component and the data. Each component 
in an SoC design is typically assigned an address map (i.e., a range of addresses). 
It is the job of a decoder to decode the address and select the appropriate desti-
nation component to receive the data. Decoding can be implemented either in a 
centralized or a distributed manner.  Figure 2.5   (a) shows a centralized implemen-
tation of a decoder. The decoder takes the address of a data transfer issued by a 
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master as its input and then sends a select signal to the appropriate slave com-
ponent to indicate that data needs to be read or written to the slave. The central-
ized implementation has the advantage that minimal change is required if new 
components are added to the system, which makes this scheme easily extensi-
ble. Another implementation scheme for the decoder is the distributed decoding 
approach, shown in  Fig. 2.5 (b). All the slaves have their own separate decoders 
in this scheme. When the address is transmitted on the shared bus by the master, 
the decoders at every slave interface decode the address to determine if the trans-
fer is intended for them. Such a distributed scheme has the advantage of utilizing 
fewer signals compared to the centralized approach, which needs extra signals 
to connect the centralized decoder to every slave on the bus. However, there is 
more hardware duplication in the distributed case, because every slave on the bus 
now decodes the address, as opposed to a single decoder decoding the address 
in the centralized scheme. Thus, distributed decoding usually requires more logic 
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and occupies more area. Also, for every new component added to the bus or in 
case of a change in the address map, changes might be required in the decoders 
at every slave interface. 

  2.2.5   Arbitration 
It is possible that two or more masters on a shared bus might initiate a data trans-
fer at the same time. Since the shared bus can only handle a single data transfer 
at any given time, an arbitration mechanism is needed to determine which mas-
ter gets to proceed with its data transfer, and which has to wait. An  arbiter is a 
component on the shared bus that uses certain criteria to determine which mas-
ter gains access to the bus, if more than one master request access to it simul-
taneously. The criteria used to determine which master gains access to the bus 
is called the arbitration scheme. Every time a master needs to transfer data, it 
needs to fi rst request the arbiter to grant it access to the bus. The arbiter uses 
its arbitration scheme to determine if the master is eligible to get access to the 
bus, and only when the arbiter signals the master to proceed can the master initi-
ate the data transfer. Like the decoder, an arbiter can be implemented in either 
a centralized or a distributed manner.  Figure 2.5 (a) shows the case of an arbiter 
implemented in a centralized confi guration, while  Fig. 2.5 (b) shows the arbiter 
in a distributed confi guration. The trade-offs for the two schemes are the same as
for the decoder. It should be noted that distributed arbitration for the more
complex arbitration schemes can be more complicated, and may require synchro-
nization signals between the arbiter logic at the interface of every master on the 
shared bus. 

There are several arbitration schemes that are commonly used in bus-based 
communication architectures. Some of the basic underlying requirements for an 
arbitration scheme are that it should guarantee fairness of access, ensure that criti-
cal data transfers are completed as soon as possible, and prevent any starvation 
scenarios (for instance, due to a request from a master never getting access to the 
bus, which stalls the master execution). One of the most commonly used arbitra-
tion schemes is the  static priority (SP) scheme, in which masters on a bus are 
assigned fi xed priority values. The master having the highest priority always gets 
access to the bus. The SP scheme can be implemented in a pre-emptive or a non-
pre-emptive manner. In a pre-emptive implementation, an ongoing lower priority 
data transfer is terminated immediately without being completed if a request for 
bus access is received from a higher priority master. In a non-pre-emptive imple-
mentation, the ongoing lower priority data transfer is allowed to complete before 
the bus is granted to a higher priority master. The SP scheme is simple to imple-
ment and can provide high performance by ensuring that critical data transfers, 
such as between processor and memory, always get higher priority. However, 
this scheme must be implemented carefully as it can lead to starvation of lower 
priority masters, which might never be able to get access to the bus if there are 
frequent bus accesses by higher priority masters. The  round-robin (RR) arbitra-
tion scheme can ensure that there is no starvation in the system. In this scheme, 
access to the bus is granted in a circular (round-robin) manner, to every master on 
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the bus, which guarantees that every master will eventually get access to the bus. 
A master relinquishes control over the bus when it no longer has any data to send 
(or has held the bus for the maximum allowed time) and passes the ownership 
to the next master in line. The RR scheme is also simple to implement, and can 
ensure equitable bandwidth distribution on a bus, but suffers from a drawback 
compared to the SP scheme, in that critical data transfers may have to wait a long 
time before they can proceed. The  time division multiple access (TDMA) arbitra-
tion scheme is another popular scheme that can guarantee a fi xed, higher bus 
bandwidth to masters with higher data transfer requirements, while also ensuring 
that lower priority masters do not starve. In this scheme, each master is assigned 
time slots (or time frames) of varying lengths, depending on the bandwidth 
requirements of the master. The choice of number of time slots to assign to each 
master is extremely important. The length of the allocated time frame should be 
long enough to complete at least a single data transfer, but not so long that other 
critical data transfers have to wait for a long time to get access. 

While the schemes discussed above are essentially single level schemes, more 
complex arbitration schemes have also been proposed. For instance, it is possi-
ble to combine two arbitration schemes to create a two level arbitration scheme: 
Sonics SMART Interconnect  [7] (described in Chapter 3) makes use of a  two level 
TDMA/RR arbitration scheme. In this scheme, a TDMA arbitration scheme allo-
cates time slots to various masters. If a master does not have any data to transfer 
during its time slot, a second level RR scheme selects another master to grant bus 
access to. Such a scheme thus enables better utilization of the bus, compared to 
the TDMA scheme, at the cost of a more complex implementation requiring more 
logic and occupying more area. Another complex, but highly effi cient arbitration 
scheme is the  dynamic priority (DP) scheme that can dynamically vary the pri-
orities of the masters at runtime (i.e., while the system is executing). Unlike the 
SP scheme, additional logic is used to analyze data traffi c at runtime, and the pri-
orities are dynamically adapted to the changing traffi c profi les of an application. 
Such a scheme can ensure better performance since it can effi ciently track chang-
ing traffi c profi les and ensure that masters that need to send larger amounts of 
data get higher priority. However, the implementation cost of such a scheme can 
be high, requiring several registers to keep track of priorities and data traffi c pro-
fi les at various points during execution. A simpler variant of the DP scheme is the 
programmable priority (PP) scheme, which allows the application to write into 
the arbiter ’s programmable registers and set the priority for masters on the bus 
dynamically. 

Since arbiters are invoked for every transfer on the bus, they are considered 
to be in the critical path of a bus-based communication architecture and must 
be designed with great care. An arbiter with a complex arbitration scheme imple-
mentation, that takes more than one cycle to make a decision, can severely reduce 
performance. While it might make sense to use a complex multi-cycle arbitration 
scheme for some applications, in other cases better performance can be achieved 
by using a simpler, single cycle arbitration scheme. Sometimes pipelining a com-
plex multi-cycle arbiter implementation can also improve performance. These 
scenarios motivate the need to profi le the application early in the design fl ow, to 

2.2 Characteristics of Bus-Based Communication Architectures



28 CHAPTER 2 Bus-Based Communication Architectures

explore and select an appropriate arbiter implementation. Models for such per-
formance exploration of bus-based communication architectures are presented in 
more detail in Chapter 4.   

  2.3   DATA TRANSFER MODES 
Typically, data can be transferred over a bus using one of possibly several trans-
fer modes. While some of the basic transfer modes are supported by all standard 
bus-based communication architectures, other modes are more specialized and 
specifi c to certain standard bus protocols. In this section, we review some of the 
main data transfer modes used in bus-based communication architectures. 

  2.3.1   Single Non-pipelined Transfer 
The simplest form of data transfer on a bus is the single non-pipelined data trans-
fer mode. In this mode, the master fi rst requests access to the bus from the arbiter, 
and when it is granted access, sends out the address in the next cycle, and then 
writes data in the subsequent cycle (for a write data transfer) or waits for the 
slave to send the read data in the subsequent cycle(s).  Figure 2.6    shows an exam-
ple of a master performing two single read data transfers in a sequential manner. 
The master requests access to the bus from the arbiter at the beginning of the 
fi rst cycle by asserting the  BUSREQ control signal. The arbiter grants access to 
the master in the second cycle by asserting the  GRANT control signal. Once the 
master sees that it has been granted access to the bus, it sends out the address 
(A1) of the slave to read data from at the beginning of the third cycle. The slave 
samples the read request at the beginning of the fourth cycle and then sends back 
the requested data ( D_A1) in the same cycle. The read data is sampled off the bus 
by the master at the beginning of the fi fth cycle. To read another data from the 
slave, the master again requests access to the bus from the arbiter, at the beginning 
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of the fi fth cycle. The sequence of events that follow are similar to that of the fi rst 
data transfer, and the master samples the data from the slave at the beginning of 
the ninth clock cycle. Note that unlike in this example, slaves typically take mul-
tiple cycles to return data and in some cases even to write data. Also note that in 
the case where only one master is connected to the bus, arbitration is not needed 
since there is no possibility of simultaneous bus transfers. In such a case, the fi rst 
two cycles (bus request and grant) are absent and the data transfer will take only 
two cycles. Conversely, it is possible that for the case when arbitration is required 
(i.e., when there are multiple masters connected to the bus), the arbiter takes 
multiple cycles to decide which master to grant bus access to, as discussed earlier. 
Such a scenario is possible when the arbiter makes use of a complex arbitration 
scheme, such as the DP-based one; or for the case when the bus clock frequency 
is so high that it takes multiple clock cycles for the arbiter to get a response from 
its chosen arbitration scheme. For the example shown in  Fig. 2.6 , the single non-
pipelined data transfer mode takes as many as four cycles to complete a single 
read data transfer, under the assumption that arbitration is needed and takes a 
single cycle. Single non-pipelined transfers, as described in this section, typically 
occur in bus-based communication architectures with multiplexed address and 
data buses. We now look at transfer modes that allow us to reduce this number
of cycles.  

  2.3.2   Pipelined Transfer 
The pipelined data transfer mode overlaps the address and data phases of mul-
tiple data transfers to improve bus performance (i.e., bus throughput).  Figure 2.7    
shows an example of a pipelined data transfer for two write data transfers initi-
ated by separate masters. At the beginning of the fi rst cycle, both masters ( M1,
M2) request access to the bus. The arbiter grants master  M1 access to the bus 
in the same cycle. Master  M1 then sends the address of its destination slave ( A1 ) 
in the second cycle and the data to write ( D_A1) in the third cycle. The arbiter 
grants access to the bus to the second master  M2, even before its write transfer 
is fi nished. This allows  M2 to send the address of its destination slave ( A2) in the 
third cycle. Notice that the address phase of the transfer by master  M2 overlaps 
with the data phase of master M1. Finally, master  M2 sends the write data in the 
fourth cycle, to complete the transfer. Such an overlapped transfer improves bus 
utilization and reduces the time for a data transfer. Pipelined transfers typically 
require a more complex arbiter implementation that can perform pipelined (or 
overlapped) arbitration. Additionally, pipelined transfers are only possible in bus 
implementations with separate address and data buses (i.e., with no multiplexing 
of address and data signals).  

  2.3.3   Burst Transfer 
We saw in  Fig. 2.6  that multiple data transfers from the same master required 
arbitration for every individual data transfer. The burst transfer mode improves 
bus performance by requesting arbitration only once for multiple data transfers. 

2.3 Data Transfer Modes
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Figure 2.8   (a) shows an example of a non-pipelined, burst data transfer by a mas-
ter. The scenario depicted has a master needing to write four data items to a slave 
on the bus. At the beginning of the fi rst cycle, a master requests access to the 
bus for a  “burst ” of four data items, and is granted the access by the arbiter at 
the beginning of the second cycle. Typically, control signals (not shown in the fi g-
ure) from the master inform the arbiter of the length of the burst (four in this 
case). The master then proceeds to send the address of the fi rst data ( A1) item 
in the third cycle, and then the data to write to the slave ( D_A1) in the fourth 
cycle. Since the arbiter has already granted bus access to the master for a burst 
of four data items, re-arbitration at this point is not required, and the master sim-
ply proceeds to send the address of the next data item ( A2) in the burst at the 
beginning of the fi fth cycle. The data transfer continues till all four data items have 
been sent to the slave. As can be seen from  Fig. 2.8 (a), the overhead of arbitration 
for each data item sent by the master is avoided in a burst transfer, which signifi -
cantly reduces data transfer time, compared to the single transfer mode shown in 
Fig. 2.6 . Performance can be improved even further if pipelining is allowed within 
the burst transfer.  Figure 2.8 (b) shows the same case as  Fig. 2.8 (a) where a master 
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 FIGURE 2.7 

    Pipelined data transfer mode    
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sends four data items to a slave, but this time the address and data phases of the 
data transfers within the burst are overlapped. This pipelined burst mode reduces 
the data transfer time compared to the non-pipelined burst mode in  Fig. 2.8 (a), 
and thus considerably improves bus utilization and performance.  

  2.3.4   Split Transfer 
During a data transfer on a bus, it is possible that a slave can take multiple cycles 
to return the requested data or write the data. Since the bus in such a case is typi-
cally held by a master and no other master can gain access to it till the transfer is 
completed, the bus remains idle for multiple cycles till the slave completes the 
transfer. Such a scenario results in under-utilization of the bus and reduces perfor-
mance. A  split transfer [4] is a special type of transfer mode that can improve bus 
utilization in such cases by  “ splitting ” the data transfer and allowing the idle cycles 
that would otherwise be spent waiting for the slave to be utilized for data trans-
fers by other masters. A split transfer mode typically works as follows. When a data 
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    Example of master writing four data items in burst transfer mode: non-pipelined burst transfer 
mode      

  FIGURE 2.8 (b)

    Pipelined burst transfer mode       
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transfer occurs, a slave can decide to issue a SPLIT response to the arbiter if it 
believes that the transfer will take a large number of cycles to perform. Once the 
arbiter receives a SPLIT signal from a slave, it masks the request from the master 
that initiated the transfer (preventing the master from getting any further access 
to the bus) and uses its arbitration scheme to grant bus access to one of the other 
masters potentially waiting to initiate data transfers on the bus. Later, when the 
slave is ready to complete the transfer, it signals the arbiter to  “un-split” the master. 
The arbiter un-masks the request from the master, and in due time the master gets 
access to the bus again. The slave can then fi nally complete the transfer. The split 
transfer mode thus allows the idle cycles in a data transfer to be utilized for other 
data transfers, and is therefore an effective mechanism for improving the commu-
nication performance in bus-based systems. Of course a prerequisite for using this 
transfer mode is the presence of split capable slaves and arbiters. 

  2.3.5   Out-of-Order Transfer 
An extension of the SPLIT transfer mode described above is to allow multiple 
transfers from different masters, or even from the same master, to be SPLIT by 
a slave and be in progress simultaneously on a single bus. This is the basic idea 
behind out-of-order (OO) data transfers  [1]. In this mode, masters can initiate data 
transfers without waiting for earlier data transfers to complete, which improves 
system performance because multiple data transfers can be processed in paral-
lel. Each data transfer has an ID associated with it, and can complete in any order. 
This implies that even if a master issues two data transfers, in a sequential manner, 
it is possible for the second data transfer to complete before the fi rst one. Data 
transfers having the same ID must complete in the same order in which the mas-
ter issued them. However, data transfers originating from different masters or from 
the same master but having different IDs have no ordering restrictions and can 
complete in any order. This ability to complete data transfers out of order means 
that data transfers to faster memory blocks can be completed without waiting for 
earlier transfers to slower memory blocks. As a result, bus utilization and overall 
system performance are improved signifi cantly. 

Predictably, there is overhead involved in the implementation of such an 
advanced and complex data transfer scheme. Firstly, additional signals are needed 
to transmit IDs for every data transfer in the system. Secondly, master interfaces 
need to be extended to handle data transfer IDs and be able to reorder received 
data. Thirdly, slaves require additional logic at their interface to decode and pro-
cess IDs, and ensure that the proper data transfer ordering is maintained. The 
read (or write) data reordering depth is a parameter that specifi es the maximum 
number of read (or write) data transfers pending in the slave that can be reor-
dered. Larger reordering depths can signifi cantly improve performance, but also 
require more logic and increase system cost. Therefore, a designer must be care-
ful in deciding a value for this parameter. There is typically a maximum value of 
reordering depth beyond which the performance does not improve for a given 
application [8]. This threshold corresponds to the maximum level of data traffi c 
parallelism in the application, and can be obtained after performance profi ling 
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(described in more detail in Chapter 4). Finally, additional bus logic must also be 
added (to the arbiter module, or separately) to ensure that data transfer ordering 
is maintained, for transfers originating from multiple masters.  

  2.3.6   Broadcast Transfer 
Typically, data transfers on the bus involve just two components—a master and 
a slave. Appropriate select signals ensure that only the source and destination 
components sample data onto and off the bus. However, it is possible for the data 
on the bus to be  “ visible ” to other components on the bus, besides the two that 
are involved in the transfer. This is because every time a data item is transmitted 
over a bus, it is physically broadcast to every component on the bus. A  broadcast 
transfer is one that involves a source component transmitting data on the bus, 
and multiple components sampling the data off the bus. One of the uses of this 
transfer mode is for snooping and cache coherence protocols. When several com-
ponents on the bus have a private cache which is fed from a single memory mod-
ule, a problem arises when the memory is updated (for instance, when a cache 
line is written to memory by a component). In such a case it is essential that the 
private caches of the components on the bus invalidate (or update) their cache 
entries to prevent reading incorrect values. Broadcasting allows the address of the 
memory location (or cache line) being updated to be transmitted to all the com-
ponents on the bus, so that they can invalidate (or update) their local copies.   

  2.4   BUS TOPOLOGY TYPES 
Bus-based communication architectures can have several different types of bus 
arrangements or topology structures which affect the cost, complexity, power, and 
performance profi les of the communication architecture.  Figure 2.9    shows the 
major bus topology types that are used in SoC designs. The simplest scheme for 
component interconnection is the  single bus topology shown in  Fig. 2.9 (a). All 
the components in the system are connected to a single shared bus. An example 
of a commercial SoC with a shared bus is the DaVinci family of digital video pro-
cessing SoCs from Texas Instruments  [25]. While such a confi guration is suffi cient 
for very small SoCs having only a few components, it does not scale well to handle 
larger systems. This is because a single bus allows only a single data transfer at a 
time. A more effi cient topology that allows multiple data transfers in parallel is the 
hierarchical bus topology shown in  Fig. 2.9 (b). In this topology, the components 
are connected to multiple buses that interface with each other using a bridge 
component. Concurrent data transfers are possible on each bus, provided that the 
components are allocated to the buses in such a manner that there is minimum 
interaction between components on different buses. Since buses can have dif-
ferent clock frequencies, the bridge component can be quite complex, to handle 
interbus transactions, data buffering, frequency conversion, etc. There are several 
commercial SoCs today that make use of the hierarchical bus topology, such as 
the customizable multiprocessor ARM PrimeXsys SoCs  [27] that are widely used 

2.4 Bus Topology Types
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 FIGURE 2.9 (a)

    Different bus-based communication architecture topology structures: single bus              
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  FIGURE 2.9(d) 

    Full bus crossbar (or point-to-point bus)               

  FIGURE 2.9 (e)

    Partial bus crossbar               
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    Ring bus              
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in handheld devices such as mobile phones, PDAs (personal digital assistants), 
GPS (global positioning system) units, and PMPs (personal media players). A sim-
pler variant of the hierarchical bus is the  split bus topology shown in  Fig. 2.9 (c). 
This topology also uses multiple buses, but the interface between these buses is a 
simple tri-state buffer-based scheme. This prevents using a more complex protocol 
as in the case of the hierarchical bus topology, but the simpler tri-state interface 
can be more effi cient as far as energy consumption is concerned  [9].

For high performance systems that require extensive data transfer parallelism, 
the full bus crossbar (also called full bus matrix) topology shown in  Fig. 2.9 (d)
is a suitable choice. An example of a commercial SoC with a full bus crossbar 
topology is the Niagara multiprocessor SoC from SUN  [26], which connects eight 
SPARC processor cores (each having hardware support for up to four threads) to 
four L2-cache banks, an I/O bridge, and an FPU (fl oating point unit). While this 
solution might be excessive for smaller systems  [10], several research efforts 
 [11–13]  have shown the utility of a full bus crossbar in providing signifi cantly 
higher data throughput rates compared to single and hierarchical bus architec-
ture alternatives. In this topology, every master is connected to every slave in the 
system with a separate bus, which can be considered to be a kind of point-to-
point interconnection. The large number of buses allows multiple data transfers 
to proceed in parallel. Note that unlike the previously presented topologies, a full 
crossbar system requires separate arbitration for every slave. While a full crossbar 
bus topology offers superior parallel response, the excessive number of buses can 
take up a large area, increase power consumption, and make it practically impos-
sible to achieve routing closure  [14]. To overcome these limitations, one alterna-
tive is to use a hybrid shared bus/point-to-point topology, which clusters some 
of the components in the full crossbar bus, as shown in  Fig. 2.9 (e). Such a  par-
tial crossbar bus topology has a fewer number of buses, a smaller area, reduced 
power consumption, and less wire congestion than a full crossbar bus topology 
 [14–16] . However, the clustering of components in the partial crossbar bus topol-
ogy also reduces the parallelism in the system, which in turn reduces perfor-
mance. Designers must therefore carefully trade-off these factors while designing 
a partial crossbar bus topology. Chapter 6 describes research efforts that attempt 
to optimally trade-off design cost and performance while designing crossbar bus 
architectures. 

Finally, another commonly used high performance bus topology is the  ring
bus topology, shown in  Fig. 2.9 (f). In this topology, components are connected 
to one or more concentric ring buses. Data can be transferred from the source 
to the destination either in a clockwise or an anti-clockwise direction, depend-
ing on factors such as bus segment availability and shortest distance to destina-
tion. An example of such a ring bus can be found in the IBM Cell multiprocessor 
SoC [28] that has been used in the PlayStation 3 gaming console. The element 
interconnect bus (EIB) in the Cell multiprocessor consists of four ring buses, two 
of which transfer data in the clockwise direction and two in the anti-clockwise 
direction. The EIB connects the PPE (power processor element), eight SPEs (syn-
ergistic processor elements), a MIC (memory interface controller), and an external 
BIC (bus interface controller). The EIB ring bus was chosen over a full crossbar 
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bus primarily because of its lower area footprint, while still offering an acceptable 
bandwidth. 

  2.5   PHYSICAL IMPLEMENTATION OF BUS WIRES 
With the rising complexity and ever increasing levels of component integration in 
SoC designs, the volume of data transfers between components has also increased. 
To meet performance requirements, bus clock frequencies have been steadily 
increasing, since data throughput is a function of bus clock frequency, as given by 
the relation: 

throughput   bus     ! width    bus   " clock_frequency        bus

where the  throughput is in terms of megabits per second if the  width is speci-
fi ed in terms of bits and the  frequency in terms of megahertz (MHz). Now, a rise 
in bus clock frequency implies a shorter bus clock cycle period. For instance, a 
bus with a clock frequency of 100  MHz has a bus clock cycle duration of 10   ns, 
whereas a bus with a higher clock frequency of 500  MHz has a bus clock cycle 
duration of only 2  ns. This has major implications as CMOS process technology 
continues to shrink. Bus wires are implemented as long metal lines on a silicon 
wafer, and transmit data using electromagnetic waves which cannot travel faster 
than a fi nite speed limit. With shrinking process technology, logic components 
such as gates have also correspondingly decreased in size. However, the wire 
lengths have not shrunk accordingly, resulting in relatively longer communication 
path lengths between logic components in newer technologies. Worse, due to 
increasing bus clock frequencies, the time allowed for a signal on the bus to travel 
from the source to its destination in a single bus clock cycle has reduced consid-
erably, as discussed above. Another way of stating this fact is that the distance that 
can be covered by a signal on the bus in a single clock cycle has been reduced 
with increasing clock frequencies and shrinking CMOS process technology.
Consequently, it can take multiple cycles to send a signal across a chip. For instance, 
it has been estimated that in the 50  nm process technology node, the signal 
propagation delay will be as high as 6–10 bus clock cycles  [17] to send a signal 
from one end of the SoC to the other. This increase and unpredictability in 
signal propagation time can have serious consequences for the performance and 
correct functioning of the SoC design. 

Several ways of tackling this problem have been proposed. Hierarchical  [4, 5] 
or split bus [9] communication architectures partition otherwise long bus lines 
into shorter ones, separated by bridges, or tri-state buffer structures, respectively. 
This makes it possible for signals to traverse a bus segment in a single clock cycle. 
Hierarchical bus architectures such as AMBA 2.0  [4] allow different buses to oper-
ate at different bus clock frequencies. Utilizing multiple clock domains separated 
by bridge logic components allows better signal propagation management, since 
signals need to traverse smaller wire lengths. Another commonly used technique 
makes use of register slices  [1] or buffers to pipeline long bus wires. Such a 
scheme enables a signal to be in fl ight for several cycles, taking a single clock 
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cycle to move between successive pipeline stages, before fi nally reaching its des-
tination. Carloni and Sangiovanni-Vincentelli  [18] described one such approach to 
pipeline long wires having a latency of more than one cycle. Pipeline logic elements 
(called relay stations) were inserted into long wires after the physical layout phase, 
to ensure latency insensitive design. Yet another technique is to make use of asyn-
chronous buses which discard the clock signal altogether, in favor of more elaborate 
handshaking based synchronization mechanism. The MARBLE bus architecture  [6] is 
one example of an asynchronous communication architecture. It is also possible to 
make use of globally asynchronous, locally synchronous (GALS) techniques for com-
munication, which use asynchronous handshaking synchronization for long wires 
that interconnect smaller synchronous regions, consisting of components con-
nected via a synchronous bus. Finally, there are several low level techniques that are 
commonly used to reduce signal propagation delay on any wire, such as by insert-
ing repeaters, or varying the dimensions of the wires (wire sizing)  [19].

  2.6   DISCUSSION: BUSES IN THE DSM ERA 
With the scaling of CMOS technology below 90  nm, SoC designs have entered 
the DSM era, characterized by high levels of component integration, high clock 
frequencies, and low signal voltages. In addition to an increase in signal propa-
gation delay, which requires making architectural changes to buses (as discussed 
in Section 2.5), DSM effects will create severe signal integrity problems that will 
make it harder to guarantee error-free data communication on buses. The signal 
integrity problem can be defi ned as the scenario where the received signal at 
the destination is different from the transmitted signal at the source driver, for 
a bus wire. This happens because of signal degradation caused by various DSM 
effects that create noise (i.e., a deviation of a signal from its intended or ideal 
value). Some of the important DSM effects that can cause noise on buses include 
crosstalk, external electromagnetic interference, transmission line effects, and soft 
errors. These effects are described below. 

  Crosstalk is the phenomenon of noise being caused on a signal A due to the 
coupling with another signal B. Due to the close proximity of bus wires, near-fi eld 
electromagnetic coupling causes inductive and capacitive crosstalk on the bus sig-
nals. Even when wires are far apart, crosstalk can still be present between signals 
due to coupling facilitated by the common substrate, a shared power supply or 
ground, or a shared signal return path. As wires become narrower (with technol-
ogy scaling) and clock frequencies increase, fringing fi eld effects and inductance 
effects become larger for wires, leading to higher inductive and capacitive cross-
talk.  Electromagnetic interference (EMI) from large external electric and magnetic 
fi elds can couple into circuits and create unwanted noise. As highly integrated, 
portable wireless communication SoCs increasingly consist of analog, RF, and digi-
tal circuits, EMI due to external and internal coupling will increase. Long on-chip 
buses in particular will be the sources and receptors of EMI noise.  Transmission 
line effects will arise due to discontinuities in wires that are modeled as transmis-
sion lines. In DSM technologies, when a wire is longer than 1/10 of the wavelength 
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of the signal frequency component that is transmitted, the wave nature of the prop-
agated signal must be modeled, otherwise signifi cant errors may result. Wires will 
thus have to be modeled as transmission lines to avoid errors during signal analysis. 
Discontinuities in these transmission lines (due to various factors such as capaci-
tive loads, vias, wire bends, package pins, crossover wires, and non-ideal receivers) 
can result in impendence mismatches. Such mismatches will create noise as a result 
of signal refl ections at the discontinuities. Finally, signal integrity will also be infl u-
enced by  soft errors that are caused by a collision of thermal neutrons (produced 
by the decay of cosmic ray showers) and/or alpha particles (produced by impuri-
ties in the substrate). Highly integrated SoCs will be particularly susceptible to soft 
errors that will create spurious pulses and interfere with signals on buses. 

As a result of all the DSM effects described above, it will become harder to 
guarantee error-free data transfers on buses. Reduced signal swings in DSM tech-
nologies will result in a further reduction of voltage noise margins, increasing the 
probability of transmission errors in the presence of even the smallest sources 
of noise. Many other factors such as increasing wire resistance due to skin effect 
at high frequencies, increasing number of metal layers that increase cross-layer 
coupling, and timing errors due to jitters will cause new challenges in DSM tech-
nologies. These problems have been well summarized in several books  [20–24]. It 
is very important that emerging tools and methodologies for on-chip communica-
tion architecture design be able to handle not only the increased number of wires, 
but also allow designers to predict and address DSM issues as early in the design 
fl ow as possible, to reduce design iterations (instead of fi nding and fi xing the 
problems in post-layout). We will revisit DSM-aware methodologies, techniques, 
and architectures throughout this book.  

  2.7   SUMMARY 
In this chapter, we presented some of the basic concepts of bus-based communi-
cation architectures. We fi rst introduced the components and terminology used 
to describe these communication architectures and then covered some of their 
major characteristics such as bus signal types, physical structure, clocking, decod-
ing, and arbitration. We presented an overview of some of the basic data trans-
fer modes that are used during data transfers, and then described some of the 
more advanced transfer modes intended to improve bus utilization and through-
put performance. Some commonly used bus topology structures were described, 
and fi nally we discussed some of the issues in the physical implementation of bus 
wires. In the next chapter, we will look at examples of some standard bus-based 
communication architectures that are widely used in SoC designs.   
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