On-Chip Communication
Architectures

Custom Bus-Based
On-Chip Communication [esmm—"
AI‘ChiteCtUI"e DeSign ON-CHIP COMMUNICATION

ARCHITECTURES .-
SYSTEM ON CHIP INTERCONNECT

ICS 295
Sudeep Pasricha and Nikil Dutt
Figures book chapter 8

© 2008 Sudeep Pasricha & Nikil Dutt 1



ESL Flow

* Selecao de arquitetura de comunicagao
dedicada

e Otimizar desempenho
e potencia

Task/process
graph

Task/process allocation, binding, scheduling

Architectural
model

CA exploration
model

Interface refinement,
cycle scheduling

Implementation
model

Logic synthesis,
place and route

Gate-level
model

© 2008 Sudeep Pasricha & Nikil Dutt



Split bus

o Split shared bus into multiple segments

o Split buses allow selective shutdown of
unused bus segments, potentially saving
energy

* Segmentation increases the parallelism by
permitting parallel data transfers on X-MEM | | Y-MEM
different segments, which improves
performance
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Split bus

 Total bus power consumption
between segmented bus and shared
bus architectures
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Monolithic single shared bus

architecture
* Long propagation time

 Large capacitances
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Split bus architecture

* When enl is high, data can be transmitted from bus/ to
bus2,and when enZ2 is high, data can be transmitted from

bus2 to busl|.

e When both enl and en2 are low, the buses are isolated from

each other.
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Energy saving in split bus

The components having the highest probabilities of data transfer should be
kept on the same segment, so that only that segment of the bus
architecture is active during the transfer, which saves energy

Table 8.1 Energy consumption of various bus architectures [©]
Architecture Energy
BUS = {M) ,M>,M3,M4} 1
BUS 1={My,M,} BUS2={M3,M,} 0.75
BUS I={M,, M3} BUS2={M>,M,} 0.875
BUS 1={M,, M4} BUS2={My,M3} 0.875
@ 2002 IEEE
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SAMBA (single arbitration, multiple bus accesses)

 allows multiple masters to access the bus with only a

single bus arbitration grant.

e improve bus bandwidth and latency response

two separate buses,
each of which is used
for data transfer in a
forward or backward
direction
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Performance gains of the SAMBA

bus

e Note the limitation in the number of modules connected in the
busses
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SERIAL BUS ARCHITECTURES

In DSM era, coupling capacitance between adjacent signal lines leads to
significant signal propagation delay and power consumption
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The reduction in the number of bus lines results in:
(i) a larger interconnect pitch, which reduces the coupling capacitance

(i) a wider interconnect, which reduces the effective resistance
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SERIAL BUS ARCHITECTURES

* Throughput versus degree of multiplexing
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CDMA-BASED BUS ARCHITECTURES

* Bus: physical interconnect resources are shared in the time domain
e Option: TDMA — again time domain
» CDMA (Code division multiple access): codeword orthogonality, which

avoids cross-correlation of codewords and allows perfect separation of
data bits modulated with different codewords
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CT-Bus

e Hierarchical bus, mixing TDMA with CDMA

Code-domain  Clock cycle CDMA sub-channels with
e \L different spreading codes

Data flows J
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DF3 II"""""'Sub-channe|

DF4 IR NI :':':":':":'} group
Time-domain

FIGURE 8.16

Architecture of CT-Bus (with three CDMA subchannel groups) [30]
© 2004 IEEE
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ASYNCHRONOUS BUS
ARCHITECTURES

» synchronization occurs using additional handshalke signals between
transfer phases

* lower power consumption compared to traditional synchronous buses

* resilience to clock skew even as the number of IPs (components)
connected to the bus increases
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ASYNCHRONOUS BUS
ARCHITECTURES

e asynchronous handshake protocol with two-phase signaling and data
insensitive (DI) encoding is used for robust and high speed data transfers
on the bus

e four-phase signaling and bundled data transfers are used at the IP interfaces
for high performance and low complexity.
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PERFORMANCE EVALUATION

* Sl:single issue — asynchronous

e MI: multiple issue — asynchronous } Increased energy
o consumption
e MO: multiple issue and OO — asynchronous P
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Simulation results for performance: (a) throughputs (b) throughputs of MI-OCB and MO-0OCB

as a function of the number of issues [35]
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NEXUS bus (asynchronous)

e QDI timing model

* split channel for each input which specifies which output to
send the burst to

» merge control channel is also required at the output to
indicate which input to receive the burst from
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Dynamically Reconfigurable Bus

Architectures

* Dynamically reconfigurable bus architectures have the ability to modify
certain parameters and even the bus architecture topology dynamically

during system execution

 AMBA, Coreconnect — programmable arbitration, TDMA, programmable

burst modes

communication
architecture tuners
(CAT): fixes the
arbitration priority
according to the packet
size

- goal: meet deadlines
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CAT — Communication Architecture
Tuner

» Methodology to generate de hardware
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CAT performance

Table 8.3 Effect of varying input traces (while maintaining comparable
workloads) on the performance of CAT-based architecture [39, 40]
Deadlines Met (%)
Input trace Static protocol-based architecture CAT-based architecture
T-6-0 13.06 94.62
T-6-1 12.86 93.47
T-6-2 12.06 93.47
T-6-3 11.9 94.1
T-6-4 10.64 95.48
T-6-5 11.62 94.08
T-6-6 11.24 96.89
T-6-7 13.3 95.07
T-6-8 12.17 94.47
T-6-9 14.76 94.55
@ 2004 IEEE
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CAT performance

Deadlines met (%)
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for very low or very high workloads, the gains for the
CAT-based architecture are comparatively smaller.
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LOTTERYBUS

e Again arbitration
> Fixed priority: may lead to starvation
> TDMA: may lead to higher latency values

o LOTTERYBUS: attempts to provide effective bandwidth guarantees, while
ensuring low latencies for bursty traffic with real-time latency constraints

4 The manager
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LOTTERYBUS architecture
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LOTTERYBUS versus TDMA

e The communication latency for high priority masters varies significantly for
the TDMA architecture (1.65 to 20.5 cycles per word), because the latency
of communication in TDMA is highly sensitive to the timing wheel position
(i.e., which master’s slot currently has access to the bus) when the request
arrives.

e The LOTTERYBUS architecture does not exhibit this phenomenon and
ensures low latencies for high priority masters.
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dTDMA

e Acts over the burst size

e In dTDMA, the bus arbiter dynamically grows or shrinks the
number of timeslots to match the num ber of active transmitters

dTDMA bus clock
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AMBA versus dTDMA
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Topology Reconfiguration

e Example: FLEXBUS
> Dynamic bridge bypass

> Dynamic component re-mapping
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Dynamic component re-mapping

master M2 and slave S2 can be dynamically mapped to either AHB1 or AHB2.
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Dynamic component re-mapping
performance

Table 8.7 Performance of 802.11 MAC processor-based SoC subsystem for
different communication architectures [51]

Bus architecture Computation time (ns)  Data transfer time (ns) Total time (ns)
Single shared bus 42.480 - 42,480
Multiple bus 26,905 12,800 39,705
FLEXBUS (bridge 27,025 5,290 32,315
by-pass)

FLEXBUS 27,010 5,270 32,280
(component

re-mapping)

Ideally 26,905 5,120 32,025
reconfigurable

bus

@ 2005 IEEE

© 2008 Sudeep Pasricha & Nikil Dutt

29



