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GERENCIAMENTO DE RECURSOS MULTI-OBJETIVO PARA SISTEMAS
MANY-CORE

RESUMO

Sistemas many-core integram multiplos cores em um chip, fornecendo alto desempenho
para varios segmentos de mercado. Novas tecnologias introduzem restricbes de potencia conheci-
dos como utilization-wall ou dark-silicon, onde a dissipagao de poténcia no chip impede que todos
os PEs sejam utilizados simultaneamente em maximo desempenho. A carga de trabalho (workload)
em sistemas many-core inclui aplicagées tempo real (RT), com restricbes de vazdo e temporizacao.
Além disso, workloads tipicos geram vales e picos de utilizagao de recursos ao longo do tempo.
Este cenario, sistemas complexos de alto desempenho sujeitos a restricdes de poténcia e utiliza-
¢ao, exigem um gerenciamento de recursos (RM) multi-objetivos capaz de adaptar dinamicamente
0s objetivos do sistema, respeitando as restricdes impostas. Os trabalhos relacionados que tratam
aplicagdes RT aplicam uma analise em tempo de projeto com o workload esperado, para atender
as restricoes de vazao e temporizacdao. Para abordar esta limitacdo do estado-da-arte, decisdes
em tempo de projeto, esta Tese propde um gerenciamento hierarquico de energia (REM), sendo
o primeiro trabalho que considera a execucao de aplicacées RT e geréncia de recursos sujeitos a
restricoes de poténcia, sem uma analise prévia do conjunto de aplicagdes. REM emprega diferentes
heuristicas de mapeamento e de DVFS para reduzir o consumo de energia. Além de nao incluir
as aplicagdes RT, os trabalhos relacionados ndo consideram um workload dindmico, propondo RMs
com um Unico objetivo a otimizar. Para tratar esta segunda limitagdo do estado-da-arte, RMs com ob-
jetivo Unico a otimizar, esta Tese apresenta um gerenciamento de recursos multi-objetivos adaptativo
e hierarquico (MORM) para sistemas many-core com restricdes de poténcia, considerando worklo-
ads dinamicos com picos e vales de utilizagdo. MORM pode mudar dinamicamente os objetivos,
priorizando energia ou desempenho, de acordo com o comportamento do workload. Ambos RMs
(REM e MORM) sao abordagens multi-objetivos. Esta Tese emprega o paradigma Observar-Decidir-
Atuar (ODA) como método de projeto para implementar REM e MORM. A Observagdo consiste em
caracterizar os cores e integrar monitores de hardware para fornecer informagées precisas e rapidas
relacionadas a energia. A Atuacao configura os atuadores do sistema em tempo de execugao para
permitir que os RMs atendam as decis6es multi-objetivos. A Decisdo corresponde a implementa-
cao do REM e do MORM, os quais compartilham os métodos de Observacao e Atuacao. REM e
MORM destacam-se dos trabalhos relacionados devido as suas caracteristicas de escalabilidade,
abrangéncia e estimativa de poténcia e energia precisas. As avaliagdes utilizando REM em many-
cores com até 144 cores reduzem o consumo de energia entre 15% e 28%, mantendo as violacoes
de temporizacao abaixo de 2,5%. Resultados mostram que MORM pode atender dinamicamente a
objetivos distintos. Comparado MORM com um RM estado-da-arte, MORM otimiza o desempenho
em vales de workload em 11,56% e em picos workload em até 49%.

Palavras-Chave: Many-core, geréncia de recursos, otimizacao de energia, DVFS, multi-objetivo.






MULTI-OBJECTIVE RESOURCE MANAGEMENT FOR MANY-CORE
SYSTEMS

ABSTRACT

Many-core systems integrate several cores in a single die to provide high-performance
computing in multiple market segments. The newest technology nodes introduce restricted power
caps so that results in the utilization-wall (also known as dark silicon), i.e., the on-chip power dissipa-
tion prevents the use of all resources at full performance simultaneously. The workload of many-core
systems includes real-time (RT) applications, which bring the application throughput as another con-
straint to meet. Also, dynamic workloads generate valleys and peaks of resources utilization over
the time. This scenario, complex high-performance systems subject to power and performance con-
straints, creates the need for multi-objective resource management (RM) able to dynamically adapt
the system goals while respecting the constraints. Concerning RT applications, related works apply a
design-time analysis of the expected workload to ensure throughput constraints. To cover this limita-
tion, design-time decisions, this Thesis proposes a hierarchical Runtime Energy Management (REM)
for RT applications as the first work to link the execution of RT applications and RM under a power
cap without design-time analysis of the application set. REM employs different mapping and DVFS
(Dynamic Voltage-Frequency Scaling) heuristics for RT and non-RT tasks to save energy. Besides
not considering RT applications, related works do not consider the workload variation and propose
single-objective RMs. To tackle this second limitation, single-objective RMs, this Thesis presents a
hierarchical adaptive multi-objective resource management (MORM) for many-core systems under
a power cap. MORM addresses dynamic workloads with peaks and valleys of resources utilization.
MORM can dynamically shift the goals to prioritize energy or performance according to the workload
behavior. Both RMs (REM and MORM), are multi-objective approaches. This Thesis employs the
Observe-Decide-Act (ODA) paradigm as the design methodology to implement REM and MORM.
The Observing consists on characterizing the cores and on integrating hardware monitors to pro-
vide accurate and fast power-related information for an efficient RM. The Actuation configures the
system actuators at runtime to enable the RMs to follow the multi-objective decisions. The Decision
corresponds to REM and MORM, which share the Observing and Actuation infrastructure. REM and
MORM stand out from related works regarding scalability, comprehensiveness, and accurate power
and energy estimation. Concerning REM, evaluations on many-core systems up to 144 cores show
energy savings from 15% to 28% while keeping timing violations below 2.5%. Regarding MORM,
results show it can drive applications to dynamically follow distinct objectives. Compared to a state-
of-the-art RM targeting performance, MORM speeds up the workload valley by 11.56% and the
workload peak by up to 49%.

Keywords: Many-core, resource management, energy optimization, DVFS, multi-objective.
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1. INTRODUCTION

The high density of transistors allowed the development of a broad set of Systems-
on-Chips (SoC) for different purposes. A trend in SoC design is many-core systems. A
many-core system may be classified as heterogeneous or homogeneous (symmetric and
asymmetric). Heterogeneous many-cores employ cores with distinct architectures and or-
ganizations (like general-purpose processors, graphics processing unit, dedicated hardware
accelerators, among others) [EBA*12]. Symmetric homogenous many-cores correspond to
systems with all cores having the same architecture and organization. Asymmetric many-
cores are a particular case of homogeneous systems, where the cores share the same
architecture (Instruction-Set Architecture - ISA), but not the organization [ARM13].

Examples of industrial many-core systems include Intel SCC (48 cores) [Int10],
Mellanox Tile-GX (72 cores) [Mel17], Kalray array (256 cores) [DDVAPL14], and KiloCore
chip (1,000 cores) [BSP*16]. Recently, even complex architectures follow the many-core
trend, such as Intel Xeon i9 (18 x86-processors) [Int17].

1.1 Power Management in Many-cores

Many-core systems provide high-performance computing for distinct market seg-
ments, such as mobi, desktop computers, and servers. A key element in many-core sys-
tems design is to develop run-time management techniques for dynamically trading power,
performance, energy and others conflicting parameters to achieve system and application
requirements. Since each core usually allows dynamic settings of their control knobs, the
management of a many-core system becomes challenging due to the amount of possible
operating points.

Despite the many-core advantages, a certain number of cores must remain off
(dark) during the applications execution due to power constraints. This restriction, called
Dark Silicon [EBA*12], is more pronounced in recent technology nodes due to the higher
number of integrated cores. Without respecting the power constraints, the system becomes
vulnerable or unreliable to several problems such as cooling, faults from thermal issues, and
fast aging effects.

The widely used power constraint is the Thermal Design Power (TDP), which is
an upper bound of power globally defined to the system. Power cap and power budget
can also refer to power constraints with the same meaning of TDP. Thermal constraints
can also be employed instead of power ones [KPSH15]. More sophisticated approaches
can consider the temperature and the activity of each core to maximize the utilization of
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the system resources [PKM*14]. Quality of Service (QoS) can also constrain the system
regarding performance, but it is not related to Dark Silicon [PAC*12].

1.2 Motivational Example

Besides the challenges related to controlling the core knobs and dealing with power
cap, an additional challenge is the management of the dynamic workload. Dynamic work-
load refers to the unknown applications’ set that will execute in the system. Even if the
applications set is known, applications enter and leave the system at different moments,
creating an unpredictable scenario of resource sharing. Thus, the system must monitor its
resources to avoid undesirable situations, as excessive power dissipation.

Figure 1.1 shows the utilization and the power behavior of a typical workload in
many-core systems. This workload presents peaks and valleys of system utilization and,
consequently, power. In the example of Figure 1.1, the arrow labeling 38 tasks corresponds
to a peak of utilization as well as the arrow labeling 17 tasks is a valley. The red line in the
power graph corresponds to the power cap.

Utilization and Power
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o
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60 ; 26 processors

a0 i ™1
N b do
§ % 1 ol

= 30 /

> 20 f 17 tasks \ /
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Figure 1.1 — Utilization and power for a 6x6 many-core system running a dynamic workload.

Due to the 200mW power capping, the system may not admit power peaks on a
high utilization phase. For instance, the resource management (RM) should decide which
applications speed up and/or down, creating a resource sprinting situation. Meanwhile, the
low workload may be an opportunity for boosting applications and perhaps finish some of
them before a peak since there is a power slack available. Another strategy for the low
workload, the RM can also activate a low power mode to save energy. Mobile systems
reproduce similar utilization behavior, presenting low workload when in standby mode and
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high workload when the user is handling the system [NVI11b]. Even in active mode, the
system utilization is frequently varying according to the number of executing tasks [NVI11a].
Servers for cloud computing are another example of a variation on the workload demand,
but the time scale of the variation can be hours or days [Liu11]. Thus, a multi-objective RM
requires adaptive mechanisms according to the workload behavior.

1.3 Problem Definition

The challenge of executing dynamic workloads on many-core systems under cer-
tain constraints has motivated researchers in several areas to employ RM to achieve one or
more specific objectives. Due to several reasons related to technology, environment, and
workload variation (such as thermal issues, security, performance, and energy efficiency),
current many-core systems demand multi-objective RM [SDMI17]. The following definitions
aim to clarify the multi-objective meaning according to Rahmani et al. [RJD17]:

Definition 1. Goal - a high-level result or plan for the system.

Definition 2. Objective - specific goal that the system is supposed to achieve or fulfill under
at least one constraint.

Definition 3. Multi-objective - a system function that combines multiple objectives.

The goal can be selected, prioritized or optimized jointly with another goal. How-
ever, the objectives can conflict with each other. For example, a performance-driven RM
does not consider other requirements like aging or temperature. In case of conflicting objec-
tives, the RM can opportunistically select some goals to track along the time and dynamically
switch between the goals according to certain conditions to satisfy the multiple objectives.
Therefore, fixed-objective RM covers specific cases chosen according to narrow contexts.

Adaptability (see below) is an essential feature of runtime RM [DJS15] to support
the unpredictable behavior of dynamic workloads and to enable the dynamic switches of
objectives priorities.

Definition 4. Adaptability - the ability of replanning or updating system settings at runtime.

Executing dynamic workloads on many-core systems include several challenges
to an RM. At the application level, the RM evaluates if the system has enough power and
resources for new incoming applications [KP15]. Once the RM allows the application to exe-
cute, task mapping algorithms find the most suitable area to place application tasks. Further,
task migration [SSKH13] and Dynamic Voltage Frequency Scaling (DVFS) may adapt the
system and applications settings according to the system status [PKS*17] or goal switching.
To support adaptability, the RM manages the control knobs available in the system at runtime
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to meet the goals embedded in the management algorithms. Therefore, a comprehensive
and adaptive management for many-core systems should include several mechanisms, like
application admission, task mapping, task migration, and DVFS.

According to the taxonomy of RM methods [SSKH13], RMs can be centralized,
distributed, or hierarchical (combination of centralized and distributed). In such complex
systems, a centralized RM compromises the system performance because a single proces-
sor concentrates the management and affects negatively the scalability [SDMI17] by induc-
ing network congestion and hotspots. With distributed RMs the many-core is divided into
independent clusters in such a way that one core is in charge of managing the cores of
its cluster. Distributed and hierarchical RM can guarantee scalability for current many-core
systems [CMMM13, QP16].

The fundamental problem is how to control the set of actuators of a many-core-
system at runtime to provide the required adaptability to enable the development of resource
management running dynamic workloads.

1.4 Thesis Hypothesis

As stated before the target of interest in this Thesis are many-core systems run-
ning dynamic workloads. The final goal to achieve is to optimize many-cores by using
multi-objective functions. The hypothesis to be demonstrated along with this Thesis is that
the resource management hierarchically organized of the target systems is beneficial. The
benefits are the coordination of the actuators and the distribution of the control complexity
throughout the hierarchy levels.

1.5 Thesis Goal

The strategic goal of this Thesis is the proposition of a comprehensive set of meth-
ods for resource management adopting a hierarchical multi-objective approach, targeting
many-core systems executing dynamic workloads under restricted power constraints.

1.5.1 Thesis Specific Goals.

The specific goals of the Thesis are the following:

* review the state-of-art related to RM proposals;
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» present a general method to characterize the hardware of the reference many-core
system to provide accurate per-core power and performance measurements;

+ create a hierarchical observing infrastructure, using the characterization data, to sup-
port the RM decisions;

+ evaluate available RM control techniques;

» propose a multi-objective RM targeting energy-efficiency under power and timing con-
straints in the context of real-time applications;

» propose a power-constrained multi-objective RM that opportunistically chooses be-
tween two objectives according to the workload behavior: energy and performance;

» compare the proposals with related works.

1.6 Reference Platform

Figure 1.2 illustrates the baseline many-core platform — HeMPS [CMMM13]. It
is @ homogeneous many-core, with a NoC (Network-on-Chip) interconnecting the set of
Processing Elements (PEs). Each PE contains a processor (32 bits MIPS-like), a Direct
Memory Network Interface (DMNI) [RLMM16], a local dual-port memory, and a router. This
platform adopts a simple memory organization, without caches and shared memories. The
local memory acts as a scratchpad memory, storing the tasks code and data. The memory is
also organized in equally sized pages. Such simple memory organization simplifies the task
mapping and task migration heuristics because any task may be assigned to any memory
page. The methods proposed herein are not limited to the features of this platform. The
reason to adopt this platform is to enable the validation of the proposed methods with clock-
cycle accuracy.

The main NoC features include: (/) 2D mesh topology; (ii) input buffering for tem-
porary flit storage; (iif) wormhole packet-switching; (iv) credit-based flow control; (v) routers
with 5 bi-directional ports; (vi) round-robin arbitration; and (vii) XY routing algorithm.

Despite the same hardware of all PEs, they have different roles in the system. The
Operating System (OS) running on the PE defines its role in the hierarchical organization. A
PE can assume the role of cluster manager (CM), global manager (GM), or slave (SP):

» CM: resource manager at the cluster level (Definition 5). It executes the decision
management regarding task mapping and DVFS;

» GM: resource manager at the system level. It receives application execution requests
via the external interface (application repository) and decides which clusters execute
the applications. The GM also acts as a CM, managing the PEs belonging to its cluster.
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Figure 1.2 — A 6x6 instance of the homogeneous many-core reference platform, organized
in four 3x3 clusters.

» SP: slave PEs, execute the applications tasks. Each SP executes a multi-task OS,
enabling the concurrent execution of tasks.

Definition 5. Cluster - virtual region of the many-core, with a set of SPs and a manager PE
(CM or GM). The cluster size is a design-time parameter, but a cluster can borrow resources
from SPs of other clusters at runtime when there are no available PEs in the cluster to
execute a given application. The protocol to modify at runtime the cluster size is named
reclustering [CMMM13].

Figure 1.3 overviews the hierarchical organization by highlighting the hierarchy lev-
els and the communication pattern. The exchanged messages related to the system man-
agement may be intra- or inter-cluster. SPs belonging to a cluster communicates with the
manager PE of its cluster, characterizing an intra-cluster communication. Similarly, the inter-
cluster communication occurs when CMs communicate with the GM. Note that, intra-cluster
communication also occurs in the cluster managed by the GM because the GM acts as a
CM in this case.

Applications are modeled as directed acyclic task graphs, A = (T, E), where the
vertex t; € T is a task and the directed edge e; € E is the communication between tasks
fi and t. The adopted communication model is message passing. Figure 1.4 presents two
examples of applications modeled as task graphs. In the current Thesis, applications are
described in C language and they use MPI-like communication primitives.

Considering the paged memory organization and the application model, a memory
page is a resource (Definition 6) to execute one task.

Definition 6. Resource - available page in the PE memory able to execute a task. Each PE
can execute a set of tasks simultaneously (multitasking).
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Figure 1.4 — Examples of applications modeled as task graphs.

1.7 Methodology

Develop an RM able to deal with conflicting objectives in many-core systems re-
quires monitoring the communication and computation of each PE at runtime [SDMI17], and
also requires the development and modeling of an actuation framework to enable the system
to meet the RM decisions. The RMs proposed in this Thesis adopt the Observe-Decide-Act
(ODA) paradigm to connect the monitoring to the actuation infrastructure [DJS16]. Figure
1.5 shows an ODA control loop. Each layer of the system (hardware and software layers)
generates data for the decision algorithms from multi-layered sensors to enable system ob-
serving. According to the control policies implemented by the decision algorithms, actuation
adapts the system layers to track the decisions.

The ODA paradigm requires self-awareness and self-configuration from the sys-
tem to enable the adaptation policies [DJS15]. In the context of this Thesis, self-awareness
means that the system can observe itself through virtual or physical sensors, and self-
configuration is the ability of actuation on the available system actuators to update system
settings. Further, the Observe state provides a multi-layer system sensing and the Act one
is split into a multi-layer actuation. The multi-layer observing and actuation allow an individ-
ual control of each layer by enabling the hierarchical approach under ODA paradigm. Once
observe and act are known and defined, the controller can adequately take decisions ac-
cording to heuristics, PID-controller, or learning-based algorithms to meet the multi-objective
purposes [SLR*17].
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Thesis goals applied to the reference platform. Adapted from [DJS16].

This Thesis proposes two approaches of multi-objective RM in large many-cores
systems running dynamic workloads. Both RMs share the observe and act approaches, so
that the decide one distinguishes the proposed RMs. The hierarchy approach of RMs is
applied regarding layers in the ODA paradigm (Figure 1.5). Since observing is essential to
provide an adequate measurement infrastructure, the observing design is introduced first.
Following, the actuation mechanisms, such as DVFS and task allocation, modeled to meet
the RM goals are presented. Next, the first RM proposal includes decisions concerning
Quality-of-Service for real-time applications and energy consumption. The second RM pro-
posal is a decision to control conflicting objectives like energy and performance under power

capping.

1.8 Thesis Contributions and Originality

The main original contributions of this Thesis include:

1. a characterization method to accurately estimate power and energy of NoC-based
many-cores by using RTL descriptions considering all PE components;

2. design and implementation of lightweight and scalable observing infrastructure for
power, performance, and communication;
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3. a comprehensive approach for RM that includes algorithms and actuators for appli-
cation admission, task mapping, task migration, DVFS, and power-gating to make a
trade-off between conflicting goals;

4. an energy-efficient RM to run soft real-time and best-effort applications with distinct
heuristics while preventing the need of design-time analysis of the application set;

5. an RM approach that can dynamically adapt the system to the frequent changes of
system goals due to the workload variation.

The main Thesis originality is the proposition and design of RMs addressing power,
energy, and performance concomitantly, considering communication, computation and scal-
ability issues. The hierarchical organization and the multi-layer ODA paradigm are the key
enablers of the proposed heuristics.

1.9 Document Structure

Chapter 2 reviews related works and makes a qualitative evaluation of the literature
with the proposed Thesis. Figure 1.5 presents the Chapters according to the ODA paradigm:

» Chapter 3 presents the Observe state. The Observe Chapter details the monitor-
ing infrastructure and corresponds to the first and the second contributions previously
mentioned.

» Chapter 4 describes the Act state (third contribution). The Act Chapter highlights are
the hierarchical management, task migration, and the DVFS model and design.

» Chapters 5 and 6 present to the Decide state, which brings the major scientific contri-
butions. The decision Chapters share some features, like the hierarchical organization
and the multi-objective approach.

— Chapter 5 (fourth contribution) presents a multi-objective RM for soft real-time
applications in such a way of exploring the slack time of RT applications to obtain
energy savings. The management of best-effort applications uses thresholds.

— Chapter 6 describes an adaptive RM that can dynamically shift the system goals
according to the dynamic changes of the workload behavior (fifth contribution).

Chapter 7 concludes this Thesis, and draws directions for future works.
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2. RELATED WORKS

This Chapter reviews and discusses related works in Resource Management (RM).
The Chapter finishes with a comparison between the key features found in the state-of-the-
art regarding to RM.

2.1 Thannirmalai Somu Muthukaruppan et al.

Muthukaruppan et al. [MPV*13] work proposes their RM as hierarchical power
management (HPM) integrated into a real platform (ARM.big.LITTLE running Linux OS).
The big.LITTLE used has one cluster with two Cortex-A15 cores and one cluster with three
Cortex-A7 cores. Both clusters execute the same ISA.

In the modeling step, the Authors perform experiments to evaluate the target plat-
form according to the following criteria: (i) power-performance tradeoff; (i) DVFS impact; (Jii)
impact of active processors on cluster power; (iv) task migration cost. The main conclusions
from the modeling step are: (i) the A15 cluster dissipates more power and has better per-
formance; (if) mapping should balance the workload between the cores of the same cluster;
(iff) migration of tasks between clusters takes longer than migrating tasks between cores in
the same cluster.

Figure 2.1 shows an overview of HPM developed after the modeling step. A Per-
task QoS controller (QoSCitrl;) determines the range (maximum and minimum) of the appli-
cation performance, and the shrinking of QoS (Quality-of-Service) of applications when the
power is greater than the cap. A Per-cluster DVFS controller (ClusterCtrl;) defines at run-time
the minimum frequency to meet the QoS requirements. The Chip-level power allocator has
the highest priority on the system and triggers new values for application performance and
frequency when a TDP emergency occurs. Per-task resource controller (ResShareCtrl,,)
keeps the applications performance within the QoS range defined by QoS Ctrl. Balancer
and Migrator ensure the load balance of the workload at the cluster level, avoiding idle
cores. The migration between clusters occurs as an exception when a task is demanding
the maximum frequency of the A7 cluster or a task is running at the minimum frequency in
A15 cluster.

Sensors to measure frequency, voltage, power, and energy of each cluster are
available in the target platform. Experiments employ five applications from PARSEC, Vision,
and SPEC. The platform provides a native scheduler, which maps tasks in the A15 cluster
preferably and triggers power switching to respect TDP constraint.

Results demonstrate the HPM benefits from the asymmetric architecture and its
RM is more efficient than the native scheduler. HPM achieves significant power consumption
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Figure 2.1 — RM overview of the Muthukaruppan et al. proposal [MPV*13].

reduction (~69%) while has worst performance compared to the native scheduler (~43%).
The HPM maintains the power stable, near the TDP reference, even when the TDP changes
dynamically during simulation.

2.2 Bharathwaj Raghunathan et al.

Raghunathan et al. [RTGM13] proposal explores process variation to schedule
applications in a homogeneous many-core. The management can benefit from a variability
model to choose the best subset of processors to maximize the performance under a power
budget. Authors call this process to select a given processor as cherry-picking. They present
a statistic model to represent the process variations between the processors. The cherry-
picking management includes mapping, scheduling, power gating and frequency scaling.

Authors propose a polynomial time algorithm for optimally picking a subset of cores
based on the variability parameters, mapping threads to cores in this subset and assigning
operating frequencies to each core to maximize performance under a power budget.

Since the cherry-picking management knows the variability of the cores, the algo-
rithm assigns for an application: (i) the cherry-pick core to execute the sequential phase, (ii)
the cherry-pick core to execute the parallel phase, (iii) the dark cores, (iv) the frequency of
each core running a thread. The frequency of the cores can be scaled after the mapping to
respect the TDP. Each processor runs only one thread.

Figure 2.2 shows a process variation map for a 4x4 many-core with twelve cherry-
picked cores and four dark cores. The applications used (SPLASH and PARSEC bench-
marks) have one sequential thread and a set of parallel threads synchronized on a barrier
(Figure 2.2), i.e., the processor begins a new execution when all threads of the parallel phase
finish.

Three multi-processors containing 16, 24 and 32 cores run the same 16 threads,
i.e., for the 16-core processor there are no dark cores, for the 24-core processor 8 cores are
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dark, and 16 cores are dark in the 32-core processor . The results show the 24-core and the
32-core processors achieve 22% and 30% of performance improvement, respectively, com-
pared to the 16-core processor by using the cherry-picking method. Results are a function
of the process variation and the standard deviation used for calculating the variation in the
experiments.

2.3 Heng Yu et al.

Heng Yu et al. [YSH14] work presents an RM concerning temperature for hetero-
geneous many-cores running adaptive workloads. Adaptive applications have the capacity
of modifying their executing quality according to execution status to maximize Quality of Ser-
vice (QoS) dynamically, i.e., the more cycles the application can execute in a given time
interval, the bigger the number of deadline misses reduction.

The high-level system model includes: (/) adaptive task model; (ii) power model to
execute the DVFS (the model assumes the processors operate under a finite set of voltage-
frequency pairs), and (iii) thermal model adapted from HotSpot [HGV*06].

Considering the behavior of the target workloads, a monitor determines the state of
the task as "hot" or "cool". If the task is "hot", the frequency scaling algorithm may decrease
the task frequency. Similalry, the frequency can increase for "cool" tasks. The actuation



38

heuristics are constantly adapting the frequency to reach the dynamic QoS from adaptive
applications.

Nine heterogeneous cores are prototyped on a Virtex-6 FPGA board. There are
no details about the heterogeneity of the cores. An in-house tool randomly generates a
synthetic workload. The software tool available on FPGA reports the power results. Thermal
results are estimated.

On the first experiment, Authors show the management can avoid up 90% of ther-
mal deadlines on the system for adaptive workloads, but the workload requests no significant
cycle gains. On a second experiment, the number of cycles increases the management with
DVFS running adaptive workload under thermal constraints (65°, 70° and 75°) in 31,5%,
9,5%, and 3% respectively compared to one without DVFS.

2.4 Santiago Pagani et al.

Pagani et al. [PKM*14] work presents a new power budget for many-core systems
to maximize the power efficiency as an alternative to Thermal Design Power (TDP). TDP is a
global constant power value used to avoid problems caused by high temperatures. However,
TDP leads to underutilization of the system when the mapping creates hotspots on the sys-
tem. Instead of considering the power of the whole system, the new metric, called Thermal
Safe Power (TSP), is a function of the temperature of each core and of the floorplanning
(mapping) of active/dark cores.

Figure 2.3 shows two mappings of six active cores in a 4x4 many-core, for which
the TSP is 80°C. In the worst-case mapping, the maximum power of cores is higher than
best-case due to the temperature of the neighborhood. The pattern mapping of the best-
case mapping allows the active cores to work with higher power values by avoiding the
neighborhood effect.

Two RM are developed considering TSP as a temperature constraint. One uses
TSP online measures to map active cores and another defines mapping patterns at design-
time. Both algorithms are described as a function of power but the model abstracts the
technique (DVFS, for example) used to vary the power.

Experiments use Gem5, McPAT [LAS*09], and HotSpot [HGV*06] tools. The hard-
ware platform is an 8x8 many-core, and the processor is an Alpha21264 in 22nm technology.
The TSP online and TSP offline are compared to RMs with power constraints per-core and
per-chip. The results show the TSP management achieves higher performance compared
to other approaches when the number of active cores is high by avoiding the management
triggers due to thermal constraints. For a small number of active cores, the performance of
both approaches is similar.
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Figure 2.3 — Example of worst-case and best-case mappings concerning thermal constraint.
The top bold numbers are the power (Watts) of the active cores. Bottom numbers in paren-
thesis are the temperature in the center of cores [PKM*14].

2.5 Vinay Hanumaiah et al.

The primary goal of the RM presented in Hanumaiah et al. [HV14] work is to max-
imize energy efficiency for heterogeneous many-core systems. The three specific control
policies modeled operate in the system fan speed, voltage and frequency scaling per core,
and task-to-core assignment (mapping/migration). Each core executes one task at a time.
The heuristic of the management model considers the time scale of each control police (Fig-
ure 2.4). When a control technique executes, the heuristic blocks other control techniques
until the end of the expected delay. For each time window of the control technique latency,
the heuristic looks for new values to maximize the energy efficiency, e.g., as the fan speed
has 1-3 seconds of latency, the heuristic looks for better values every 1-3 seconds.
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Figure 2.4 — Delay and time scales of the control techniques used in Hanumaiah et al. work
[HV14].

Authors have an in-house tool, called Magma, to simulate their RM in many-core
systems using a power model (adapted from PTScalar) and a thermal model (HotSpot) in
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the background. Details about the system architecture (heterogeneity, topology, etc.) are
not presented.

Authors execute experiments to evaluate performance, power, temperature, and
PPW (performance per Watt - a measure of energy efficiency) in three scenarios: maximum
performance, minimum energy, and maximum PPW. In the maximum performance scenario,
the frequency is set to the highest value, in such a way to reach also the maximum allowed
temperature. The results show the maximum PPW scenario offers the best tradeoff be-
tween performance and energy. For all scenarios, energy efficiency decreases when a task
terminates because the idle cores are not power gated.

The DVFS of the RM is adapted for running on a real system (quad-core Intel Sandy
Bridge processor) while task scheduling and fan speed control are out of this experiment.
The DVFS improves the energy efficiency of the system by at least 37%. The results could
be better if the power and thermal model were available or extracted in a modeling step
(as presented in Muthukaruppan et al. work [HV14]). Authors report that the processor
supports DVFS at the system level (DVFS modeled at the core level), and the sensors have
low sampling rate and are noisy.

2.6 Paul Bogdan et al.

Paul Bogdan et al. [BMJ13] proposal is an RM using a fractal control approach for
NoC-based systems. According to Authors, classical control theory cannot correctly model
the characteristics of real applications (such as burst workloads), and many-core systems
have no steady state due to the frequent and unpredictable disturbances (mapping of a task,
for instance), so the fractal control approach represents more adequately the behavior of real
systems.

Figure 2.5 is an overview of the Bogdan et al. [BMJ13] approach. From the set
of applications and architecture data, the fractal modeling reads NoC workload measures
as network queue utilization, arrival time process (task) and departure time process. After-
wards, the parameter identification derives a fractal model by estimating the fractional order
of the time derivative and NoC parameters. The parameters required by the system control
are calculated from the parameter identification. Finally, the optimal controller design de-
termines frequency and voltage of the routers and the processors according to constraints.
Router and processor of the same core can run at different frequencies while the voltage is
the same for both.

The experiments are performed in a 4x4-mesh NoC system running Apache server
and Oracle database applications. Some details about the experimental setup are missing
(simulation tools). Authors derive classic control (PID) for the RM of the fractal model for
the experiments. The results show the PID controller cannot avoid peaks of power (power
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Figure 2.5 — Methodology overview description of Bogdan et al. work [BMJ13].

overcomes the reference), and the power consumption is 30% worst compared to fractal
approach. According to the Authors, the RM proposed is not scalable. An instance of the
RM (without many-core integration) is synthesized in FPGA to justify the practical purpose

of their proposal.

2.7

Amir-Mohammad Rahmani et al.

Rahmani et al. [RHK*15] work proposes an RM for NoC-based many-core systems
running dynamic workload - called MOC (Figure 2.6). The method distinguishes real-time
applications and non-real-time applications, and models the applications as task graphs.
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Figure 2.6 — System overview of Rahmani et al. proposal [RHK*15].

Figure 2.6 is an overview of Rahmani et al. [RHK*15] work. Runtime Mapping Unit
embodies the SHIC method [FDLP13] to select the first node to map tasks using the CoNA
mapping [FRD*12] algorithm. CoNA and SHiC are described in specific papers.
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The Tile Power Matrix provides the power consumption of all cores (Authors as-
sume each core has a power sensor) to the Application Power Calculator (APC), which
calculates the power consumption of each application. Similarly, Applications Buffer Uti-
lization Calculator (ABUC) provides the congestion of the applications. Likewise, APC and
ABUC, the Application Processor Utilization Calculator (APUC) and the Application Injec-
tion Rate Calculator (AIRC) contain respectively information about CPU utilization and the
network latency from the router injection rate. These matrices consider computation and
communication aspects to manage the system.

The matrices size is the same as the system size. Since the TDP is the reference
power for the controller, APC calculates the total power of the system comparing it to the
TDP. The Power Allocator adjusts power and frequency settings for each core. The PID
Unit stabilizes the system when a power violation occurs, i.e., it is a reactive actuation.
Disturbance Rejector is a proactive actuation to handle power overshoots caused mainly
when an application begins or finishes. Simulations in Matlab define the PID (Proportional-
Integral-Derivative) controller gains. Whether the DVFS is not enough to maintain the power
cap, Power Allocator can terminate or pause the application with the lowest congestion. TSP
lookup table is the power budget.

The Authors perform the experiments on a System-C many-core platform. The
Lumos framework [WS12] provides physical parameters for the model. MPEG4, VOPD, and
UAV are the real-time applications and the non-real-time applications are synthetic.

Three experiments are performed for a 12x12 NoC-based many-core. The PE in
the homogeneous system is a Niagara2-like core from McPAT [LAS*09]. For comparison
purposes, three other RM are simulated: (/) DSAPM -— dark silicon-aware power manage-
ment, power management with APUC, AIRC, and Disturbance Rejector; (i) PGCapping
— Power-aware Mapping, power management where only power-performance ratio is the
feedback; (iiil) no TDP constraint, no power management. The results show that without RM,
the system stays too much time above TDP reference while DSAPM and PGCapping can
keep the power below TDP most of the time. Comparing DSAPM and PGCapping, the data
throughput of MOC is 15% and 29% better, respectively. The power graphs show a better
utilization of power for MOC as well as the lowest power overshooting due to the proactive
actuation. The Authors do not detail if the management compromises the real-time tasks
nor report other results.

2.8 Shoumik Maiti et al.

The power management proposed by Maiti et al. [MKP15] considers the process
variation inherent to the new technologies nodes affected by the utilization wall (or dark
silicon). The supported actuation techniques are mapping and DVFS.
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At design-time, process variation parameters are captured (Monte Carlo Spice sim-
ulation) for the range of frequencies used in DVFS at nominal voltage and temperature. The
parameters of the power model for each core derive from the process variation model. Pro-
cess variation model, power model and instruction per cycle (IPC) of all applications are the
inputs for the power management (Figure 2.7).

Mapping
1) IPC of N threads Dark Silicon aware core Constraints ]
2) Power model for selection and thread 1) Power-budget (Pmax)
all process bins mapping onto N cores 2) Min. throughput (Tpmin)
3) Process-info for all

M cores on CMP DVES

Optimal voltage and
frequency selection for
all N cores

Outputs

1) Per core V's/F's .-
2) Mapped CMP -EE-
(a) (b)

Figure 2.7 — (a) Power management overview of Maiti et al. [MKP15] proposal and (b)
4x4 selected cores (white squares) from 6x4 cores. The outputs define the voltage and
frequency of active cores.

Mapping in this work means selecting a contiguous rectangular region of cores to
activate while the other cores are clock gated. The mapping heuristic uses the process vari-
ation data for selecting the active cores according to two schemes: a contiguous rectangular
region with (/) the minimum leakage and (i/) the maximum performance. The management
chooses the adequate scheme according to throughput required (IPC) by the application.

The system can target minimum energy or maximum performance while respect-
ing the system constraints. To respect these different system requirements without power
gating, the DVFS has an extended range of voltage and frequency, which varies from the
near-threshold voltage (NVT) up to the turbo boost voltage (a voltage value higher than the
nominal one). The voltage/frequency of all cores is updated at every epoch (term used by
the Author to determine a time window). The Authors consider the DVFS latency as 9 ns
and the control epoch as 1 ms.

The experiment setup uses Sniper [CHE11] as the architectural simulator. The
target architecture is a 24-core NoC-based system, with x86-processors for a 16 nm tech-
nology. The McPAT tool [LAS*09] provides power traces. One hundred random 24-core die
profiles with distinct process variations are generated to run the PARSEC benchmark.

A comparison between the process variation-aware power management and a sim-
ilar version unaware of variation information evaluates the process variation model. Results
show a 3.7% improvement in energy minimization under throughput constraints, and an
11.9% gain in maximum throughput under power budget, on average, by considering the
process variation on management. Moreover, a simplified version of the power management
with nominal range DVFS (without NVT and boosting) without process variation information
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is compared to the proposed one. The proposed power management results in 15% energy
gains and 14.6% throughput improvement over the nominal DVFS version.

2.9 Nishit Kapadia et al.

Nishit Kapadia et al. [KP15] work integrates reliability and variation models in a
runtime variable DoP (Degree of Parallelism) application scheduling methodology for power
constrained many-core systems, named VARSHA. VARSHA includes runtime application
mapping, dynamic application scheduling of DoP, and chip-wide voltage scaling. All features
are aware of reliability and variation status of the system in the algorithms.
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Figure 2.8 — VARSHA approach overview [KP15]. (a) When an incoming application arrives,
(b) VARSHA reviews the DoP of all applications to optimize the power utilization (difference
between TDP and power dissipation). (c) The position of the applications and the voltage
settings rely on the leakage variability.

Figure 2.8 gives an overview of VARSHA approach. Figure 2.8(a) shows a 6x6
many-core running two applications and a third application, which is about to exceed the
50W TDP, requiring allocation as an example of the starting point. The VARSHA approach
changes the DoP of all applications and returns a new mapping to optimally use the avail-
able power (Figure 2.8(b)). The variability of leakage is considered in this new application
scheduling (Figure 2.8(c)). When an application arrives or departures, VARSHA first reviews
the voltage settings and after it performs the application scheduling (DoP and mapping) of all
running applications. Assuming the same priority for all applications, the application sched-
ule consists of (/) defining the DoP for each application, and (i) mapping the adequate task
graph in a contiguous square shape area.

The benchmark used for the experiments includes 14 parallel applications for DoPs
of 4, 8, and 16. The experiments are conducted with the gem5 simulator for a 10x10 homo-
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geneous many-core where each core is an ARM processor. The power values for the links
and router come from the ORION tool. It is assumed five voltage levels and a TDP of 100W.
VARSHA is compared to other two prior works, and the results show savings of 11-13% in
energy. Also, VARSHA avoids all reliability violations due to the ability of dynamically change
the DoP while other works suffer up to 11% of violations.

2.10 Huazhe Zhang et al.

Huazhe Zhang et al. [ZH16] proposal introduces a RM under power cap using
software and hardware actuation. To justify the need for a hybrid (software and hardware)
approach, two power properties are discussed: timeliness — the speed to set the power;
efficiency — the performance under the power cap. Authors discuss that software-only ap-
proaches can be timing consuming and hardware-only approaches do not consider the per-
formance. The proposed RM, called PUPIL, combines software efficiency and hardware
timeliness to maximize the performance under the power cap.

PUPIL also employs the ODA paradigm, integrated into a decision framework. The
steps of PUPIL decision framework can be summarized as follows: (/) at design-time, sort all
software resources concerning efficiency in descending order. For example, turn on a core
has more efficiency impact than a new thread. At runtime, (/i) start with minimal configuration
of all resources; (iii) remove software control from hardware actuation, like DVFS; (iv) for
each software resource, do a binary search between the possible configurations starting
from the maximum value to improve the system performance while fullfilling the cap.

A dual-socket chip server with eight x86 cores each is the platform for the experi-
ments. The benchmark includes 20 multi-thread applications running on Linux for five power
caps. PUPIL is compared to a hardware-only approach (native from the experiment plat-
form) and two software-only approaches: a DVFS set by software, and PUPIL with hardware
settings hardened.

Regarding efficiency results, PUPIL outperforms hardware-only approaches up to
32% in performance in single application workloads and up to 2.43 times for specific multi-
application workloads. On the other hand, hardware-only can achieve better results than
PUPIL when applications have a good scale of parallelism. Concerning timeliness results,
PUPIL is orders of magnitude smaller than software-only approaches.

2.11 Anup Das et al.

The runtime manager (named RTM) proposed by Anup Das et al. [DAHM16] si-
multaneously addresses two goals: energy and temperature. Three thermal aspects are
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considered: peak temperature, average temperature, and thermal cycling. RTM is in charge
of allocating the threads to cores and selecting the core frequencies. To deal with the high
complexity of the problem, hierarchical management approach is the choice to minimize the
learning overheads and provide scalability.
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Figure 2.9 — Hierarchical runtime manager proposed in Das et al. [DAHM16] work.

Figure 2.9 overviews the method. The application code (blue box) calls the run_time
_manager (RTM — green box). In the RTM, at the end of a long time interval (LTI, corre-
sponding to the epoch), the set thread affinity() heuristic is invoked to assign threads to
cores, and it is responsible for managing the thermal cycling aspect. Otherwise, at the
end of short time intervals, the Q-learning module (yellow box — learning-based frequency
selection) selects the frequency considering the average temperature, peak temperature,
and energy consumption. The application interfaces with the operating system by using the
drivers shown in the orange box. RTM actuates proactively to prevent thermal emergencies.

The experimental set-up is a real platform with a quad-core ARM with chip-level
DVFS running Linux kernel. The multithreaded applications are periodic with deadlines to
meet. RTM is compared to native Linux governors and an Energy-only approach. The
results regarding performance show linux Governors ignore the latency required by peri-
odic applications leading to underperformance or overperformance. Energy-only approach
achieves a sligthly better results in performance (no timing violations), power (9% smaller
than RTM), and energy (9% of savings). On the other hand, RTM outperforms Energy-only
in all aspects related to temperature: reduction of 13.15% and 18% in average temperature
and peak temperature, respectivelly, and 2x less thermal cycles than Energy-only approach.
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2.12 Daniel Olsen et al.

Daniel Olsen et al. [OA17] proposal is a resource management framework to carry
out a thread to core mapping on many-core systems (Figure 2.10). At design-time, the
framework performs profiling for the various threads of each multi-thread application target-
ing the maximization of the resources utilization. Next, the application profiling classifies the
threads based on throughput, power, and temperature. At run-time, the resource manage-
ment looks for hot spots of temperature to identify the regions of the system that benefit
or suffer from a change in system mapping. Next, the RM finds (/) the appropriate num-
ber of threads for the incoming application, and (i) the thread-to-core mapping regarding
performance that satisfies the application constraints.
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Figure 2.10 — Resource management methodology of Daniel Olsen et al. work [OA17].

Regarding the experimental setup, the Sniper simulator is the tool to run the pro-
posal and generate the profiles. Power consumption and thermal profiles are extracted from
McPAT and HotSpot tools, respectively. Five versions of parallel applications are derived to
1, 2, 4, 8, and 16 threads to compose the benchmark. It is assumed a 16-core system for
the experiments and the distribution of applications arrival intervals follows two scenarios:
large interval and small interval. The large interval covers a lightweight workload situation,
and the small one simulates an amount of applications requiring admission in such a way
that no resources are available for serving them all.
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Results demonstrate that Olsen et al. approach saves 23% in average applications
execution time and creates up to 34% less thermal hotspots compared to related works in
large interval scenarios. In small interval scenarios, Olsen et al. approach reduces 19% the
applications execution time in average and generates 21% fewer hotspots.

2.13 Anuj Pathania et al.

Anuj Pathania et al. [PKS*17] work proposes an RM as a probabilistic power bud-
geting for many-core systems - ProGov. The primary argument is that monitoring the many-
core is not required when a large number of tasks is running on the PEs. Assuming a global
power budget, the average power consumption is stable with small standard deviation, de-
spite the fact that task phases leverage frequent variations in PE power.

The main ProGov advantage is to reduce the overheads to manage the system
like the monitoring. ProGov assumes a task-to-processor mapping and two vf-levels (vf
refers to voltage and frequency settings) for each PE: Low and High. A probabilistic phase
profile generates a histogram of DVFS speedup for each task at design-time (Figure 2.11).
Speedup is the metric for measuring the performance variation due to DVFS. For each task, a
strategy is associated to represent the speedup threshold. For example, Figure 2.11 shows
the probability of assigning High DVFS for a task when a speedup of 2.5 times is defined as
the strategy. Task probabilities are the starting point for proposing the Probabilistic Perfor-
mance Model, Probabilistic Power Consumption Model, and Probabilistic TDP Model. Since
ProGov is a probabilistic approach, no TDP violation is guaranteed, and no adaptability such
as task migration and vf resetting is allowed.
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Figure 2.11 — DVFS speedup in the single-threaded application (called ferret). The strategy
is 2.5, so the histogram illustrates the calculation of preet(2.5)

The experimental set-up consists in a two-stage simulator of a homogeneous many-
core embedded with the Alpha ISA. The first stage, a cycle-accurate simulator (gem5 and
MCcPAT tools) of eight cores generates the traces files of the benchmark without ProGov.
The output traces in the first step are the input for the second one. The second step is an
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in-house trace based Simulator with ProGov, which generates final traces to 1024 cores. A
workload of 256 tasks (1024 threads) is simulated with a target of boosting 75% of tasks.

The first set of results illustrates ProGov models can accurately predict TDP vi-
olations, power consumption, and DVFS settings distribution. In particular, ProGov pro-
vides minimal risk of TDP violations, but the accuracy decreases if the number of tasks
shrinks. The second set of results is a comparison to a scalable non-probabilistic approach
(SortedWS). The comparison shows similar throughput between ProGov and SortedWS.
Concerning scalability, the main motivation of Anuj Pathania et al. [PKS*17] work, ProGov
reduces up to 97.13% the time to allocate the power budget.

214 Navonil Chatterjee et al.

Navonil Chatterjee et al. [CPMC17] proposal introduces dynamic task mapping
and scheduling (called DEAMS) of periodic, sporadic and aperiodic applications in NoC-
based many-cores. Periodic and sporadic applications have timing constraints to meet, but
the interval of sporadic ones is variable at runtime. The goal is energy minimization and
deadline meeting.

In the homogeneous many-core system, a manager processor is in charge of per-
forming resource management, task mapping, and task scheduling. Remaining processors
are only responsible for running tasks. Besides, the edges in the task graph application have
attached the communication cost. The heuristic looks for a continuous region for mapping
the application while avoiding overlapping regions with other applications. To minimize the
communication energy, multitask mapping is supported, and a task is preferably mapped
onto the processor containing a communicating task with the highest communication load.
The task with the highest sum of communication costs is the first to be mapped while the
order of remaining tasks can follow filters that consider the processing time and the deadline
constraints.

An 8x8 many-core with a centralized manager is considered for the experiments.
An in-house C++ simulator carries out the experiment. The energy of a generic 5 port router
is derived from the ORION power model. The test cases vary the scheduling difficulty for the
application set by creating three categories of scheduling: urgent (30% of the task execu-
tion time), moderate, and relaxed (60% of the task execution time). For urgent applications,
DEAMS is not able to satisfy the deadlines. For moderate and relaxed ones, DEAMS meets
75% and 90% of deadlines. The Authors argue the communication-bound tasks are more
likely to miss the deadline. Concerning energy results, DEAMS reduces 28% of communi-
cation energy compared to related works.
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2.15 Related Work Analysis

Table 2.1 summarizes the reviewed works according to the classification chosen
for Resource Management (RM) comparison. The first column contains the Authors and the
corresponding reference. The second column presents the architecture (symmetric/asym-
metric homogeneous, heterogeneous) and the core counting given by the number of pro-
cessor elements or the NoC size (if NoC-based many-core). The third column lists the
techniques to evaluate the comprehensiveness for controlling the system. The fourth col-
umn concerns the abstraction level of the system modeling which results are produced ac-
cording to the following standard proposed in Matthew et al. work [WDH*16]: top-down or
bottom-up. The fifth column classifies whether RM is the multi-objective approach. The sixth
column highlights if the RM algorithms depend on design-time evaluation of the applications
set. The seventh column highlights qualitatively the proposals scalability. The last column
shows when RM supports multitasking.

Table 2.1 — State-of-art in RM for Many-core Systems running under a power-related cap.

Multi- Dynamic Multiple
Proposal Arch., # PEs Actuation set Modelling S work- Scalable? tasks per
objective?
load? core?

Muthukaruppan et TA, TM, Top-down (ARM-based
al. [MPV+13] Asym., 5 DVFS, PG embedded system) X v X v
Raghunathan et al. | Homo., 16 up TA, DVFS, Bottom-up (Sniper, X X X X
[RTGM13] to 32 PG McPAT)

Top-down (FPGA
Yu et al. [YSH14] Hetero., 9 DVFS, T™M simulation) v v X X
Pagani et al. | Homo., upto Bottom-up (gem5,
[PKM*14] 64 TA, PG HotSpot, McPAT) x v x x
Hanumaiah et al. | Asym., upto Bottom-up (validation
[HV14] 64 ™, DVFS in x86 system) X v X X
Bogdan et al.
(BMJ13] Homo., 4x4 DVFS, PG Top-down X v X X
Rahmani et al. Homo., TA, DVFS, Bottom-up (in-house v v v X
[RHK*15] 12x12 PG tool, McPAT, Lumos)
Maiti et al.
[MKP15] Homo., 6x4 TA, DVFS Bottom-up (McPAT) v X X X
Kapadia et al. Homo., AA, TA, Bottom-up (in-house X X v X
[KP15] 10x10 DVFS tool, ORION)
Zhang et al. TA, TM, ’
[ZH16] Homo., 2x8 DVFS Top-down (x86 system) X v X v
Das et al. TA, TM, Top-down (ARM-based
[DAHM16] Homo. 4 DVFS embedded system) v v v v

Bottom-up (Sniper,
Olsen et al. [OA17] Homo., 16 AA, TA MCPAT, HotSpot) X X X X
Pathania et al. Bottom-up (gem5,
[PKS*17] Homo., 1024 TA, DVFS MCPAT) X X v X
Chatterjee et al. TA, TM, Bottom-up (in-house
[CPMC17] Homo., 8x8 DVFS tool, ORION) v v X v

. . Homo., 3x3 AA, TA, TM,

This Thesis up to 12x12 DVFS. PG Top-down v v v v

AA: Application Allocation; TA: Task Allocation; TM: Task Migration; PG: Power-Gating
Homo.: Symmetric Homogeneous; Asym.: Asymmetric Homogeneous; Hetero.: Heterogeneous;

The literature presents distinct RM approaches for many-core systems. Most works
in Table 2.1 adopt symmetric homogeneous architecture (2" column), but the management
of asymmetric and heterogeneous architectures are more complex than the symmetric ones.
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On the other hand, the core count for symmetric homogeneous many-cores is larger than
asymmetric and heterogeneous ones.

The actuation set column (3™ column) exhibits the comprehensiveness of each
approach. The RM complexity and comprehensiveness is a function of the number of actu-
ators. Zhang et al. [ZH16] demonstrate that jointly setting of various actuation steps leads
to better results in general. The challenge of a comprehensive RM is to coordinate the ac-
tuators set to follow the same goals while avoiding overlapping between them [RJD17]. The
ODA paradigm applied in comprehensive RM approaches evidence the coordination of the
different actuation layers in a holistic RM view. This Thesis and Zhang et al. [ZH16] are RMs
using the ODA paradigm. Das et al. [DAHM16] deploy the RM in the application layer to
guarantee the management coordination. The remaining works focus on the decision and
abstract details about observing and actuation.

Regarding the system modeling classification (4" column), bottom-up approaches
generate the results (time, area, power, among others) from a generic estimation of the sys-
tem features or based on a target ISA. Top-down approaches include cycle-accurate simu-
lators (like the one assumed in this Thesis), and real systems that report results from a chip.
Bottom-up approaches allow fast evaluation of the design space, but lead to incompatibility
between the model and hardware by making assumptions related to the hardware charac-
teristics. For instance, Hanumaiah et al. [HV14] report problems to embed their resource
management because the target platform does not support all their power techniques, just
a system-level DVFS (a per-core DVFS is originally modeled). Another example, DVFS, and
power gating are the power actuation techniques to cap the system. However, the overhead
of these techniques is omitted. For example, the latency of both power techniques is on the
order of milliseconds for real systems [Int10, LLW*13, AMP*15]. In this Thesis, a realistic
DVFS model includes latency and energy overheads while the power gating model mirrors
related work model for fair comparison purposes (Section 4.2).

The characteristics of the new technologies nodes introduce challenges and op-
portunities for exploration of the design space in the context of temperature, reliability and
variability [SGHM14]. Therefore, the works targeting these performance figures [RTGM13,
PKM*14, MKP15] are proposed only at top-down approaches. However, the mapping pat-
terns needed for the system benefit of the temperature constraint and variability increase
the hop distance between the tasks/threads of the same application. There is no discussion
about performance losses or traffic growing that these patterns generate.

RM for multiple objectives (5 column) is a trend for many-core systems since it is
necessary to consider other metrics besides performance such as reliability, security, and
energy [SDMI17, RJD17]. The RM that address timing-constrained applications [YSH14,
RHK*15, MKP15, DAHM16, CPMC17] are multi-objective if the RM optimizes the system for
another goal besides performance. If the applications do not have time constraints, the RM
can penalize the performance to optimize a conflicting metric such as energy, as reported in
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Hanumaiah et al. [HV14]. The RM presented in Das et al. [DAHM16] optimize energy and
temperature simultaneously. This Thesis presents two multi-objective RMs. The first one
is an energy efficient RM for timing-constrained applications. The second one can adapt
many-core clusters to run the applications prioritizing energy or performance.

Another issue is the use of dynamic workloads (6" column) where applications
with unknown requirements can arrive and leave any time in the system. Although design-
time evaluation of the application set returns better decisions than runtime one, design-time
heuristics are not suitable for large systems and dynamic workloads [SSKH13]. Run-time
RM also needs to provide the adaptability to deal with unpredictable events such as power vi-
olations, and network traffic. Nevertheless, some related works develop heuristics for RM ac-
cording to a design-time analysis of the application set [RTGM13, MKP15, KP15, DAHM16,
OA17]. Moreover, multi-objective RM increases the design search space, so that if RM re-
quires a design-time evaluation of the application set, this evaluation for various objectives
may lead to the pruning of the design space to maintain a low complexity [SDMI17].

Regarding system scalability (7" column), top-down RMs of [MPV*13, YSH14,
ZH16] present a small number of cores, ten cores or less, and no scalability evaluation.
The top-down approach of Das et al. [DAHM16] implement the RM at the application layer
to guarantee scalability. The clock-accurate model of Bogdan et al. [BMJ13] is not scal-
able. This Thesis targets many-cores with dozens of cores and scalability. Rahmani et al.
[RHK*15] work is close to this Thesis, but large system sizes require cores grouped into
clusters and distributed or hierarchical managed [CMMM13] as well as low-level aspects
like observing and power data generation are ignored. Unlikely Pathania et al. approach
[PKS*17], which requires no observing in the Probabilistic RM, the bottom-up approaches
do not address the overheads related to the traffic congestion in large systems.

The allocation of multiple tasks/threads per core (8" column) reduces the energy
in energy efficient RM [MOSM15, CPMC17] due to the reduction of network traffic and the
number of cores running tasks. Besides, the task-to-core mapping shrinks the computational
complexity of mapping algorithms by bypassing the possibility of mapping multiple tasks in
the same PE. Furthermore, multi-task enables more resources (Definition 6) in the many-
core, expanding the number of tasks the system can run simultaneously.

The last row of Table 2.1 summarizes the contributions of this Thesis. The com-
prehensive approach is an advantage compared to related works because of the complex-
ity of coordinating the actuation according to heuristics and because multiple actuations
have more potential to lead to better results [ZJG16]. The top-down modeling assumed in
this Thesis allows the evaluation of large systems without abstracting low-level aspects or
overheads inherent to observing and actuation. The last four columns in Table 2.1 groups
together the upcoming trends [SDMI17] in the RM for dynamic workloads: hierarchical ap-
proach (related to scalability), multi-objective decisions, and consideration of communication
and computation loads (multi-task is used with this purpose).
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3. OBSERVING

Many-core management requires accurate, stable, and reliable system information
at runtime. Create a self-awareness system by observing the multiple layers of the system
stack is essential for an effective Resource Management (RM) because the decision algo-
rithms rely on the quality of the input information as illustrated in Figure 1.5. Besides that, a
reliable observing infrastructure is crucial for system design and exploration.

This Chapter describes the development of the Observing infrastructure adopted
for this Thesis. Due to dark silicon issues, any RM needs to be aware of power-related data,
SO it is necessary a characterization step to integrate a power model into the observing
scheme, even for real hardware [WDH*17].

The observing methodology presented herein requires two descriptions of a many-
core with the same functionality: (/) synthesizable VHDL for characterization purposes; (ii)
RTL (Register Transfer Level) SystemC, enabling the simulation of systems with dozens of
PEs (Processing Elements).

The contributions of this Chapter include:

» A power characterization method for the processor and the NoC (Network-on-Chip) to
consider the static and dynamic power dissipation (the logic synthesis of the hardware
components guarantee the accuracy of the model);

* Integration of the processor and NoC power/energy model along with a memory pow-
er/energy model to enable the complete PE characterization;

» Comparison of the proposed characterization model with a state-of-the-art power model;
» The design of hierarchical observing from the characterization flow;

» The multi-layered sensing infrastructure.

Section 3.1 reviews observing approaches. Section 3.2 presents the method to
characterize power and energy of NoC-based MPSoCs from an RTL description. Next,
Section 3.3 describes how to integrate the characterization measurements into high-level
models to generate observing data for all hierarchy levels with low hardware and traffic
overheads.

3.1 Overview of Observing Methods for Many-core Systems

According to Matthew et al. [WDH*16], power modeling can adopt two approaches.
Bottom-up approaches use theoretical features of technology and transistors to model the
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power (time and area as well). Top-down approaches require either a real hardware or cycle-
accurate description of the system to model the power. Bottom-up power estimators are
generic but they lack accuracy due to specification errors and abstractions. Top-down power
estimators are more accurate and can be validated, but they target a specific hardware
implementation. Besides that, top-down approaches are not suitable for large simulations
due to long simulation times.

Even though developing a fast and accurate system characterization is still con-
sidered an open problem [BEG*15], some works try to address it. A learning-based power
and performance estimation relies on a design-time phase for training the predictor model
[ZJG16]. Another strategy to cope with the power modeling is an automated statistical
methodology for power modeling [WDH*17]. Despite these approaches are very fast and
accurate as well as validated for real hardware, they are not suitable for NoC-based many-
core systems because they are both based on task phases, so they do not consider the
traffic disturbances on the applications. An RM with statistical power capping claims observ-
ing task phases is not required when a large number of tasks are running on many-core
systems [PKS*17]. Despite the fact that the communication between tasks and manager is
just for initializing and finishing, no observing structure prevents both adaptability and any
task-driven actuation such as task migration and multitask.

In the context of RM, another gap in the literature concerning observing approach
are the top-down power models. Usually, top-down RMs abstract how the power-related
data is obtained, computed and transmitted at runtime [RTGM13, KRS*14], or it is assumed
the power-related data is ready to be used [HRW*14, YSH14, BMJ13]. The assumption that
observing data is available on top-down models abstracts the complexity of the observation
in real systems.

In bottom-up approaches, the system manager applies a given actuation policy
when the observing data is available, but this information (when available) in real systems is
performed at system level [HV14] or restricted at the cluster level [MPV*13], so a previous
characterization step is required. As a consequence, the power-related information can be
available in a different scheme on real systems than expected by the model, as reported in
[HV14]. The lack of characterization limits the management or adds steps of remodeling the
model parameters.

For cycle-accurate simulators using RTL descriptions, counters can be included to
provide the data for power-related calculation. The manager should consider the observing
epoch and the time required for actuation to take effect to keep the real behavior close
to expected by the model [HV14]. Specifically to NoC-based many-cores, the epoch is a
relevant property to avoid unnecessary congestion due to observing transmission.
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3.2 Power Characterization and Energy Estimation

This Section presents a general method to characterize the energy and power pa-
rameters for the main PE modules. The power due the DMNI is not considered because it
is a small module compared to the processor, router, and memory. The method to estimate
power and energy is general because it is based on a calibration process to define the en-
ergy/power values. The characterization flow employs the synthesizable VHDL description
of the reference platform.

3.2.1 Processor Characterization

The process of characterizing the processor for energy and power relies on cali-
bration. Initially, the instruction set is divided into classes [TMW94]. The goal is to obtain
measures of energy per instruction and power per instruction for all classes, as well as
presenting these values in parcels of leakage and dynamic power. The processor power
characterization comprises five steps [MSC*14]:

1. Group the instruction set into classes. For each instruction class, an assembly pro-
gram is written with the instructions of the class in such a way to use all processor
registers. The goal of the assembly programs is to maximize the switching activity
of the processor modules (e.g. ALU, registers) by generating an important Hamming
distance between the results (Figure 3.1).

2. RTL simulations for each assembly program count and trace the number of executed
instructions and the number of clock cycles to execute the programs. Table 3.1 shows
the instruction classification as well as the data obtained from the RTL simulations. The
generated code for branches and jumps present a smaller percentage of instructions
belonging to these classes, due to the insertion of nop instructions. The influence of
the nop instructions is accounted to compute the energy for these two classes.

3. Logic synthesis of the processor for a given technology generates a gate level de-
scription and an SDF file (Standard Delay Format - annotated delay data and timing
checks file obtained after logic synthesis). The timing constraints (the frequency of PE
is supposed to run) are defined at this step.

4. Switching activity annotation from netlist simulation. The netlist obtained in step 3 is
simulated using the same assembly programs of step 1. This simulation generates the
switching activity at the gate level, in a VCD (Value Change Dump) or TCF (Toggle
Count Format) file, as well as traces for functional validation with step 2.
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5. Power analysis of the switching activity files provides accurate and reliable measure-
ment of dynamic and static power since the results come from a netlist synthesized for
a given technology. Table 3.2 shows the power and energy obtained from the netlist
simulation.

int main () {
int 1i;
for(i=0;i<600;i++)
{

asm volatile

(

Figure 3.1 — Assembly code snippet used for processor characterization.

Table 3.1 — RTL simulation results obtained from instruction set classes.

# of executed % of executed Cycles per
Class ) ) ) ) . !
instructions instructions instruction
arithmetic 110,456 98.88 1
logical 108,656 99.40 1
shift 46,430 99.50 1
move 77,030 97.36 1
nop 50,940 99.69 1
branches 220,030 47.72 1
jumps 220,030 45.45 1
load-store 60,058 95.91 2

A set of codes with minimal switching activity was written to better evaluate the
effect of the Hamming distance in the assembly codes. It was observed that the switching
activity could induce up to 30% of average power concerning to the results obtained in Table
3.2. Thus, assembly codes with maximum Hamming distance are employed because the
characterization must be general (i.e., used for any benchmark), and it does not capture
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the Hamming distance between operations belonging to different instruction classes. As the
assembly programs consider instructions belonging to the same class, a set of bits (6 for the
MIPS processor) does not switch.

Table 3.2 presents the characterization results for each instruction class, consider-
ing the Plasma processor (MIPS architecture), in a 65-nm technology, 1.1V@4ns.

Table 3.2 — Power characterization results and energy estimation for each instruction class
of the processor. Library CORE65GPSVT (65nm), 1.1V, 25°C (T=4ns).

Class Avg. Power (mW) Energy per inst. (pJ)
Leakage | Dynamic Leakage Dynamic
arithmetic 5.894 23.58
logical 5.176 20.70
shift 4.940 19.76
move 4.768 1.808 19.07
nop 0.452 3.331 13.32
branches 5.723 31.70
jumps 4175 18.56
load-store 5.507 3.616 43.15

The fifth step of the characterization flow provides the power values while the en-
ergy is given as follows:
Eclass = PClaSS * CP/ * T (3.1)

where: P is the average power for a given instruction class, CPI is the number of cycles
per instruction (last column of Table 3.1), and T is the clock period (4 ns). Equation 3.1
works for both static and dynamic power.

From the energy per instruction class, the total energy consumption and, conse-
quently, the power dissipation can be estimated for the processor as follows:

Nelass

Eprocessor = E ninstructions,- * Eclass,» (3-2)

i=0

Nelass

P, processor = Z ninstructions,— * elass; (3-3)
i=0
where: Ninsiruciions 1S the number of executed instructions for a given class, Egss, is the energy
per instruction for a given class, CPl,.ss is the CPI for a given class.

It is important to mention that if the processor has no task to execute or is waiting
for data from another task in another processor, the processor enters in the hold state while
consuming only static power.
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Finally, the simulation of different benchmarks enables the validation of the cali-
bration process. Table 3.3 summarizes the validation of the processor calibration for seven
benchmarks. The energy and power estimated results come from applying equations 3.2
and 3.3 in a trace file generated by an RTL simulation. The measured results are extracted
from power reports of netlist simulation. The errors presented on latest columns are mainly
due to switching activity (Hamming distance), and pipeline stalls due to dependence be-
tween operators.

Table 3.3 — Processor Energy Estimation Error.

Benchmark Estimated Results Measured Results Error (%)
Energy (nd) | Power (mW) || Energy (nd) | Power (mW) || Energy | Power
binarySearch 1749.79 5.46 1739.986 5.41 1% 1%
bubble 1783.13 5.77 1761.630 5.64 1% 2%
compress 4555.17 5.51 4213.906 4.99 8% 10%
crc 2965.24 5.68 3257.885 6.24 -9% -9%
fft 775.92 5.21 841.601 5.1 -8% 2%
switchCase 5689.21 5.20 5546.044 5.06 3% 3%
usqrt 2032.50 5.52 1985.088 5.39 2% 2%

The data presented in this Section was obtained at room temperature, 25°C. It is
worth mentioning that the temperature mainly affects the static consumption due to the leak-
age current which increases exponentially with the temperature (up to 9 times at 125°C). The
effect of the temperature on the dynamic power is smaller than the leakage power (+3% at
125°C) because it corresponds to the charge and discharge of capacitors. Using the method
herein described it is possible to characterize the components for other temperatures.

3.2.2 Router Characterization

The main router internal components include input buffers, crossbar, and control
logic (responsible for arbitration and routing). Therefore, the router characterization requires
excite all internal components, and provide a payload with an important Hamming distance
between flits to induce a large switching activity in the router logic gates. The characteriza-
tion process of the router is similar to the processor characterization. The router power/en-
ergy characterization comprises four steps [MSC*14]:

1. Traffic generation for maximizing the switching activity of all input buffers. The power
dissipation of a router is a function of the reception rate in the input buffers [OGI*09].
The reception rate is the relationship between the traffic rate and the available band-
width of the physical link. Figure 3.2 presents the traffic flows to characterize the 5-port
central router in a 3x3 NoC. Each traffic flow source injects 1,000 32-flit packets, with a
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Hamming distance between flits superior to 80%. The method herein proposed creates
6 test cases. The injection rates vary from 0% (idle) to 50% of the link bandwidth. For
example, for an injection rate equal to 50%, for a 32-flit packet, each packet is injected
at 64 clock cycles.

2. Logic synthesis of the instance of a 5-port router to generate a netlist and an SDF file.
To account the energy consumed in the links (wires), the output load settings in the
timing constraints file consider the wire capacitance between two routers (1 mm long,
metal 5, 200fF).

3. Simulation of a 3x3 NoC with the replacement of the RTL description of the central
router by the netlist obtained in step 2 (Figure 3.2). The simulations of each traffic
scenario from step 1 produce the switching activity at the gate level (VCD or TCF files)
for a given injection rate.

4. Power analysis of the switching activity file. A particular feature of the PE is the in-
jection/reception of the packets in burst mode. The DMNI makes the bridge between
the router and the memory. Thus, packets are transmitted with an injection rate equal
to 100% without blocking the processor. Despite several injections rates used in the
characterization method, the characterization adopts two rates: 100% - active mode,
and 0% - idle mode. The 100% rate derives from the extrapolation of the available
injection rates.
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Figure 3.2 — A 3x3 NoC traffic scenario for the 5-port router characterization.

Table 3.4 presents the power characterization of the router for the two traffic rates.
The second column presents the dynamic average power consumption for one buffer. The
third column, combinational logic, corresponds to the remaining parts of the 5-port router
(Pleakoue (Mports))- The last Table column presents the router leakage power.

Let E..ive be the dynamic active energy to receive one flit (with one active buffer)
and E;ge be the spent dynamic energy in idle mode, which are derived from Table 3.4 as
follows:

idle active active
Eactive = [(Mports — 1) * Phytter + Poutier + Poomb 1 * T (3.4)
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Table 3.4 — Router Average Power. Library CORE65GPSVT (65nm), 1.1V@4ns, 25°C.

Traffic Rate | One buffer | Combinational LogiC | Plea,yye (Mports = 5)
0% - idle 364.64 pW 575.64 pyW
100 % - active | 755.56 pW 2655.25 pW 223.08 W
Eige = [(Nports) * ngﬁ‘er + ngfib] « T (3.5)
where: npons is the number of ports of the router, ng;po,,em is the average idle power of

a given component, P . is the average active power, and T is the period used to
characterize the router.

3.2.3  Memory Characterization

In general, a memory generator tool provides memories as black boxes in the tech-
nology design kit without an RTL model. The CACTI-P [LCA*11] tool models distinct mem-
ory types and generates estimations like access time, silicon area and power. This tool also
supports Dynamic Voltage Scaling (DVS). CACTI-P allows the characterization of the en-
ergy consumption of the PE local memory, configured as a 64kB scratchpad memory, with
two ports. Table 3.5 presents the characterization data produced by CACTI-P. CACTI-P tool
allows some technology options (like cell and peripheral circuits) that are different from the
industrial libraries of standard cells previously deployed. The technology settings are cali-
brated to generate consistent result when comparing with processor and memory. In Table
3.5, the access time corresponds to the period used to characterize the processor and the
router (4 ns), Pleakm.nor, IS the leakage power, Ejy,q is the dynamic read energy per access,
and Egyre is the dynamic write energy per access.

Table 3.5 — CACTI-P Report for a Scratchpad Memory (65nm, 1.1V, 25°C).

Access time Pleakmomory Eoad Esiore
3.98 ns 0.66 mW 67 pJ 38 pJ

3.2.4  Comparison with State-of-the-Art Tool

Among the bottom-up approaches for power estimation, McPAT [LAS*09] is the
mostly used [HRW*14, MKP15, RTGM13, PKM*14]. McPAT is power, area, and timing mod-
eling framework for many-core systems. The main advantages of McPAT are the fast design
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space exploration and the XML interface. The user can specify systems using an XML tem-
plate as well as the integration with others simulators such as HotSpot [HGV*06]. A set of
experiments with benchmarks was carried-out with the goal of evaluating if McPAT could be
adopted to model the processor power and replaces the method previously described.

Figure 3.3 illustrates the power characterization results of the processor for McPAT
and the proposed approach (Section 3.2.1). The X-axis corresponds to the benchmark, and
the Y-axis the power. The orange curve represents results for the proposed method, the
black multiplies the orange values by 100, and the blue curve corresponds to the McPAT
result. Two main considerations from these results are as follows:

» Power results obtained with McPAT are, on average, 50 times larger than the ones
obtained from the proposed characterization methods;

» The trend of the curves is not the same (compare the black and blue curves).
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Proposal
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Figure 3.3 — Proposed top-down power characterization versus McPAT bottom-up power
characterization.

Concluding, McPAT is inappropriate to be used the present Thesis because McPAT
cannot capture the different instruction classes and the Hamming distance between instruc-
tions due to McPAT generates different results from the proposed characterization method in
scale and trend. In the Authors opinion, this tool may be used to evaluate abstract models,
in early design stages, where accuracy is not the main goal.
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3.3 Observing

The characterization flow (Section 3.2) enables the estimation of the average power
and the energy consumption at runtime. This Section details the hierarchical observing in-
frastructure with the focus on the energy consumption (Section 3.3.1), PE utilization (Section
3.3.2) and RT constraints (Section 3.3.3). Section 3.3.4 discusses the impact of the observ-
ing messages according to the periodicity to transmit them to the manager PEs.

Figure 3.4 overviews the 3-level hierarchical observing. The SPs implement the
lowest level of the observing scheme. Each SP senses the observing data at the PE level
and sends the sample per PE periodically to the CM of its cluster. At the cluster level, the
CM receives the observing data of its corresponding SPs and updates look-up tables with
the received samples to compute the cluster data. The intra-cluster look-up tables size at
the cluster level corresponds to the number of SPs per cluster. In particular, the SPs of the
GM cluster send the sample per PE straight to the GM. Finally, the CMs send to the GM the
sample per cluster when the CM received all samples from the SPs. Similarly to the sample
per cluster, as the GM receives energy data from all CMs and SPs of its cluster, the GM
observes the system by updating inter-cluster look-up tables. Accordingly, the inter-cluster
look-up tables size at the system level corresponds to the number of clusters.
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Figure 3.4 — Hierarchical observing scheme for many-core systems [MRM15].
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3.3.1 Energy and Power Observing

The hardware requirements to enable observing comprise the addition of a set of
registers into the PE for counting events: (i) ngass, NumMber of executed instructions for a
given instruction class; (ii) cycles.ive, Number of clock cycles the router transmit flits; (iif)
cycles;oa1, number of clock cycles executed by the PE. At the end of an epoch (Definition 7),
the CPU is interrupted, and all counters are reset to zero.

Definition 7. Epoch - an execution time interval defined by a periodic hardware interruption
where SPs report intra-cluster observing data to its CM, or CMs report inter-cluster observ-
ing data.

The software requirements to enable observing include functions to read the coun-
ters at the end of the epoch, and functions to estimate the PE energy. An estimation function
executes periodically in the OS (Operating System) of the SP to compute power and energy
of the PE into the epoch (average power in the epoch multiplied by the epoch time). Let Epoc
be the dynamic processor energy, Enem be the dynamic read/write energy per access, Eqouter
be the dynamic router energy, and Ej.« be the energy from leakage power of the whole PE,
which is defined as follows:

Nelasses

Eproc = Z ninstructions/ * Edynclass,- (3-6)
i=0
Emem = Ninstructionsypag * Ejoaa + Ninstructionssiore * Estore (3.7)
Erouter = Eidlemu,e, * (cycleSiora — CyCleSaciive) + Eactive,oute, * CyCleSaciive (3.8)
Ejeak = [P, leakproc Pleakmom + Pleakrouer (Mports)] * CYClEStotar ¥ T (3.9)
Epe = Eproc + Emem + Erouter + Eleax (3.10)

GM and CMs receive from their SPs the energy per PE, Epg, through an observing
message and then update the look-up tables.

Figure 3.5 presents power and energy data obtained from the hierarchical observ-
ing for a set of tasks executing simultaneously. The first row of the graphs presents average
power results. The second row of the graphs shows the accumulated energy, i.e., the sum
of all past instant energy data (Equation 3.10). The setup used on the graphs is a 4x4 many-
core divided into four 2x2 clusters, running twelve applications. This size of many-core is
chosen to make the graphs readable. The intra-cluster epoch is a hardware interruption set
to 50,000 clock cycles. Meanwhile, the CMs send inter-cluster samples when receiving all
intra-cluster samples.
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The first column of the Figure 3.5 presents the power and energy of an SP at the
PE level — PE 0x1. The red vertical lines signalize when a task is allocated while the blue
vertical lines indicate a terminated task. The task events highlight the disturbances on the
power curve in the second half of the simulation and indicate, for this example, a near steady
power throughout the first half of the simulation. The energy per PE graph shows that the
SP spent most of the energy at the first half of the simulation because the SP is executing
a workload near to 100%. After some task events at the second half of the simulation, the
proposed observing can sense those variations since the energy increases slower. At the
end of the simulation, the SP spent 127 uJ.

The second column of the Figure 3.5 shows the observing at the cluster level.
The power graph gives the CM view of the power in all intra-cluster SPs. For instance,
all SPs at cluster 1x1 have a higher average power at the first half of the simulation. If
a decision algorithm was running, an actuation policy could avoid all SPs working at high
power simultaneously.
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Figure 3.5 — Hierarchical observing of the many-core.

The system level view is shown in the last column of the graph. At the system
level, it is possible to check that the 4x4 system takes around 90,000 Kticks (36 ms) to
run all the tasks. Moreover, all clusters receive tasks to execute but details such as task
events, resource, or which SPs are currently running, are abstracted on the system level.
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The energy between the clusters is not balanced but, for example, if a decision heuristics
was running the cluster 0x0 could execute more tasks to balance the energy.

It is worth to note that, the proposed observing scheme allows a complete sensing
of the many-core in any level of the hierarchy. Figure 3.5 only depicts graphs for one SP, but
similar graphs are generated for all SPs. Similarly, graphs at cluster level for all clusters can
also be depicted. The observing herein proposed allows a full exploration of design space
for RM. All graphs presented along this Thesis are generated from this observing scheme.

3.3.2  PE Utilization Observing

Besides the energy and power information, sensing the processor and router uti-
lization is also a desirable feature of the observing scheme. For example, it allows identifying
CPU-intensive and communication-intensive PEs, tasks or applications. Figure 3.6 shows
an example of processor utilization view of a PE. The ratio of the registers cycles,cive and
cyclesyya derives the processor utilization.
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Figure 3.6 — Processor utilization observing.

Besides the processor, some RMs take decisions based on NoC traffic profiles
[RHK*15, CPMC17]. These traffic-aware RMs usually look for network bottlenecks by iden-
tifying routers under high congestion and/or high injection effect. The observing of the input
buffers (Figure 3.2) is the method for sensing the traffic effect in the routers [RHK*15]. The
hardware requirement is a buffer utilization counter that measures the average message flow
for each link. The buffer utilization measure of the local port corresponds to the router injec-
tion information as well as the buffer utilization measure of the non-local ports (i.e., north,
south, east, and west) corresponds to the router congestion information. Figure 3.7 shows
an example of the router injection and router congestion generated in an SP.
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Figure 3.7 — Router injection observing and router congestion observing from the input
buffers utilization.

3.3.3  Application Observing

Up to this Subsection, the observing is restricted to the system, cluster, router and
PE layers and implies in reading some available counters to generate the sensing informa-
tion. However, observation at the application layer requires software routines into the user
applications to generate and transmit the observing data. The observation at the application
layer allows the decisions and actuation concerning an application. In the context of soft
real-time (RT) applications, observing the timing properties is essential to guarantee Quality
of Service [RM16]. The software routines correspond to system calls (syscalls).

RT applications are mostly iterative applications like multimedia ones. In RT ap-
plications, all tasks have a predefined time to execute one iteration. Consequently, the ex-
pected execution time of the RT application is the sum of the execution time of all non-parallel
tasks. Unpredictable events, such as network congestion and non-preemptive interruptions,
may delay the execution time of the tasks (and applications). For any RT application is as-
sociated a constraint (i.e., the maximum execution time that the application has to finish one
iteration), called hyper-period. Therefore, the execution time of the applications has to be
monitored to notify the manager the occurrence of hyper-period violations.

Figure 3.8 presents a code snippet for the last task of the application task graph.
The SP handles two syscalls:

» RealTime: send the application hyper-period and the task execution time to the oper-
ating system running in the SP, and to the CM (line 2 of Figure 3.8). The task execution
time corresponds to the number of clock cycles the scheduler execute one iteration of
the task.

» PeriodMonitoring: send the current time to the CM. The first task of the application
includes this syscall at the beginning of an iteration. The last task includes this syscall
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at the end of the application iteration (line 7 of Figure 3.8). Therefore, the two Period-
Monitoring calls allow the CM to check the constraints because it captures all delays
the tasks get in the iteration.

— _ _AppHyperperiod
° _____App Execution Time L RT task e code
N 4 0
e Q PEO | a Task I 1 | int hyper period=60000, exec_ time=8000;
PE1 bl as I 2 | RealTime(hyper_period, exec_time);
° '::' b2 :EXEC. : 3 | for k iterations do
c .
m | 4 | Receive(msg from dl);
PE4 5 | Receive(msg from d2);
PES | ;
PE6 II]' 6 | DoSomething() ;
° ® Time N 7| PeriodMonitoring(get tick counter());
8 | end for

(@) (b) ©

Figure 3.8 — Application layer observing. (a) RT application task graph. (b) Scheduling of
the RT application. (c) Code snippet for the last RT task. Syscall RealTime sets constraints.
Syscall ReportPeriod registers the end of each hyper-period

3.3.4  Epoch Considerations - Epoch Delay Observing

It is essential to consider the impact of the observing messages into the NoC traffic.
Since the epoch is configurable at design-time, it is necessary to define a trade-off between
the epoch period and the traffic from observing messages. The epoch has to be as minimal
as possible to improve the accuracy and speed of the decisions, without congesting the NoC.
An evaluation of distinct epochs [Cas17] for the same reference many-core states an epoch
around 250 Kticks as the ideal.

Despite the fact that this evaluation shows a good range of epoch periods, the traffic
impact due to observing messages relies on how much load is currently on the system.
The Dif Time measures the time between the injection and the reception of each observing
message. All messages include a timestamp flit, so the PE receiver compares the timestamp
from the message with the received time to compute the message delay. Therefore, the
proposed hierarchical observing can also measure the delay of this own messages.

Figure 3.9 shows the Dif Time for the same scenario of Section 3.3.1. The epoch
for intra-cluster observing messages is 50 Kticks while inter-cluster messages are sent ev-
ery time the CM receives all intra-cluster observing messages. The y-axis is the Dif Time
and the x-axis is the execution time. The labels at each point correspond to SP position in
the cluster. Most of the observing messages at PE level require 100 clock cycles (ticks) to
be transmitted (94.94%), while some messages may be delayed due to congestion, being
the worst-case around 3,600 ticks (7% of the epoch) for this cluster. As the transmission
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of the inter-cluster observing messages occurs when all active SPs transmit their observ-
ing messages it is desirable a small Dif Time to avoid delays in the system management.
The observed average transmission time of an inter-cluster observing message is 300 ticks,
according to the cluster size.
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Figure 3.9 — Arrival delay of the observing messages (Dif Time) considering the same test
case of Figure 3.5.

3.4 Final Remarks

This Chapter proposed a hierarchical observing method for many-core systems.
Initially, the Chapter presented an overview of the observing approaches. The sensing of the
observing data is obtained from different counters inserted into the hardware. In particular,
the sensing of energy and power requires a previous characterization step. Besides the
presentation of the power characterization method, the Chapter presented a comparison
with a widely used characterization tool.

According to the presented results, the hierarchical observing scheme provides
the multi-layer sensing to support the development of RM. The proposed observing method
does not assume the existence of any sensors in the hardware. Also, the required hardware
is restricted to counters registers so that this method is low intrusive and easily adaptable
to different processors. Related works [HV14] that implement RM on real systems report
error and noise on the sensors. Thus, the proposed observing can be an alternative or a
complement to these methods. Besides, energy or power data at the PE level is usually not
available on real systems even when a policy management is applied at the PE level.
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4. ACTUATION

The management of many-core employs an actuators set, also called as knobs,
to meet the settings that the Decision proposes such as assign tasks for processing, man-
age the power, among others. Figure 4.1 classifies the actuation methods according to its
implementation, software or hardware.

Definition 8. Hardware Actuation - an actuation that makes changes on the physical system
settings.

Definition 9. Software Actuation - an actuation that makes changes on the system configu-
ration, related to the allocation of resources to applications or tasks.

Actuation
Methods
Hardware Software
Section 4.2 Section 4.3
Frequency . . X Application . . .
. Voltage Scaling Power Gating Clock Gating X Task Allocation Task Migration
Scaling > - ) Allocation ) )
Section 4.2.2 Section 4.2.3 Section 4.2.3 i Section 4.3.2 Section 4.3.3
Section 4.2.1 Section 4.3.1

Figure 4.1 — Classification of actuation methods, and the actuators set adopted in this Thesis.

Figure 4.1 also lists the actuation methods adopted in this Thesis, and the corre-
sponding Section describing each one. The hardware actuation methods include:

» Frequency Scaling - technique used to increase or decrease the frequency of a hard-
ware component.

» Woltage Scaling - technique used to increase or decrease the voltage of a hardware
component.

* Power Gating - technique used to shutdown the power supply of an idle block of a
circuit [JMSNO5].

» Clock Gating - technique used to disable the clock switching to stop unnecessary gate
activity [WPWOO0].

Communication protocols implement the functionality of the software actuators.
Any software actuation includes a set of messages, each one related to a specific service to
implement the behavior of the given actuation. The software actuation methods include:
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» Application Allocation - protocol used to select a cluster to execute an incoming new
application, reserving the resources (Definition 6) required to allocate the application.

» Task Allocation - protocol used to assign a task of the incoming application to an SP
with available resources (Definition 6).

* Task Migration - protocol used to transfer a task from one SP to another SP.

The system can set any actuator at runtime so that it enables system adaptability
(Definition 4). Also, distinct settings are possible for each actuator in Figure 4.1. The cooper-
ation of software and hardware actuators can bring advantages to the system management
[ZH16]. However, dealing with this comprehensive actuators set is challenging. In general,
the quantity of possible system settings increases exponentially as far as the number of ac-
tuators grows. As a consequence, a comprehensive actuators set increases the complexity
of the Resource Management (RM). The Decision phase is in charge of finding the best sys-
tem settings for a given workload. Meanwhile, the Actuation phase coordinates the system
to follows the settings selected at the Decision state.

Two properties are relevant for the actuation methods: (/) the latency for enforcing
an actuation, and (/i) the impact delivered by an actuator [ZH16]. Hardware actuators are
usually fast, but they usually have a limited overall impact (resources, power, among oth-
ers metrics) at the system point of view due to inherent hardware limitations (actuation at
the PE level). On the other hand, software actuators are slower than the hardware ones to
take effect, but they usually are more flexible and enforce a higher impact on the system.
Concerning the resources impact and the latency, the actuators set is sorted to fit in the
hierarchical approach.The higher the actuation impact and latency, the higher is its hierar-
chical level. According to the resources impact and actuation latency, the actuators set is
organized as follows:

1. System level: application allocation;
2. Cluster level: task allocation, task migration;

3. PE level: dynamic voltage and frequency scaling (DVFS), power gating and clock gat-
ing (all hardware actuators).

Regarding the software actuators, application allocation and task allocation are
correlated problems. Once the RM allows an application allocation, the RM also enables
the allocation of all tasks of this application as well. Since a task graph composes one
application, the task allocation is assumed as an inner problem of the application allocation.
This Thesis distinguishes application allocation and task allocation as two instances of the
same problem so that the first one is a system level problem and the second one is a cluster
level problem.

This Chapter highlights are as follows:
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* DVFS design at the PE level to support power management as well as guidelines for
modeling others hardware actuators;

* Protocol for all software actuators;
« Evaluation of the power and resource impact of each actuator.

Section 4.1 overviews related works regarding the comprehensiveness of RM, i.e.,
how many features, including the actuators, the RM attends. Next, Section 4.2 presents the
design and model of the hardware actuators. Following, Section 4.3 presents the protocol of
the software actuators. Section 4.4 evaluates the power and resources impact of actuators
methods. Section 4.5 concludes the Chapter.

4.1 Overview of Actuation Mechanisms in Resource Management

Combine a mix of software and hardware actuators can bring advantages of both
of them to the system management [ZH16]. Table 4.1 summarizes related works concerning
the actuators commonly found in many-core systems: (/) Applications Admission (AA); (i)
Task Allocation - TA; (iii) Task Migration - TM; (iv) Dynamic Voltage-Frequency Scaling -
DVFS; (v) Power-Gating - PG; (vi) Clock-Gating - CG. Table 4.1 excludes some actuators
for specific architectures. For example, a memory controller is relevant for shared memory
systems. Besides, Table 4.1 also includes the level of the heterogeneity of the system,
because the heterogeneity increases the complexity of the actuation and, consequently, the
management.

Table 4.1 — Actuators mechanisms found in RM for many-core systems.
Proposal AA TA TM DVFS PG CG Many-core

Muthukaruppan et al. [ MPV*13] Xx v / v VA { Asymmetric

Bogdan et al. [BMJ13] X X X v v X Homogeneous
Raghunathan et al. [RTGM13] X v X v v X Homogeneous
Hanumaiah et al. [HV14] X x v v X X Homogeneous
Lai et al. [LLW*13] X X X 4 X X Homogeneous
Yu et al. [YSH14] X x v 4 X X  Heterogeneous
Maiti et al. [MKP15] X v X 4 X v/ Homogeneous
Kapadia et al. [KP15] v /v X v X X Homogeneous
Haghbayan et al. [RHK*15] X v X v v X Homogeneous
Zhang et al. [ZH16] X v v 4 X X Homogeneous
Olsen et al. [OA17] /v X X X X Homogeneous
This v v / v v v Homogeneous

AA: Application Allocation; TA: Task Allocation; TM: Task Migration; PG: Power-Gating; CG: Clock-Gating

Concerning software actuators, AA is the less employed. Regarding the works
considering AA as a previous problem of TA, such as our approach, Authors [KP15, OA17]
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present frameworks for deciding the best number of tasks for a given application before
the TA. In Rahmani et al. [RHK*15] work, the application enters the system if there are
available processors, but can also be killed suddenly if the power overcomes the capping.
Regarding TA, some works [MKP15, OA17, RUD17, KP15] assume the PE as one resource,
while others admit the two or more tasks per PE [ZH16, MPV*13, HV14], like this proposal.
Asymmetric and heterogeneous systems require distinct strategies for TA. To conclude the
software actuators, TM enables runtime adaptability for task allocation into RM. However,
some authors decided to turn the migration off due to the overhead costs and deal with the
issues inherent to dynamic workloads using only DVFS [RHK*15], or change the level of
parallelism of the application [KP15, OA17] instead of employing TM.

Once the tasks are mapped, DVFS is the mechanism to deploy power management
in many-cores. The granularity of DVFS varies between PE level [BMJ13, HV14, RJD17,
KP15, MKP15, ZH16, YSH14, RTGM13] (this proposal) and cluster level [LLW*13, MPV*13].
When no tasks are running, some works [RHK*15, MPV*13, RTGM13] assume PG to avoid
energy wasting and reduce the average power. CG disables the clock switching of parts of
the circuit to save dynamic power. Since CG is a widely used power actuator, works at Table
4.1 can employ it, but just Maiti et al. [MKP15] work mentions CG explicitly. PG is a power
actuator suitable for PEs with no tasks due to the latency to wake-up the circuit, while CG is
ideal for small periods of idle times throughout the execution of tasks. However, the manager
can use DVFS at minimum levels plus CG when no tasks are running in case of absence of
PG [LLW*13, HV14, MKP15].

Usually, Authors abstract the actuators because the decision is the focus. However,
some related works consider previous design-time steps to capture actuators properties like
latency and power to make the control aware of them [LLW*13, MPV*13, HV14] when taking
decisions. This proposal also considers the overhead of the hardware actuators (Section
4.2). Ruaro et al. [RM17] work evaluates the costs of task migration for the adopted refer-
ence platform.

4.2 Hardware Actuators

This Section describes four hardware actuation methods (Figure 4.1) deployed in
this Thesis. The model of the frequency scaling (Subsection 4.2.1) requires modifications on
the original PE structure to cope with different frequencies and keep the accuracy regarding
clock cycle. To guarantee realistic DVFS support, the model of the voltage scaling (Sub-
section 4.2.2) considers the hardware overheads (latency, energy), standard cells library
characterized for distinct supply voltages provided by the foundry, and the delays inherent of
the voltage scaling for establishing a correct DVFS protocol. The PG model is mirrored from
other works when making comparisons instead of proposing a specific model for the refer-
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ence platform. Meanwhile, CG is a native functionality of the reference many-core. As PG
and CG are mechanisms commonly found in RM to deal with power cap issues, Subsection
4.2.3 discusses the adoption these actuators.

4.2.1 Frequency Scaling

Figure 4.2 illustrates the hardware modifications on the PE for frequency scaling
support. The frequency scaling actuates only on the processor, memory, and DMNI. The
main goal is to enable processors to work at different frequencies while the NoC transmits
message by using the nominal frequency. The reason for transmitting message at the nomi-
nal frequency is to avoid PEs running at higher frequencies stall due to PEs running at lower
frequencies. The new PE includes a Clock Generator, which creates the scaled frequency
from the nominal frequency. Frequency domain line separates the blocks of hardware run-
ning at nominal frequency (blue color) and scaled frequency (gold color).
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Figure 4.2 — (a) Original PE and (b) new PE with DVFS support. The new PE has Clock
Generator hardware as well as changes on the DMNI [MSM16].

The DMNI synchronizes the hardware modules working at different frequencies.
The original DMNI (Figure 4.2a) has a Send module responsible for reading the data from
memory and converting it to a message for sending to the network. The Receive module
reads the message from the NoC and copies them to the memory. The new version of
DMNI (Figure 4.2b) has two bisynchronous FIFOs included in the Send/Receive modules
to synchronize the DMNI. Both Send and Receive modules are divided into two modules,
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one running at the nominal frequency and the other one running at the scaled frequency.
The Receive module reads the message from the NoC at the nominal frequency and, next,
writes the flits into the bisynchronous FIFO of the receiver. If this FIFO is not empty and the
memory is ready for writing, the receiver copies the message from the FIFO to the memory
by using the scaled frequency. The sending process is similar to receiving, but the data flow
is in the opposite direction (read from memory, send to the network).

The main hardware overheads for frequency scaling support are the Clock Gen-
erator and the bisynchronous FIFO at the DMNI. Due to the insertion of FIFOs in the new
DMNI, the average execution time of the applications is penalized in 6.55%.

4.2.2 \Voltage Scaling Model

A voltage regulator is an analog circuit that allows voltage scaling in a system.
The method for modeling the voltage scaling on the cycle-accurate reference platform con-
siders a set of low-level characteristics. First, standard cells characterized for 1.1V, 1.0V
and 0.9V define the supply voltages supported by the system since the foundry provides
liberty files only for these supply voltages (65 nm technology). Next, the processor netlist
(1.1V-250MHz) from characterization flow (Section 3.2) is evaluated for 1.0V and 0.9V sup-
ply voltages. Following, it is verified the delay for reading the memory at 1.0V and 0.9V. The
minimum period to obtain a zero or positive time slack concerning processor and memory
is 4.479ns and 5.229ns, for 1.0V and 0.9V, respectively. Finally, the router netlist is also
evaluated for 1.0V and 0.9V supply voltages, but the goal is to certify the router can run at
250MHz in any voltage since the frequency scaling does not affect the router.

Stages of the DVFS
P protocol Unsafe stage
So|1.1V 2|1 -
] Not-efficient stage
= 1.0V 51413 Valid st
>09v[9|8[7]6 auc slage

7.016.5(6.0|5.5|5.0|4.5|4.0
Period (ns)

Figure 4.3 — DVFS protocol — Valid voltage and frequency pairs [MSM16].

Figure 4.3 defines the DVFS protocol by linking the minimum period for scaling the
voltage safely with the frequency range generated by the Clock Generator. The numbers in
the yellow boxes define valid vf-pairs. The ascending order establishes the protocol to scale
the vf-pair down, while the descending order is the protocol to scale the vf-pair up. The
system always starts at the nominal vf-pair (1.1V-4ns).
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In general, coarse-grain voltage regulators present latency in the order of millisec-
onds while fine-grain latency is lower than hundreds of nanoseconds [KBW12, LWP14]. On
the other hand, the energy overhead from on-chip voltage regulators to support fine-grain
voltage scaling is non-negligible [KGWBO08]. Due to the low latency of fine-grain voltage reg-
ulators and the feature of frequency scaling at the PE-level, the model a fine-grain (PE-level)
voltage scaling assumes that the latency of a voltage scaling (up or down) is 100 ns (25 clock
cycles at the nominal frequency), and the energy overhead from on-chip voltage regulators
increases the PE energy in 10% [CCKO07].

4.2.3  Power-Gating and Clock-Gating

Many-cores widely employ Power Gating (PG) and Clock Gating (CG) are power
actuators widely employed in many-core systems. PG provides larger power impact than
DVFS and CG because it is the only mechanism to eliminate leakage [AMP*15, JMSNO05].
PG is usually deployed when no tasks are running in the PE. However, the PE needs to
stay off long enough to compensate the time, power and energy overheads to wake it up
back. As this proposal assumes applications can entry anytime, integrating PG model would
require predictions concerning how many time the PE will be on or off. For this Thesis,
PG is not integrated, but for comparisons with related works at Chapter 6, all RMs are
normalized under the same rule: if the PE is running no tasks, it is considered power-
gated. In fact, all RMs based on bottom-up characterization flows make this assumption
[HRW+14, RHK*15, RTGM13, KRS*14].

CG is more suitable to deal with idle times when the PE is executing tasks due to
the short duration of idle times. The power impact is smaller than PG, but it is also signifi-
cant. The proposed CG model affects only the processor and the memory. The processor
supports clock hold, i.e., when the processor is idle, the clock signal is disabled, saving
dynamic power. Since the characterization computes dynamic power from the instructions
counters, no changes are required to model CG for the processor. Similarly, concerning
memory, dynamic power comes from load and store operations only. Therefore, when mem-
ory operations are not happening, the memory is considered in idle and no dynamic power
is accumulated during idle periods. The router is continuously spending dynamic power, in
the active or in the idle state, but the idle state of the router considers the dynamic power
from buffers (Equation 3.5). The timing overhead from CG is considered negligible, and it is
not inserted into the model.
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4.3 Software Actuation

The software actuators (Definition 9) are abstractions to act in the system by using
message passing communication services (inherent to the adopted many-core) to invoke
services . Accordingly, this Section describes the communication protocol to synchronize
the software actuators. The communication protocols satisfy the hierarchy sorting for the
actuators set, i.e., the application allocation (Subsection 4.3.1) is a system level actuator,
and task allocation (Subsection 4.3.2) and migration (Subsection 4.3.3) are cluster level
actuators.

4.3.1 Application Allocation

The Application Allocation assigns an application task graph to a cluster. The ser-
vices to synchronize the Application Allocation are as follows:

* NEW_APP: message sent from the GM to a CM for notifying that a new application was
assigned to the cluster. This message carries the application task graph and design-
time data (such as estimated power and application type - BE or RT). The CM maps
all applications’ tasks after receiving this message.

» APP_ALLOCATION_REQUEST: message sent from a CM to the GM for notifying that the
cluster is ready to receive the tasks from the incoming application and requires the
task allocation protocol. This message carries the position of each task of the incoming
application.

Figure 4.4 presents a sequence diagram for allocating one application. An applica-
tion from the Application Repository can enter at any time into the system by setting a hard-
ware interruption to signalize to the GM the allocation request (step 1). Next, the GM runs an
algorithm to decide if the system can admit the application and, in case of success, selects
the cluster to allocate the application. At step 2 the GM sends a NEW_APP message to the cho-
sen CM and blocks the interruption for new applications. After receiving the NEW_APP mes-
sage, the CM triggers the task mapping algorithm for the incoming application. Once the CM
decides the mapping of all tasks of the application, the CM sends APP_ALLOCATION_REQUEST
message to the GM (step 3). After processing the APP_ALLOCATION_REQUEST service, the GM
unblocks the interruption for new applications and starts the task allocation protocol (steps
from 4 to 8 presented in the next Section). The Application Admission and Task Mapping
are Decision algorithms presented in Chapters 5 and 6.
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Figure 4.4 — Diagram of the Application Allocation and Task Allocation protocols.

432 Task Allocation

The Task Allocation protocol follows the Application Allocation protocol. This pro-
tocol coordinates the assignment of all tasks to their SPs, once the mapping decision for
all tasks was already defined. Because the Task Allocation transmits the object code of all
application tasks to the SPs of a cluster (i.e., a considerable communication load is about
to start), any task migration is temporarily blocked. The services to synchronize the Task
Allocation are as follows:

« TASK_ALLOCATION: it loads the object code of a task into the memory of the SP (direction
of the message: GM to SP);

» TASK_ALLOCATED: it notifies the CM that a task was successfully loaded into an SP
(direction of the message: SP to CM)

» TASK_RELEASE: it releases the allocated task (direction of the message: CM to SP).

Once the Application Allocation finishes, a loop to allocate the tasks begins (Fig-
ure 4.4). The GM reads a task from the Application Repository (step 4) and sends a
TASK_ALLOCATION message to an SP (step 5). The GM is aware of the task mapping be-
cause this information was embodied in the APP_ALLOCATION_REQUEST message. Next, when
the SP receives the task to execute, it sends a TASK_ALLOCATED message to the CM to notify
that the task was successfully allocated (step 6). When the CM receives all TASK_ALLOCATED
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messages, it sends TASK_RELEASE messages to release the allocated tasks (step 7), i.e., the
new application starts. Finally, after the last received TASK_RELEASE message, the CM
unblocks the migrations to finish the Task Allocation protocol (step 8).

Although Task Allocation is classified as a cluster level actuation, the GM plays
a relevant role in the protocol due to the exclusive access to the Application Repository.
Furthermore, the GM sends TASK_ALLOCATION messages directly to the SPs of any cluster.
This design choice comes from two reasons: (/) to avoid the transmission of the object code
first to the CM and then to the SPs; (ii) due to the adoption of XY routing, if all object codes
were transmitted to the CM, a network congestion (hotspots) would occur.

4.3.3  Task Migration

Task Migration is an essential feature to support adaptability because it allows
remapping of the application at runtime. The task migration goal is to move a task from
a source SP (SPs.) to a target SP (SPy). The decision state is in charge of defining the
criteria to choose the task to migrate according to the RM goals. The task migration employs
a low latency protocol for many-cores with distributed memory [RM17]. The task migration
protocol requires neither checkpoints nor task code replication as well as allows task migra-
tions in parallel.

The typical layout of a memory page loaded with a task contains read-only and
read-write sections. The read-only section is the task object code (text at Figure 4.5). The
read-write sections are global variables (data and bss) and the stack area (Figure 4.5).
The Task Migration protocol migrates all sections of the memory page. The services to
synchronize the Task Migration are as follows:

+ TASK_MIGRATION: it notifies the SPs, which task should migrate to SPy to initialize task
migration. (direction: CM to SP);

* MIGRATE_TEXT: it migrates the text section (direction: SP to SP);
» MIGRATE_STACK: it migrates the stack section (direction: SP to SP);
* MIGRATE_BSS_DATA: it migrates the bss and data sections (direction: SP to SP);

» TASK_MIGRATED: it notifies the CM that a task was successfully migrated from SPg to
SPyy; (direction: SP to CM).

A decision algorithm starts the Task Migration protocol at a CM. The CM sends the
TASK_MIGRATION message to SPs. and blocks both application and task allocations while
there are ongoing migrations (step 1). Once the SPg. is aware of the migration request,
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SPs.. can send a MIGRATE_TEXT message to migrate the read-only part of the task code,
without blocking its execution (step 2). Next, SPs,. chooses an appropriate moment to stop
the task and save the context (step 3) to enable the migration of the read-write memory
segments (step 4). After sending the MIGRATE_STACK and MIGRATE_BSS_DATA messages,
SPsc updates the new task location for all communicating tasks if they exist (step 5). In
parallel, SP,; restores the context and can proceed the task execution after reporting to
the CM the successful finish of task migration (step 6). After receiving the TASK_MIGRATED
message, the CM unblocks all task operations (step 7).

Task Remapping
algorithms

TASK_MIGRATION
—>

Block task allocation e

Task keeps executing.

Task is executing

processor

MIGRATE_TEXT.
=

PS

-+ =
El¢----------

ﬂ

ra o )

Save context

|

|

|

|

|

|

|

|

|

! Q:\ MIGRATE_STACK\M
! I MIGRATE_BSS_DATA
|

|

|

|

|

|

- Dynamic section

|:| Static section

e Update task location ' Restore context

____TASK_MIGRATED
I

| L - —
|
o.<Uanock task allocation ! . .
. | Task is executing

Figure 4.5 — Diagram of Task Migration protocol.

The reason to block task allocations while migrating a task is the same: avoid un-
necessary network congestion and ensure the synchronization. Although a concurrency
between task migration and task allocation requests is unlikely to happen, the CM guaran-
tees either only task migrations or only task allocations running on the cluster.

4.4 Evaluation of Actuation Methods Concerning power, and resources

This Section evaluates the impact on the power, energy, and resources when set-
ting the actuators individually by using synthetic test cases. These evaluations aim to provide
insight into the development of the Decision heuristics in the next Chapters. As mentioned
before (Section 4.1), observing the actuation properties and considering these data into De-
cision phase can lead to better management [LLW*13, MPV*13, HV14] because the system
is aware of the costs of its self-configuration.
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4.41 Analyzing the Power Consumption at the PE Level

First experiment illustrates the maximum and minimum power consumption at the
PE-level using the DVFS actuator. Once the DVFS protocol is defined (Figure 4.3), the PE
is characterized by each supply voltage, considering the smallest periods (vf-pairs 1, 3, 6).
The router always works at the nominal frequency (i.e., 4ns). The processor and the memory
consider the power per instruction and per operation (read/write), respectively. Therefore,
it is not necessary to characterize the modules for each frequency. As a result, each PE
component has three look-up tables (1.1V, 1.0V, 0.9V), obtained from the characterization
flow.

N
SPs SP; SPs Y
Com-bound
7 Minimum
Power PE
SP; "SP4 SPs|
L
Com-bound Cpu-bound [~ — Com-bound|  \jaximum
'y — > Ppower PE
CM SP; SP
Com-bound

Figure 4.6 — A 3x3 many-core system executing synthetic tasks mapped to maximize the
average power dissipation of the central SP, and minimize the power dissipation of the SP at
the corners [MRSM17b].

Figure 4.6 presents the experimental setup to determine upper and lower bounds
values related to the power consumption in a SP. The central SP (SP,) executes a CPU-
bound task, with an uniform distribution of instructions classes. The SP, neighbors execute
communication-bound tasks, generating traffic traversing SP,4 router. With this scenario, the
consumption of SP, defines the maximum power (pnmax) value that an SP can consume in
an epoch (Definition 7). On the contrary, SP at the corners (2, 6, 8) spend mostly leakage
power because these PE have no tasks to execute (processors in hold state), and there is no
traffic traversing the routers of these SP (routers in idle mode). Note that these routers have
only three ports so that the router consumption reduces. Therefore, the power consumption
at these SP defines the minimum power (pmin) value that an SP can consume in one epoch.

Figure 4.7 details the power consumption for each SP component considering the
scenario presented in Figure 4.6. The histograms assume three supply voltages for an
epoch equal to 1 ms. The histograms show the contribution of the three modules in the
power consumption, considering vf-pairs as 1, 3 and 6. The comparison of pmax and Pmin
highlights the effect of the leakage power.
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Figure 4.7 — Power profiling of the SP for all supply voltages. The total power (y-axis) corre-
sponds to the power consumption in an epoch of 1 ms [MRSM17b].

The pmax histograms show the contribution of the three modules in the power con-
sumption: 50% processor, 30% memory, and 20% router. As the voltage reduces, the
portion due to router power increases because only the processor and the memory works
on the scaled frequency. Therefore, in the epoch, the number of executed instructions and
memory accesses reduces when the frequency is scaled down. The pn, histograms present
a distinct behavior, with an increased consumption by the routers due to the lack of clock
hold. pmin is approximately one-third of p,,.« when comparing the bars of the same voltage.
The comparison of pni, at 0.9V (processor executing CPU-bound tasks) and ppax at 1.1V
(processor in hold state) evidences the effect of the leakage power. The p;.x at 0.9V is only
18% higher than the pn, at 1.1V. These results show a tendency that reduces pp,, with new
technologies, such as FD-SOI.

4.4.2  Power Consumption During Task Phases

Figure 4.8 depicts the scheduling of two tasks running in two distinct SPs. The
blue bars mean when the processor is busy, and the green bars are idle periods. Figure
4.9 shows the power profile of tasks A and B including the CG model. At the beginning of
the execution, from 0 to 1,000 Kticks, Task A is in a busy phase spending around 14mW
while Task B stays mostly in idle state consuming around 5.5mW. After 1,000 Kticks, both
tasks alternated busy and idle states. Note that the idle phase of both tasks generates lower
power due to the CG, while the busy phase creates peaks of power. This relation between
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power and utilization can also be observed at Figure 1.1 but at the system level instead of
PE level. Finally, the third curve (blue line points) at Figure 4.9 illustrates the power of an SP
when no tasks are running, i.e., the minimum average power of an SP. As PG is not modeled
for this example, the SPs running no tasks shows the potential power savings of PG as well
as establishes the limit of CG savings.

Task A
Interruption ||
Idle | |
Busy | |1 AR |
0 500 1000 1500 2000 2500
| Task B

Interruption
Idle
Busy
I T
0 500 1000 1500 2000 2500

Tick Counter (kticks)

Figure 4.8 — Processor scheduling zooms in task phases of two tasks running in two different
PEs to highlight idle times of the tasks.

Task A —— TaskB —— No Task ——

T T
IProcessor scheduling illustrated in Fig. 4.4

1000 2000 3000 4000 5000
Tick Counter (kticks)

Figure 4.9 — The power curves show the impact of CG relies on task phases. No task curve
shows an SP spending only leakage power.

4.4.3  Resource and Power Impact of the Software Actuation

As stated at the beginning of this Chapter, software actuators have a larger impact
than the hardware ones. Since the power constrains the resources utilization in RM, Figure
4.10 presents the system occupation for this experiment, using a 4x4 cluster, where each
PE may execute up two tasks. Figure 4.11 illustrates the variation of power and resources
for each software actuator. The bottom graph presents the individual power of each PE,
and the top graph shows the cluster power. The simulation aims to highlight task events
disturbing the power and resources. For the sake of readability, the PE running no tasks are
considered power-gated in this example.
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Figure 4.10 — Snapshots taken to show the application mappings at important moments
explained by Figure 4.11.

Cluster Mdhager —+—'
140 ]
q
9
5
"120 i = Snapshot 3 . —
= < 3
€ :
5 100 E : Snapshot 4-
g 5 g |
2 g q
i 3 g F\_,_L,
80~ Snapshot 1 b= Snapshot 2 S d |
o s
PLJ‘// 2 g
E- =
* 7 : |
| | | | H ) ‘ b ‘ ‘
1000 2000 3000 4000 5000 6000 7000 8000 9000

Tick Counter (kticks)
20 T

T
" & o v + %
§14* 1
5127 _
I}
3 10 8
o o

{ i

sk Migration

41 PE O‘X1 -+ PE 1x‘0 PE 1x1‘ PE 1x2‘ PE 2x0 '\E PE 2x1 + PE 2x2 ‘ PE 3x0 ‘ PE 3x1 ‘ N

1000 2000 3000 4000 5000 6000 7000 8000 9000
Tick Counter (kticks)

Figure 4.11 — Example of power and resource impact of software actuators in a 4x4 cluster.
The top graph shows the power at the cluster level, and the bottom one illustrates the power
in each PE.

The simulation starts with six tasks running in four PE (snapshot 1). Due to an Ap-
plication Allocation, five new tasks occupy additional four PE and make the power increases
around 80% (snapshot 2). In this sense, the bottom graph in Figure 4.11 illustrates the power
variation felt by each PE due to the AA actuator. A task migration is the second software
actuator triggered by the RM. The bottom graph in Figure 4.11 also show the power impact
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caused by a task that migrates from a PE running two tasks (PE 2x1 - blue curve) to an
idle PE (PE 0x1 - red curve) — snapshot 3. Although the number of tasks and resources
is still the same after the task migration, the power in PE 2x1 increases because its utiliza-
tion increases. Finally, the end of an application execution decreases the PE utilization and
consequently the power as well (snapshot 4).

In general, Application Allocation and Task Allocation increase the power. However,
the amount of this growth relies on the number of tasks, the number of PE used to allocate
the tasks and the task characteristics e.g., if the task is communication-bound or CPU-
bound. Although both applications use the same number of PE (four), Figure 4.11 shows that
the first allocated application requires more power than the second one because the former
has more tasks (six versus five) and the average power of its tasks is higher, according to
the power curves shown in the bottom graph.

Concerning task migration, the power increases when occurring task migration from
a PE running multiple tasks to an idle PE, similar to the presented in Figure 4.11. As the
opposite, the power decreases when a task migration releases a PE and migrates to an-
other busy PE. Similarly to task allocation, the amount of the power variation due to a task
migration is variable and relies on the task characteristics. If the number of idle and busy PE
does not change, the impact on the power consumption of a task migration is small. Thus,
task migration can be best used as a power knob in the following situations: (/) when tasks
are divided to run in distinct PE to make the application achieve better performance; or (ii)
tasks are joined to share PE while releasing other PE to reduce power.

Besides the power variation due to different software actuators, Figure 4.11 also
illustrates how the task phases affect the power consumption. In the bottom graph, the
power of some tasks exhibits a constant behavior while other tasks have a period behavior
with peaks and valleys of power. As a consequence, the overall power (top graph) is not
constant even though no actuation occurs.

45 Final Remarks

This Chapter described the actuators set of the proposed RM. A review of related
works shows that this proposal is the most comprehensive, i.e., it covers the largest number
of actuators simultaneously. As bigger the amount of actuators is, more complex is the
management. The distribution of the actuators management in a 3-level hierarchy scheme
ensures scalability to the proposal. The criteria for the distribution is to sort the actuators
concerning resource and power impact, and latency, i.e., the larger the actuator impact and
latency, the higher is the hierarchy level.

Regarding hardware actuators, the reference many-core does not support the re-
quired actuators to deal with power issues. Therefore, the design and the modeling for each
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power actuator is detailed to support their inherent overheads. The hardware actuators
presented are DVFS, PG, and CG. Meanwhile, communication protocols illustrate how the
hierarchical RM can coordinate the software actuators in such a way to avoid resources con-
flicts and network congestion. Furthermore, the individual switching of each actuator allows
the observing of power and resources impact of each actuator.
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5. DECIDING - RUNTIME ENERGY MANAGEMENT APPROACH

The workload of many-core systems includes soft real-time (RT) applications. This
Chapter assumes the application set executing soft real-time (RT) and best-effort (BE) appli-
cations. RT applications, like multimedia, admit small variations in the latency [FSWV07] as
well as can deal with some timing violations if these are not frequent [MEPO08]. The manage-
ment of hard real-time applications is out of this Thesis scope. Techniques used to decrease
power consumption, such as dynamic voltage and frequency scaling (DVFS), may induce
constraint misses if the management is not aware of the RT constraints. Therefore, the exe-
cution of RT applications while respecting the constraints of power and timing constitutes a
challenging trade-off for Resource Management (RM) systems [SKF*14].

Furthermore, energy efficiency is an essential issue for any device, mainly the ones
powered by a battery. The RM can adopt distinct strategies for BE and RT applications to
achieve energy efficiency. Besides these strategies regarding the application type, the power
and timing constraints constitute a multi-objective problem (Definition 3). Therefore, the
execution of BE and RT applications to achieve energy efficiency under power constraints
requires a multi-objective RM.

The evaluation of RM proposals reveals the following limitations:

1. Design-time based heuristics. Several works propose heuristics for power manage-
ment (PM) according to a design-time analysis of the application set [LJJ13, SDK13,
DKV14, DAHM16, JLK*14]. However, many-core systems are designed to support
dynamic workloads, i.e., new applications may start their execution at any moment,
making unfeasible to evaluate all execution scenarios at design-time [SSKH13];

2. Dynamic behavior of a many-core system even when assuming runtime based heuris-
tics. The tasks’ execution time is not constant for all iterations due to the inherent
dynamic behavior of many-core systems (e.g., traffic congestion, interruptions, operat-
ing system scheduling) so that adaptability (Definition 4 on page 27) is required.

To tackle these limitations, this Chapter proposes an adaptive Runtime Energy
Management (REM) designed to control both RT and BE applications while exploring the
slack time of RT applications and the most efficient energy threshold to save energy for BE
applications. This Chapter corresponds to an extension of the publication at the JOLPE
journal [MRSM17b]. REM accumulates the benefits of scalability, comprehensiveness, and
multi-layer observing scheme for energy, power, and RT constraints from the Observe and
Act states previously presented (Chapters 3 and 4, respectively).

The Chapter contributions are as follows:

 apply PM in the scheduling of RT applications without design-time analysis of the ap-
plications set;
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» employ distinct strategies of management according to the application type (BE or RT);
* support dynamic workload;

* achieve average energy savings in RM running RT application of 18%, with negligible
timing violations.

Section 5.1 presents related works in RM for RT applications. Section 5.2 intro-
duces RT and BE application models. Section 5.3 corresponds to the main contribution
of this Chapter, the REM heuristic, which relies on the observing data to take decisions.
Section 5.4 presents the REM results and a comparison with related works. Section 5.5
concludes the Chapter and points out directions for future works.

5.1 Related Works

A concern in RM is to meet RT constraints for the applications. The trade-off of
meeting both RT constraints and the system power-related constraints is the related works
challenge. Table 5.1 summarizes the related work. The 2" column presents the architecture
and the core count given by the number of PEs or the NoC size. The 3" column presents the
RM goals. The 4 column distinguishes if the RM is a multi-objective one. The 5 column
lists the actuation techniques used to control the system according to the authors’ definitions.
The 6 column presents the power modeling approach adopted by the Authors: top-down
or bottom-up. The last column illustrates if the RM requires design-time evaluations of the
application set.

According to Table 5.1, DVFS is the main technique used to control the system to
achieve the design goals. However, it is not clear if Authors [MKP15, LJJ13, SDK13, JLK*14,
HRW*14] consider the overhead due to the DVFS support. To fulfill this gap, the DVFS model
employed in REM includes latency, delay, and energy overheads due to the DVFS support
(Section 4.2).

Most works [MKP15, LJJ13, SDK13, DKV14, DAHM16, YSH14, JLK*14] use a
small number of cores, compromising scalability. In particular, scalability for heterogeneous
many-cores is an open research topic [SCWO05]. Haghbayan et al. [HRW*14] work is closer
to this Chapter proposal regarding system size but it applies a centralized congestion-aware
task mapping [FRD*12] instead of hierarchical management. This Chapter proposal adopts
a hierarchical management architecture to act in systems from few up to dozens of PEs,
making the proposal scalable.

Although bottom-up modeling [MKP15, LJJ13, SDK13, JLK*14, SDI16] allows fast
design space exploration, the accuracy is a function of the models available in the toolset,
which may compromise the quality of the results [XJB*15]. Some Authors validate the RM in
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embedded platforms [DAHM16, DKV14] and FPGAs [YSH14], but the system size is limited.
Among the top-down approaches, Wei et al. [WLW*17] employ real CPU+FPGA hardware
while Yu et al. [YSH14] simulate the RM targeting an FPGA device. The cycle-accurate
model from Jung et al. [JLK*14] makes assumptions related to the hardware features, which
may lead to a mismatch between the model and the actual hardware. REincludeM adopts a
modeling step by characterization (Section 3.3) before the RM design to the low-level results
(e.g., energy per instruction, energy per flit) in the cycle-accurate model.

Table 5.1 — State-of-art in RM for Many-core Systems running RT applications.

Multi- Design-
Proposal Arch., # PEs RM goals objective? Actuation set Modelling It;]rfrg)%
Maiti et al. Min. energy or max. TA, DVFS, ]
[MKP15] Homo., 6x4 performance v cG Bottom-up (McPAT) v
. Energy Efficiency and :
Li et al. [LJJ13] Homo., 9 Temperature v TA, DVFS Bottom-up (HotSpot) v
Singh et al. . ]
[SDK13] Homo., 4 Energy efficiency X TA, DVFS Bottom-up v
Energy efficiency and Bottom-up (validation
Das et al. [DKV14] Homo., 3x3 L v DVFS in ARM-based v
Reliability
embedded system)
Das et al. | Homo. Up to Energy efficiency and Bot'gom—up (validation
[DAHM16] 3x3 Reliabili v DVFS in ARM-based v
y embedded system)
Top-down (FPGA
Yu et al. [YSH14] Hetero., 9 Latency X DVFS, T™M simulation) X
Jung et al. . TA, TM, Top-down (ARM
[JLK*14] Homo., 3x3 Energy efficiency v DVFS simulator) v
Haghbayan et al. Tg)r(q%" Performance under v TA, DVFS, Bottom-up (in-house X
[HRW*14] 11x11, 8x8 power cap PG tool, McPAT, Lumos)
Singh et al. Homo., up to Maximize performance v TA, DVFS, Bottom-up (in-house X
[SDI15] 6x8 and minimize energy PG functional simulator)
. Hetero., Throughput .
Wei et al. AR TA, TM, Top-down (Intel i5 CPU
4xCPU + optimization under v - v
"
[WLW*17] FPGA power cap DVFS + Xilinx VC707 FPGA)
) Homo., 3x3 Scalability and energy AA, TA, TM, ] .
This up to 12x12 efficiency v DVFS, CG Top-down (Section 3.2) X

AA: Application Allocation; TA: Task Allocation; TM: Task Migration; PG: Power-Gating; CG: Clock-Gating
Hetero.: Heterogeneous; Homo.: Homogeneous

Some works [LJJ13, SDK13, DKV14, DAHM16, JLK*14, WLW*17] assume a pre-
viously known application set to execute design-time optimizations. Some proposals [LJJ13,
SDK13] use design-time phases to define energy efficient task mapping and employ a run-
time power adaptation (DVFS) to improve energy saving. The design-time exploration uses
a profiling of known applications to reduce the complexity of runtime heuristics, but it is
not flexible to be applied in general purpose application systems, where the application
set is unknown at design-time. One work [SDI15] proposes both design-time and runtime
management approaches for high-performance computing (HPC) many-core systems. The
current proposal makes no assumptions related to the workload and executes both BE and
RT tasks. REM takes decisions at runtime by observing the current system status. Similar
to this proposal, Li et al. [LJJ13] and Sing et al. [SDK13] works explore the slack time of
applications tasks to save energy. This method enables the deployment of heuristics that
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combines power techniques (such as DVFS) with the slack time of RT tasks to improve the
energy reduction at runtime.

Finally, from the works labeled as multi-objective RM (Table 5.1) most of them
[MKP15, LJJ13, JLK*14, HRW*14] execute RT applications under power constraints to
achieve a certain goal, such as this proposal. Similarly, Wei et al. [WLW*17] execute dif-
ferent frames in parallel of streaming applications using pipeline under latency and power
constraints. Singh et al. [SDI15] work focuses on simultaneously maximizing performance
and minimizing the energy of tasks while keeping latency, instead of saving more energy like
most of the works. Both works of Das et al. [DKV14, DAHM16] optimize the RM for energy
efficiency and reliability. Unfortunately, other works [MKP15, HRW*14] abstract the model of
RT tasks, how the RT constraints are observed, and the impact of the power management
techniques in the task’s execution time. Haghbayan et al. [HRW*14] work and this proposal
distinguish BE tasks and RT tasks to take decisions regarding the application type. Also,
Haghbayan et al. [HRW*14] do not apply power techniques in the processor mapped with
RT tasks.

5.2 Application Model

RT applications contain a set of tasks, where the correct execution includes not only
the expected results but also when these results are produced. The RT application model
is an extension of the generic model described in Chapter 1. Thus, a directed acyclic task
graph G = (T, E) models an m-task application A = t, b, ..., t, where each vertex t; € T
is a task and the directed edge (e;, €;), denoted as e; € E, is the communication between
tasks t; and ;. An application may be either BE or RT, denoted as Age or Agr. The following
Definitions are applied to Agrs.

Definition 10. Agrr(p) - application hyper-period. The hyper-period is the smallest time in-
terval after which the periodic patterns of all the tasks are repeated.

Definition 11. Agr(x) - application execution time. It corresponds to the time to execute all
tasks during one Agr(p).

Definition 12. Agr(s) - application slack time. It corresponds to the difference between
Agrr(p) and Agr(x) as follows:

ARt(8) = ArT(P) — ART(X) (5.1)

Definition 13. tzr - RT task. It is a tuple tgr = (x, u) where x is the task execution time
including operating system events and communication time, and v is the task utilization.
The task utilization, tzr(u) corresponds to:
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Definition 14. {5 - BE task. It is a task without timing constraint.

Figure 5.1(a) shows an example of a task graph for an Agr, and its scheduling with-
out (Figure 5.1(b)) and with (Figure 5.1(c)) task level DVFS. The DVFS applied at tasks ‘b2’,
‘c’ and ‘d1’ increases their tzr(x) and the Agr(x). Note that, even though Agr(x) increases,
Agrr(p) is not violated because Agrr(s) remains positive. Figure 5.1 also shows examples of
CPU sharing between tge with tgr in PEO and in PE4.

< — —— — Art(p) _ _ _ _ _ > <+ — — — — ArT(p) _ _ _ _ _
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Figure 5.1 — (a)Task graph of an Agr and an example of scheduling to present Agr properties
at both (b) nominal vf-pairs and (c) scaled vf-pairs [MRSM17b].

The Agr(s) is the key opportunity for energy savings because the system manager
may set the vf-pairs of each tgr without violating the Agr(p). Applying DVFS imposes delay
to tasks. In Figure 5.1, for instance, some of the tzrs have their execution time increased
due to the adoption of the DVFS. Delayed tasks do not violate the Arr(p) iff Agr(s) > 0, i.e.,
Agrt(Xx) < Arr(p).

To support REM, Agr adopts syscalls RealTime and PeriodMonitoring (Section
3.3.3) to observe the Agrr properties and verify the timing constraints. Due to all tzrs call
RealTime, the CM uses RealTime data to compute tzr(x) and tgr(u). Because PeriodMon-
itoring syscall is available only in the firsts and lasts trr, PeriodMonitoring data allows the
CM to compute the current Agr(x) and Agr(s). Note that, the PeriodMonitoring captures
delays induced by the application tasks, traffic in the NoC, and OS events (as interruptions).
Therefore, the computation of Agr(x) and Agrr(s) enables the REM heuristic to act in the
application since they are accurate measures. The SPs schedule RT tasks using the Least
Slack Time (LST) scheduler [RM16], and a round-robin scheduler for BE tasks.
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5.3 Runtime Energy Management - REM

Figure 5.2 presents a general view of the REM, according to the hierarchy adopted
to manage the system (Figure 1.3). When an incoming application request execution in the
system, the GM selects the cluster to allocate the application, executing the application ad-
mission decision procedure (Section 5.3.1). The GM sends to the CM of the selected cluster
the application task graph and executes the task mapping and task remapping heuristics
(Section 5.3.2). According to the mapping result, the selected SPs receive the object code
of the tasks. At the PE level, SP estimates the current energy to enable its CM observing
the energy. Particularly, in case of tgr, the running tgr executes syscalls for observing the
RT constraints. A given SP may execute one tgr, a set of tgeS, or one tzr and a set of tggs.
According to the task set executing in the PEs, the CM decides the vf-pairs settings that SPs
have to act. Sections 5.3.3, 5.3.4, and 5.3.5 detail the methods.

Application s
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. A
Application Energy per !
A i
! Observing task graph cluster :
] A 4 1
Task Mapping DVFS 5
lActuation and Remapping Decision CM § %
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Virtual Sensor '
RT task BE task

Figure 5.2 — General REM overview [MRSM17b].

5.3.1 Application Admission

The GM receives requests to execute new applications from the application repos-
itory by executing Algorithm 5.1. The application type, RT or BE, is the only design-time
information available to the REM. The GM verifies if there are enough resources (see Def-
inition 6) in the system to run all tasks of the application. In the absence of resources to
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execute the application, the GM delays the admission of the incoming application up to the
release of enough resources (lines 3-5).

Lines 6-11 creates the set cls, With the clusters that may execute the application. If
the clse; is Nnot empty (lines 12-13), the selected cluster is the one with the lowest consumed
energy based on the observing data. The goal is to distribute the load evenly in the system
to avoid hotspots. Otherwise (lines 14-15), the selected cluster is the one with the maximum
number of available resources. In such a case, a reclustering protocol [CMMM13] is applied,
and the select cluster borrows resources from neighbor clusters.

Algorithm 5.1 Application Admission
. Inputs: app, sys
Outputs: Cloyiput
if sys.resources < app.resources then
return ()
end if
Clset 0
for each clx € sys.clse; do
if cli.resources > app.resources then
Clset < Clset U Cly
end if
: end for
. if clset #0 then
Cloutput <— MINEnergy(clse)
. else
Clouput < MaxvAilableResources(cls;)
- end if
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5.3.2  Task Mapping and Remapping

The manager PEs employ a set of cost functions to guide the task mapping and
remapping:

» availableSPs: it returns the set of SPs with available resources to execute tasks;
* SPs_run_RT task: it returns the set of SPs running tzrs;

* minEnergy: it returns the SP with the minimum current energy nearest to the SPs
executing tasks of the application.

The manager PE maps a task t; according to the Algorithm 5.2. The first action is
the creation of a set with the SPs able to execute {; (line 2) - SPs. For a tgr (line 4), the
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mapping algorithm excludes from SPg; the SPs running tgrs (line 5), and then chooses the
SP with the minimum current energy (line 6). For tges only the minimum current energy is
considered (line 8). If an SP may receive {;, the algorithm (line 11) executes the mapping
by calling the task allocation protocaol, i.e., request to the GM to transfer the object code of
ti to the selected SP. The mapping of a fgr may not occur, even if the cluster has resources
to execute the task. A task mapping failure happens when SPs that are not executing tzrs
have all resources used by fges. In this exceptional case, it is necessary to migrate a tgg,
releasing a memory page to receive a tgr.

Algorithm 5.2 REM Task Mapping
1: Inputs: ¢l.SPse, app.t;
2: SPsy < availableSPs(cl.SPg)
3: SPselected < 0
4. if app.ti.type = RT then
5: SPget +— SPset — SPs_run_RT_task(SPse)
6
7
8
9

SPselectea < MINENErgy(S~Pse;)
. else
SPseiected < MINENergy(SPse;)
. end if
10: if SPgejected # 0 then
11: Map task app.t; in SPsejected
12: else
13: Call Reclustering protocol
14: end if

A manager PE migrates a tge according to Algorithm 5.3. Initially, it is created a set
of SPs running tgrs with available resources to receive a new tge (line 2) - RT_SPg. Then,
lines 4-6 creates the set migSPse; containing SPs executing only tges without resources to
execute new tasks. Next, the algorithm selects an SP address (SPy;) to receive the g and
the SP address with the tge to be migrated (SPs.). Finally, REM Task Remapping function
selects a tge mapped in the SP., remapping it to the SPy.

Algorithm 5.3 REM Task Remapping

. Inputs: ¢/.SPgg;

RT _SPs < availableSPs(cl.SPs;) N SPs_run_RT_task(c/.SPse)
usedSPge < cl.SPse; — availableSPs(cl.SPsg)

MigSPse; < usedSPse; — SPs_run_RT_task(c/.SPse)

SPsrc + minEnergy(migSPse;)

SPit < minEnergy(RT_SPsq)

Migrate a task from SPs, to SPy;

N o s w0 h 2
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After the remapping process, the SPg,. can receive a tgr. Therefore, when the REM
Task Mapping (Algorithm 5.2) for a tgr fails, the remapping is fired, and the gy is mapped
in SP.. afterwards. Since the GM admits an application only if there is room in the system,
the remapping algorithm always finds an SP available to remap the tg¢.

A restriction adopted in the mapping procedure is: only one tgr may be assigned to
an SP at the same time. This restriction avoids the overlapping of tgzrs, preventing deadline
misses. Indrusiak et al. [Ind14] presents a schedulability test, executed at design-time to
enable the mapping of more than one tzr in the same processor.

5.3.3 DVFS for an SP running only an RT task

The algorithm to apply DVFS to SPs executing one tgr considers the timing prop-
erties of the Agrs. To manage RT applications, only vf-pairs 1, 3, and 6 are used, which are
the most energy efficient vf-pairs (Figure 4.3). The REM adopts the following definitions to
set the vf-pairs of each task of an RT application:

Definition 15. HIGH_UTILIZATION - tgrr(u) above a predefined threshold related to the
Agr(P).

Definition 16. LOW_UTILIZATION - tgr(u) below a predefined threshold related to the
Agr(P).

The current proposal adopts fixed thresholds because the adaptation at runtime
of these thresholds without evaluating the applications set at design-time would require a
larger warming up period and learning-based algorithms [YSM*15]. In this Chapter proposal
HIGH_UTILIZATION and LOW_UTILIZATION correspond to 70% and 30%, respectively.

Algorithm 5.4 runs at manager PEs, and it defines the vf-pair of an SP executing
a tgr. This algorithm is triggered when the manager processor receives a packet created
by the execution of a syscall RealTime in an SP. According to Figure 4.3, vf-pairs 3 and 6
delay a task execution by 12.5% and 37.5%, respectively, due to the frequency reduction.
With a high CPU utilization, the SP operate at the nominal voltage (lines 3-4). With a low
CPU utilization, the SP operates at the vf-pair 6 and delays the task by 37.5% (lines 5-6).
Between thresholds, the task execution is delayed by 12.5% (lines 7-8).

If the manager PE receives a predefined number of hyper-period slack time viola-
tions (from the syscall PeriodMonitoring), the REM reset the vf-pair of all application tasks
to the nominal voltage (vf-pair(1)). Further, to save energy, the manager PEs set the lowest
vf-pair to the SP when the SP has no tasks to execute.
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Algorithm 5.4 REM DVFS for RT tasks

Inputs AFIT, trT, SP

trr(U) < (tar(x) * 100)/Arr(P)

if tgr(u) > HIGH_UTILIZATION then
sendVF(SP, vi-pair(1))

else if trr(u) < LOW _UTILIZATION then
sendVF(SP, vf-pair(6))

else
sendVF(SP, vi-pair(3))

end if

© @ Nk 0N

5.3.4  DVFS for an SP running only BE tasks

The utilization and the behavior of tges are unpredictable due to the absence of
timing constraints. Thus, the strategy to achieve energy savings considers the energy profil-
ing data (Figure 4.7). The most energy efficient voltage is the 1.0V because the E,, in an
epoch reduces approximately 30% with an execution time overhead of 12.5%, compared to
1.1V. The Ex for 0.9V reduces more than 50% the energy compared to 1.1V, but the exe-
cution time overhead of 37.5% makes the leakage mitigate part of energy savings. Hence,
the REM defines three energy zones: (i) hot zone: the current energy is above E,,, of 1.0V;
(il) cold zone: the energy is below E,,, of 0.9V; (iii) warm zone: energy between hot and
cold zones.

The thresholds can be redefined to meet other goals instead of energy efficiency.
For example, a restricted power cap can enforce the designer to adjust the thresholds to
lower values than the proposed ones, i.e., a power-cap at PE level. In this case, the per-PE
power cap penalizes the energy efficiency but guarantees no thermal issues [PKM*14].

When an observing message arrives from an SP running only tges, the manager
PE triggers Algorithm 5.5. The vf-pair is decremented when the observing sampling is in
the hot zone (lines 2-3), or it is incremented when the observing sampling is in the cold zone
(lines 4-5). The goal of the energy zones is to keep the voltage of SPs executing tges at 1.0V
most of the time, regardless the SP utilization.

Algorithm 5.5 REM DVFS for BE tasks

Inputs: energy, SP

if energy > HOT_ZONE then
sendVF(SP,DVFS_DOWN)

else if energy < COLD_ZONE then
sendVF(SP,DVFS_UP)

end if

@ 9 kN2
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Figure 5.3 — REM uses DVFS for keeping the energy profile of the SP in the warm zone
(white part). The warm zone of energy is from E;. of 0.9V to E;.c of 1.0V [MRSM17b]
(Section 4.4).

Figure 5.3 shows an example of the current energy in the left y-axis of an SP exe-
cuting tges (the right y-axis presents the average power in the epoch). When the simulation
starts, the REM identifies a peak of energy (hot zone, the red part of the graph) in the first
three observing samplings and sends three orders to scale the vf-pair down until the current
energy decreases to warm zone (white part of the graph) in the fourth sampling. Next, the
energy stays on the warm zone until the end of one tge (2,000 Kticks). The controller identi-
fies that the remaining task are working in the cold zone (blue part of the graph) and scales
the vf-pair up to the warm zone.

5.3.5 DVFS for an SP running an RT task and BE tasks

The REM allows tges and one tgr sharing the same SP. As the tgr has higher
priority in the scheduler, the rules to set the vf-pairs are the same adopted in the Algorithm
5.4. The tgrs with lower utilization offer more CPU time to schedule tges. Thus, when the
REM maps or migrates tges together with a tzr, the SP chosen is the one with the least
utilization in the cluster. In fact, the cost function minEnergy returns the SP with lower
utilization for these cases.
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5.4 Results

The experiments use the clock cycle-accurate RTL SystemC model of the reference
many-core system. Applications and OS are described in C language, compiled from C code
and executed over cycle-accurate models of the processing cores. The RT benchmarks
are DTW (6 tasks), Dijkstra (7 tasks), and MPEG (5 tasks) while the BE applications are
synthetic (6 tasks) and prod-cons (2 tasks).

The simulation of the baseline many-core architecture generates the results used
for comparing the proposed methods. The baseline many-core has no DVFS while keeping
the RT scheduler for processing tgrrs, the mapping, and the energy observing. The baseline
platform does not have the 10% of energy overhead neither spends 6.55% more time due
to the DVFS implementation (Section 4.2).

Section 5.4.1 evaluates the effect of the traffic congestion and the RT application
mapping, with the goal of justifying the cluster-based architecture and the runtime admission
and mapping heuristics. Next, Sections 5.4.2, 5.4.3, and 5.4.4, evaluate the execution time
of the RT applications, the total system energy, and the number of hyper-period violations.
Finally, Section 5.4.5 makes a comparison of the proposal with the state-of-the-art.

5.4.1 Evaluation of the traffic congestion and the RT application mapping

The goal of this first experiment is to present the effect of the traffic congestion
and the number of tgrs mapped in the same PE. Figure 5.4 presents Agrr(x) (black curve)
and Agr(p) (red line) for different mapping scenarios considering the application illustrated
in Figure 5.1.

Figure 5.4(a) presents the best-case scenario, with one task per PE, without dis-
turbing traffic. After a warm-up period, the REM actuates, and the Agr(x) stabilizes. Fig-
ure 5.4(b) considers the same mapping of Figure 5.4(a), but with congestion due to the
traffic from other applications executing in the system. This experiment maps the RT ap-
plication in the middle of a 6x6 many-core, surrounded by other tasks generating traf-
fic crossing the RT application. As observed, it is not possible to guarantee the con-
straints in the presence of congestion even for a best-case mapping if the links used by the
RT application suffer congestion. Design-time techniques, such as the ones presented in
[LJJ13, SDK13, DKV14, DAHM16, JLK*14], are unable to deal with the effect of congestion
in the NoC, thus they are not suitable for dynamic workload scenarios.

Next, Figure 5.4(c) and Figure 5.4(d) evaluate the impact of a multi-task mapping.
Figure 5.4(c) shows Agrr(x) when tasks ‘b1’ and ‘b2’ share the same PE. Agr(p) is not re-
spected for this mapping because, according to the application task graph, these two tasks
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should execute in parallel, i.e., at different PEs. Figure 5.4(d) maps non-parallel tasks at
the same PE. As observed, Agr(s) reduces, and a deadline miss occurs (at 1100 Kticks).
These happen because the resources sharing between tasks of the same application may
generate unpredictable events, like interruptions due to messages addressed to a given task
mapped in the PE.
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Figure 5.4 — Evaluation of Agr(x) for different mapping scenarios, considering traffic conges-
tion and multi-task mapping.

REM tackles the issues in Figure 5.4(b-d) with the application admission and task
mapping heuristics. The hierarchical organization helps to minimize the effect of traffic con-
gestion (Figure 5.4(b)) by mapping applications inside the clusters and minimizing the ap-
plication fragmentation (i.e., tasks belonging to same application spread at distant PEs).
Besides, the Application Admission algorithm prioritizes the cluster with the largest number
of available SPs to increase the mapping search space. The mapping algorithm avoids the
problems depicted in Figure 5.4(c-d) because only one tgr may be assigned to an SP at the
same time, as discussed in the mapping heuristic Section (Section 5.3.2).
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54.2 Evaluation of REM for one RT application

This experiment aims to show how REM can save energy while meeting the RT
constraints. Figure 5.5(a) presents the hyper-period of an RT application (green horizontal
line), the baseline execution time (black curve), and the execution time using REM (red
curve). The distance from the execution time lines to the hyper-period corresponds to the
slack-time.
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Figure 5.5 — Execution time and energy of an RT application with and without REM for 100
iterations [MRSM17a].

The hyper-period defined by syscall RealTime for each iteration is 60 Kticks (green
horizontal line). The execution of the baseline system does not present hyper-period viola-
tions, but a slack time is observed. Using REM, after the definition of the vf-pairs, the slack
time becomes narrower, with few violations in the hyper-period (smaller than 10% of the
hyper-period value). Figure 5.5(b) plots the energy consumed by the system for the baseline
and the system with REM. As the simulation advances the energy savings increases, reach-
ing 22% after execution 100 iterations of the application. Figure 5.5(b) shows REM achieves
energy savings for one RT application while keeping the execution time of the application
within the expected hyper-period, with few violations. Considering periodic applications, like
video decoding or some other application with RT constraints, executing for longer periods
than the ones presented in the simulation, those applications have the potential to obtain
significant energy savings by extrapolating both curves.
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543 REM for Controlled Scenarios

The goal of this experiment is to evaluate REM in controlled scenarios. The evalu-
ation considers the baseline system and four scenarios:

1. BE-only —a 4x4 many-core running tggs.
2. RT-only —a 4x4 many-core running tgrs.

3. RT+BE — a 4x4 many-core running tgrs and tges, with the same number of tasks for
both applications.

4. RT+BE+mig — a 4x4 many-core running tgrs and tgrs, with a configuration that REM
Task Remapping fires a task migration.

Baseline 033

1.4 RT-only 22
RT+BE 3

1.2 RT+BE+mig 7]
BE-only

1

0.8

0.6

04

0.2

Time Energy
Normalized Results of the REM

Figure 5.6 — Execution time and energy results of REM for controlled scenarios normalized
regarding the baseline system.

Figure 5.6 shows the normalized results w.r.t the baseline system. The graph
presents the execution time of RT applications and the consumed energy for all scenar-
ios. The execution time of the RT applications is not disturbed by the BE applications, even
when task migration occurs. Scenarios RT-only and RT+BE reduced the energy in average
by 25%. It is worth noting that the effect of the task migration. Because of Task Remap-
ping algorithm, PEs are exclusively reserved for RT, enabling the reduction of the vf-pair of
the PE. It is possible to note a slight reduction in the execution time for this scenario. The
performance of the BE applications is in effect a trade-off execution time versus leakage
energy. As shown in Figure 5.3, the goal is to keep the energy of the PE running fges in the
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warm zone. In this experiment, the execution time increases 20%, and the energy reduces
by 13%.

Only scenario RT+BE presents violations in the hyper-period. The number of hyper-
period violations is small (less than 2%) with an amplitude lower than 10% of the defined
constraint. This behavior is similar to the one presented previously.

5.4.4 Evaluation of the REM proposal with a mix of BE and RT applications in large
systems

Table 5.2 presents experiments for systems having up to 144 PEs. Five many-
core systems (first column), divided into different cluster sizes (second column), run the
applications set. The number of tzgrs and tges to process is the same of the number of
SPs of the many-core (third column). For instance, the 6x6 many-core has 1 GM, 3 CMs,
and 32 SPs such as the example of Figure 1.2. A burst of three or four applications starts
each 1 ms. The fourth column presents the number of task migrations executed during the
simulation. The fifth column shows the percentage of hyper-period violations (the execution
of the applications in the baseline system does no present violations). The REM produces
a small number of hyper-period violations (< 2.1 %), with an amplitude inferior to 15% of the
defined constraint. This result shows that the proposed REM is suitable for RT applications.
For example, few hyper-period violations decoding a video frame do not affect the latency of
the applications [FSWVO07]. The last column presents the energy savings, for a simulation
time of 50 ms. The average energy reduction observed is 18%. This result is coherent with
the previous section since the experiments mix BE and RT applications, with larger energy
saving in PEs executing tzrs and smaller gains in PEs executing fggs.

Table 5.2 — Violations of hyper-periods and energy savings of REM compared to the baseline
system.

Many-core Cluster # of tasks for # of task Violations of Energy
size size each type migrations hyper-periods | savings
6x6 3x3 32 3 1,47% 15%
8x8 4x4 60 6 2,09% 18%
9x9 3x3 72 8 1,84% 20%

12x12 3x3 128 8 1,87% 18%
12x12 4x4 135 14 1.97% 18%

To put in perspective these results, Figure 5.7 shows the energy consumption of
the system for the baseline and the system with REM. At the beginning of the simulation,
as the zoom-in shows, the dominant events at the beginning of simulation are application
and task mapping (at 2,000 Kticks all applications are already running). Next, the manager
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PEs can set the vf-pairs for each task because SPs are executing tasks and sending ob-
serving messages containing energy and RT data. After this period, the gap between the
curves increases because most of the management decisions are taken at the beginning
of the tasks’ execution. As the simulation advances, e.g., at 360 ms (90.000 Kticks) the
energy savings reaches 28%. This result is achieved because all SPs are running a tgr with
utilization values that allow the REM to save energy, optimizing the results.
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Figure 5.7 — Energy consumption of a 6x6 many-core.

5.4.5  Comparison of the REM with Related Works

Table 5.3 compares the results of related works with REM qualitatively. The fifth
column of Table 5.3 is the Authors’ baseline reference to present their results. The principal
advantage of the REM is scalability. The distributed management enables to apply the
proposal to large systems (144 PEs). Design-time analysis of the applications set leads
the system management to achieve better results than the ones without awareness of the
application set. However, such systems do not support the admission of new applications or
adaptive workloads.

The works without design-time analysis of the application set include Maiti et al.
[MKP15], Haghbayan et al. [HRW*14], Singh et al. [SDI15], and Yu et al. [YSH14]. Maiti
et al. [MKP15] focus on process variability and near-threshold voltage, using thermal con-
straints. The goal of Haghbayan et al. [HRW*14] is to optimize performance under power
constraints. Yu et al. [YSH14] address adaptive workloads (e.g. H.264/SVC).
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Considering works with design-time analysis of the application set, Li et al. [LJJ13]
make mapping and DVFS for heterogeneous many-core. Jung et al. [JLK*14] adopt as a
baseline a worst-case mapping, explaining the larger energy reduction. Singh et al. [SDI15]
propose both design-time based and a runtime management an HPC many-core to optimize
energy and performance.

Wei et al. [WLW*17] aim to maximize throughput using a CPU+FPGA platform.
The technique of merging pipeline and DVFS is used to allow the execution of more frames
simultaneously under the same power cap for a required latency, but the same technique
could be applied for energy savings purposes.

Table 5.3 — Qualitative comparison between related works.

BE or RT . DeS|gnTt|me Authors’ baseline for .
Proposal tasks? Scalability analysis of comparison Design goals
' applications P
R 0, B )
Li et al. [LJJ13] RT No Yes Worst a;ng;i;case of | Best: +6.3 /os:::g))ll, Worst: -5%
[Sérleg}? 13] et al. RT No Yes Other works Up to -52% energy
Das et al. [DKV14] RT No Yes Other works Up to -40% energy
[EI)D?ASHW G?t al. RT No Yes Linux on-demand -15% energy
‘[J Ju|_n|g+1 4] et al. RT No Yes W?Str_::rs]ggzi%ﬂ?g’ Up to -36% energy
Yu et al. [YSH14] RT No No No DVCIZi,s\t/\r/:ir:]tt:ermal Up to -31.5% temperature
Haghbayan et al. No management, no o
[HRW*14] Both Yes No constraints +46% performance
-15.8% and -5.8% energy for
Sinah ot al Both runtime and design-time
[SD%1 5] ’ RT Yes (design-time No DVFS approaches, respectively. +5.8%
and runtime) performance for design-time
approach*
Wei et al. o .
[WLW+17] RT N.A. Yes CPU-only platform +37% throughput in average
This Both Yes No No DVFS -18% energy in average

*the average result of performance for runtime approach is not presented

Authors develop their proposals using distinct frameworks (Table 5.1), so a direct
comparison is difficult. Most of the related works are unable to fulfill the assumptions of
this proposal because REM targets dynamic workloads for many-core systems. Nonethe-
less, the proposals from Haghbayan et al. [HRW*14] and Singh et al. [SDI15] have similar
features to this Chapter proposal: scalability and the applications set is previously unknown.

Table 5.4 compares REM to Haghbayan et al. [HRW*14] and Singh et al. [SDI15]
works. The results from Singh et al. [SDI15] were obtained from the paper because the
methodology for defining the baseline system for comparison in both works is similar, despite
the different experimental setup. Table 5.4 reports results of the runtime approach for a 3x8
system. To achieve a fair comparison with Haghbayan et al. [HRW*14], it is considered:
(/) the same static mapping in a 6x6 many-core; (ii) the restriction from Haghbayan et al.
[HRW+*14] work of one tge per PE; (iii) four applications (24 tasks) composes the test case;
(iv) the baseline for both works is the same system without DVFS (6x6 many-core with
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the same static mapping); (v) both works employ the same energy and power observing
and estimation. As REM spends 160 mW for this controlled scenario, the power cap in
Haghbayan et al. [HRW*14] work is set to 160 mW.

Table 5.4 — Quantitative comparison between related works regarding energy savings.

BE or RT Singh et al. Haghbayan et REM
tasks? [SDI15] al. [HRW+*14]
RT 15.8% 0% 25%
BE N.A. -5.78% 10.55%

Results show larger energy savings compared to [HRW*14] and [SDI15] because
REM employs different strategies according to the application type. Note that Singh et al.
[SDI15] also include the goal of maximizing utility in a context of HPC, so if the goal of both
approaches were similar, the energy saving of both works would be closer. Haghbayan et
al. [HRW+14] execute tgrs but do not actuate on them, so there are no energy savings
for these applications. Considering tges, due to the power cap constraints, Haghbayan et
al. [HRW+14] increase the execution time and thus the consumed energy. Compared to
the baseline system, the execution time grows 20.81% and 5.78% for Haghbayan et al.
[HRW*14] and REM, respectively. The main difference between REM and [HRW*14] is the
DVFS granularity. Haghbayan et al. [HRW*14] work applies DVFS at the application level,
while REM applies DVFS at the task level, i.e., tasks of the same application can execute at
different vf-pairs. On the other hand, Haghbayan et al. [HRW*14] approach is more flexible
concerning power cap. Haghbayan et al. [HRW™*14] work can follow a power cap below and
above 160 mW while REM is not able to adapt the heuristics according to a power cap.

5.5 Final Remarks

This Chapter proposed a hierarchical Decision module by using the Observing and
Actuation structure previously presented (Chapters 3 and 4, respectively) to deploy the
Observe-Decide-Act paradigm in a Resource Management targeting RT and BE applica-
tions, named as Runtime Energy Management - REM.

REM assumes different strategies for saving energy of RT and BE tasks. REM
explores the slack time of RT applications to reduce the consumed energy in many-core
systems while executing RT applications to meet the applications’ constraints. Regarding
BE tasks, REM assumes energy zones calibrated in such a way to both stimulate the PE
to run in the energy efficiency zone and respect a power cap at the PE level. As shown in
the results section, the proposal is scalable, with similar energy savings for different system
sizes (from 36 up to 144 PEs), and produces a small number of hyper-period violations.
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Summarizing, the main original contribution of this Chapter is the integration of a compre-
hensive set of techniques for RM and the execution of RT and BE applications respecting
the RT constraints without design-time analisys.

Future works are as follows: (/) include other actuation techniques, such as power
gating; (ii) evaluate the approach for SOI technologies; (iii) include additional cost functions
to the REM heuristic to enable more than one RT task running at the same SP.
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6. DECIDING - MULTI-OBJECTIVE RESOURCE MANAGEMENT

The typical workload of many-core systems, such as servers for cloud computation,
produces peaks and valleys of resources utilization throughout the time (Section 1.2). The
power capping limits the full system utilization in a workload peak, but also creates power
slack to allow another policy for resource management (RM) in a valley phase (Figure 1.1).
Related works do not consider this workload issue, proposing RM with hardened goals.

This Chapter proposes a hierarchical adaptive Multi-Objective Resource Manage-
ment (MORM) for many-core systems under a power cap. MORM aims dynamic workloads
with peaks and valleys of utilization. The hierarchical approach allows clusters of processing
elements (PEs) to execute applications according to different objectives simultaneously. A
cluster can drive the PEs to optimize either performance or energy. MORM system manager
can dynamically shift the goals of a cluster according to the workload behavior.

Note that, unlike the previous Chapter, real-time (RT) applications are not in the
MORM scope. Although REM and MORM share most of the features of Observing and
Actuation states as well as the hierarchical organization, they are distinct Decisions states
under unrelated assumptions and their decision algorithms are not connected.

MORM is a multi-objective and adaptive management. Multi-objective means that
MORM addresses power, energy, and performance concomitantelly (Definition 3 on page
27). MORM is also adaptive because it can optimize at runtime either performance or en-
ergy of a cluster (Definition 4 on page 27). MORM is aligned with important trends for
resource allocation [SDMI17]: (i) multi-objective resource allocation; (ii) consideration of
communication and computation loads; (iii) large-scale architectures.

The contributions of this Chapter are as follows:

» An approach that can dynamically adapt the system to the frequent changes of system
goals due to the workload variation;

» A comprehensive approach performs the trade-off between conflicting goals: perfor-
mance or energy;

* A hierarchical organization which distributes the workload in clusters allowing applica-
tions to run according to different goals simultaneously;

» The reference many-core (Section 1.6) employs an RM from related works into the
reference many-core for comparison purposes;

» The results show that MORM achieves better results in performance and energy com-
pared to related works.
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Section 6.1 reviews related works. Section 6.2 introduces the application model
and presents how to generate the values associated to the application task graph. Section
6.3 overviews MORM. Sections 6.4 and 6.5 detail the MORM decisions at the system and
cluster levels, respectively. Section 6.6 presents the experimental results, and Section 6.7
concludes this Chapter.

6.1 Related Works

Table 6.1 summarizes related works concerning the features required by RMs: (/)
management of the applications admission (AA); (ii) task mapping/remapping (TMap and
TR); (iiil) DVFS control; (iv) power cap; (v) hierarchical management in clusters to ensure
scalability; and (vi) adaptive goals, i.e., the RM can manage the applications to meet distinct
goals dynamically.

Regarding application admission, some works [KP15, OA17] present frameworks
for deciding the best number of tasks by adapting the application parallelism to the available
resources on the system or the power capping. In [RHK*15], the application enters the sys-
tem if there are available processors, but can also be killed suddenly if the power overcomes
the capping. MORM can remap running tasks to share PEs and map incoming applications
in a reduced number of PEs to open power and resources room.

Table 6.1 — Features of comprehensive RM for many-core systems.

Proposal AA TMap TR DVFS Pwrcap Cluster Adaptive Goal
Olsen et al. [OA17] v v X X v X X
Zhang et al. [ZH16] X v v v v X X
Kapadia et al. [KP15] v/ v X v v X X
Rahmani et al.

[RHK*15] X v X v 4 X X

This v/ v v v v v v

AA: Application Admission; TMap: Task Mapping; TR: Task Remapping

The application needs to be mapped once it enters into the system. Mapping
heuristics have inherent challenges such as disturbances on other applications, traffic, and
scalability so that mapping is an NP-hard problem [SSKH13]. In general, for homogeneous
many-cores, the best runtime mappings assuming one task per PE assign tasks in a contin-
uous shape to avoid network congestion and optimize performance [FRD*12]. On the other
hand, the assignment of more than one task per PE minimizes the hop number and the num-
ber of active PEs and leads to energy savings [MOSM15]. Some proposals [KP15, RHK*15]
deploy distinct algorithms to map one task per processor in square shapes. MORM takes
advantage of the cluster organization to propose two lightweight mapping algorithms that
enable a fast adaptation between energy and performance goals.
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Task remapping employs task migration to deal with the availability of resources dy-
namically. When a task arrives to execute, a mapping review of running tasks delivers a bet-
ter result than just mapping the task on the available resources. As works [RHK*15, KP15]
do not support multi-tasking mapping, task remapping brings no significant advantages con-
cerning power and resources, and then it is not employed. MORM uses two task remapping
approaches, join and split, to perform adaptability for optimizing the cluster or the system
to a new goal according to the workload. The join remapping stimulates the PE sharing to
save energy by mitigating the communication between tasks and creating more idle PEs for
power gating. The split remapping spreads the tasks in more PEs to optimize performance.

As soon as tasks are running, DVFS is the power actuator to trade-off energy and
performance at the task level. Besides that, some works [RHK*15] employ DVFS at the ap-
plication level to optimize the power with PID controllers. Alternative approaches for power
capping propose DVFS assignment through reinforcement learning [CM15] and probabilistic
[PKS*17] techniques. However, a recent work [ZH16] shows that a joint actuation between
DVFS and resources allocation boost the performance under a power cap. The DVFS ap-
proach employed in this proposal works with task mapping/remapping heuristics to maximize
the adaptive goal as well as can also identify opportunities to save energy according to the
task phase.

Finally, the main feature and contribution of MORM is the adaptability according to
the workload. No related works assume a dynamic change in the workload, i.e., regardless
the system utilization the control strategy follows the same goal. While the workload is low,
the power slack allows the control to decide an optimization for saving energy, or a boosting
on performance. At peaks of workload, the cluster hierarchy allows the control to set some
clusters to boost some applications while still keeping the power capping by slowing others
clusters down.

6.2 Application Model

The application model adopted is derived from the generic model described in
Chapter 1. Applications are modeled as directed acyclic task graphs, A=(T, E, Q, P), where:

» the vertex t; € T is a task.
+ the directed edge ¢; € E is the communication between tasks f; and .

* the value g; associated to each task t; corresponds to the power consumption of t; when
executing in a PE without CPU sharing at the nominal voltage and frequency.
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+ the value p; corresponds to the power consumption of a communicating task pair #-;
when executing in the same PE at the most energy efficient voltage and frequency
(Section 6.5.1).

n

* the set Q = {0} is the application power from g; values given by o = 3 _ gi, considering

i=1
that each SP executes one task and n is the number of tasks of the application.

* the set P = {p1, p2, ..., pn } is the application power obtained from g; and p; considering
a multi-task mapping.

6.2.1 Application Power Profiling

Obtaining g; and p; (and consequently Q and P sets) requires a design-time eval-
uation of the application set. The applications are simulated individually with the minimum
size for allocating all application tasks to avoid disturbances from other sources. All SPs
executes in the nominal voltage and frequency to get g; and in the most energy efficient
voltage and frequency (Section 6.5.1) to derive p;

Figure 6.1 — Steps to obtain g; and p; for a given application.

Figure 6.1 shows all steps to produce g; and pj for a given application. To obtain g;,
the application tasks are manually mapped so that an SP executes one task in a contiguous
shape. After the end of the simulation, g; corresponds to the worst-case value among all
power sampling reported by the SP where t; is allocated.

Next to derive a pj;, the application tasks are mapped so that an SP can allocate
up to two tasks. The communication tasks t; and {; share an SP while the remaining tasks
run individually in another SPs. Similarly to g;, p; is the worst-case value among all power
samplings reported by the SP where f; and t; are allocated. Note that, generating all p; values
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require multiple simulations to test all ; values assigned exclusively to an SP. For instance,
the application from Figure 6.1 has six edges and needs three simulations to extract all p;
values. For this example, the first task mapping could allocate 4 and tg, and tg, and f; to
share SPs for deriving pa_gs and pg>_¢c. Second simulation reports pa_g» and pgs_¢ and the
last one generates ps_g3 and pg1_c.

For three or more tasks per PE, the decision assumes E,, values (Section 4.4) as
reference.

6.3 Multi-Objective Resource Management - MORM

Figure 6.2 overviews the MORM concerning the hierarchical organization, which
adopts the observe-decide-act paradigm [DJS15] to manage the system. Observing data
follows a bottom-up direction. SPs send data (e.g., energy, temperature, CPU utilization,
NoC congestion) to their CMs. Each CM transmits to the GM the current power consumption
of its cluster. Manager PEs (CMs and GM) take decisions at cluster and system levels. At
the cluster level, a given CM may decide to modify, for example, the voltage-frequency pair
of a set of SPs. At the system level, the GM may change the operation mode of a given
cluster. Thus, actuation follows a top-down direction, with actions send from the GM to CMs
and from CMs to SPs.
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Figure 6.2 — General MORM overview.

Clusters may operate in one of two operation modes:

Definition 17. Performance mode - the cluster optimizes the resources to minimize the
execution time of the running applications.



112

Definition 18. Energy mode - the cluster optimizes the resources to improve the energy
efficiency.

In Figure 6.2, gray and white boxes correspond to decision algorithms and virtual
sensors, respectively. Labels inside each box correspond to the event responsible for firing
both the decisions algorithms and observing data transmission. Events are classified into
four classes:

Definition 19. Application events - correspond to external notifications to the GM that an
application is ready for admission or a CM reports the end of an application to the GM.

Definition 20. Task events - correspond to the moment that CM maps or remaps a task to
an SP or the moment an SP reports to a CM that a task finished its execution.

Definition 21. Operation Mode events - correspond to the moment that GM changes the
operation mode of a given cluster.

Definition 22. Epoch events - correspond to a periodical hardware interruption, where SPs
report the observing data to its CM.

The system level management is in charge to take decisions at the application level,
to maintain the power cap, and to choose the operation modes (Section 6.4). The cluster
level management controls the DVFS, and task mapping and remapping (Section 6.5).

6.4 MORM System Level Decisions

MORM allows a new arriving application to execute iff the application does not
exceed the power cap, and the system has available resources. First, the GM verifies the
additional power required by the incoming application (Section 6.4.1). After, the GM verifies
the resources availability (Section 6.4.2). If none of the conditions are satisfied, MORM can
modify the operation mode of the clusters to find room for the incoming application.

6.4.1 Operating Mode Selector

The GM decides the operation mode of each cluster based on different power val-
ues from the system, cluster and application. The power values used in the Operating Mode
Selector are the following:

Definition 23. Application Power Performance - prediction of the application power by using
the performance mode (Q set).
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Definition 24. Application Power Energy - prediction of the application power by using the
energy mode (P set).

Definition 25. Cluster Power - the sum of all monitored power samples in the SPs belonging
to the CM.

Definition 26. Cluster Power Variation - effect on the Cluster Power when the cluster oper-
ation mode changes (defs. 17 and 18, on page 111). '

Definition 27. System Power - the sum of all Cluster Power values.

Definition 28. System Power Cap - the upper bound value of power.

MORM employs proactive actuations to respect the power cap based on the esti-
mation of power disturbances due to the application events (def. 19) and operation mode
events (def. 21). Application events modify the total system power and Operating Mode
Selector takes decisions by evaluating the expected power impact due to these events. If
an application finishes its execution, the CM reset the counters of the SPs where the appli-
cation was mapped and then update the GM with new power values. When an application
requests admission, the GM takes decisions based on the application power estimation (def.
23). Similarly, operation mode events (def. 21) disturb the cluster power (def. 25) due to task
remappings and voltage-frequency changes that the CM executes when receiving a new op-
eration mode (Section 6.5). The GM is aware of the power disturbance from operation mode
events by observing cluster power variation (def. 26) of each cluster.

Algorithm 6.1 is the proactive power control knob for shifting operation modes of
the clusters while respecting the system power cap (def. 28) based on the amount of power
disturbance induced by application events (def. 19). At the beginning of the system exe-
cution, all clusters operate in performance mode. The algorithm may update the operation
mode of the clusters when an application requests admission into the system (lines 2-29),
or it finishes the execution (lines 30-37).

The algorithm receives as inputs the application description (app), the set of clus-
ters operating in energy mode (energyClse:), and the set of clusters operating in performance
mode (perfClse).

If app is requesting its admission (line 2), MORM estimates the increasing of power
if the application is mapped in performance mode (line 3). If the estimation does not exceed
the system power cap (def. 28), app may be admitted in performance mode (line 5). Oth-
erwise, MORM estimates the increasing of power to admit the application in energy mode
(line 7):

+ If the estimated power is above the cap, the loop between lines 9-14 evaluates if app
may be admitted by changing a given cluster in perfCls; to energy mode. Line 10

'Section 6.5.4 details the cluster power variation computation (page 119).
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Algorithm 6.1 MORM Operating Mode Selector

1: Inputs: app, energyClses, perfClse;
2: if appis arriving then
3 newPwr <+ sys.pwr + app.pwrPerformance
4 if newPwr < sys.pwrCap then
5: Allows the admission of the application in performance mode
6 else
7 newPwr < sys.pwr + app.pwrEnergy
8 if newPwr > sys.pwrCap then
9: for each cl; € perfClse; do
10: newPwr < newPwr + cl;.pwrVariation
11: if newPwr > sys.pwrCap then
12: shiftOpMode cl;, energy)
13: end if
14: end for
15: if newPwr < sys.pwrCap then
16: Allows the admission of the application in energy mode
17: else
18: Application enqueued to be admitted later
19: end if
20: else
21: if energyClser = () then
22: Cloutout < MaxAvailSPs(perfClse;, performance)
23: shiftOpMode(cloyiput, €NEIrgY)
24: Allows the admission of the application in energy mode
25: else
26: Allows the admission of the application in energy mode
27: end if
28: end if
29: end if
30: else > app finished its execution
31: for each cl; € energyClse; do
32: newPwr < sys.pwr + cl;.pwrVariation
33: if newPwr < sys.pwrCap then
34: shiftOpMode(cl;, performance)
35: end if
36: end for
37: end if

makes this estimation by using the cli.pwrVariation (def. 26), and if it is possible to
admit app, cl; shifts from performance to energy mode (line 12). If the power is below
the capping, the app may be admitted in energy mode (line 16). Otherwise, app is
enqueued to be executed later (line 18).
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« If the estimated power is below the capping, one cluster must be in energy mode to
receive app. If there is no cluster in energy mode (line 21), the function maxAvailSPs
finds the cluster running in performance mode with the maximum number of available
processors, clyy:. Algorithm 6.1 shifts ¢l to energy mode (line 23), then app may be
admitted in energy mode (line 24). Otherwise, a cluster is already running in energy
mode and app may be admitted (lines 26-27).

When a given application finishes its execution (lines 31-36), the algorithm verifies
if it is possible to shift a cluster from energy mode to performance mode.

6.4.2  Application Admission

After verifying the application admissibility regarding power, Application Admission
(Algorithm 6.2) verifies the application admissibility regarding available resources and se-
lects the cluster to map the application. The algorithm receives as inputs the application
description (app), the appmode defined in Algorithm 6.1, and the set of clusters (sys.Clset).

Algorithm 6.2 MORM Application Admission
- Inputs: app, apPmode, SYS-Clset
Outputs: Cloyiput
Clset < @
SPpin + getMinSPsAdmitApp(app, apPmode)
for each cl; € sys.clse; dO
if appmode = Cli.mode and cl;.freeSP > SP,,, then
Clset < Clset U Cl;
end if
end for
if clset # 0 then
Clouput < MaxAvailSPs(Clser, 80Pmode)
return Cloysput
- end if
Cloutput <— MaxAvailSPs(sys.clse:, performance)
: dPPmode < €NEIGY
SPpin + getMinSPsAdmitApp(app, apPmode) > update SPnin
2 0f Cloytur-freeSP > SPp, then
shiftOpMode(cloyiout, €NErgY)
return Cloyspur
. else
return ()
- end if
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The algorithm starts by creating an empty set, clse;, Which contains the clusters
candidate to receive app (line 3). Next, it computes the number of SPs required for executing
an application according to the application mode, function getMinSPsAdmitApp (line 4). In
performance mode, the number of SPs is equal to the number of the application tasks, and
in energy mode, this value is smaller due to the CPU sharing among communicating tasks.

The loop between lines 5-9 fills clse; with the clusters’ identifiers that may receive
app. At the end of the loop, if clse is Not empty, the selected cluster is the one with the
maximum SPs running no tasks (lines 10-13). The function maxAvailSPs returns a cluster
identifier with an operation mode equal to the app mode (second parameter of the function).

If there is no SPs available in any cluster, i.e., ¢l is empty, Algorithm 6.2 selects a
cluster in performance mode as the candidate to receive the new application (line 14). In this
case, the application mode changes to energy mode (line 15) and the number of required
SPs is updated (line 16). If cloupu: Can receive app in energy mode, Application Admission
changes its operation mode to energy mode (line 18), and Clyupu: receives app (line 19).
Otherwise, the function returns null, and the application waits in a queue for later admission.

6.5 MORM Cluster Level Decisions

The adaptability at the cluster level enables clusters to work at different operation
modes simultaneously. This section describes the three mechanisms adopted at the cluster
level: adaptive DVFS, task mapping and task remapping.

6.5.1 Adaptive DVFS

Adaptive DVFS is an adaptive threshold-based algorithm that follows the cluster
operation mode. From the available voltage-frequency pairs (vf-pairs), the algorithm adopts
three values:

Performance (VF,e): nominal vf-pair, i.e., the highest voltage and frequency values (used
when the cluster is in performance mode).

Low power (VF,,): lowest voltage and frequency values.

EDP (VFepp): most energy efficient vi-pair between VF,er and VF,, (used when the cluster
is in energy mode).

The Adaptive DVFS applies VF, in two cases related to communication issues,
regardless the operation mode:
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1. HI (high injection): an SP is injecting messages on the network in a higher speed than
the messages are consumed;

2. LU (low processor utilization): an SP is in idle state most of time waiting for messages.

MORM adopts a similar method to [RHK*15] to evaluate the message injection
rate. The injection is the average utilization of the input buffer in the local port. The HI
threshold is activated when the injection is higher than, for example, 75%. The LU threshold
is activated when the utilization is below than, for instance, 25%.

Figure 6.3 illustrates an example of how Adaptive DVFS associates VF settings
according to the operation mode by using a fine-grain DVFS to save power. The CM sets
most of SPs at VF,es in performance mode and at VFgpp in energy mode. In this example,
SPs executing tasks t4 and t; are most of the time in the idle state, because these tasks
send data to the processing tasks (g t0 tg4) and receive the processed data, respectively.
Thus, in both performance and energy modes, the SPs executing these tasks use VFp;,.

Reference Performance mode Energy mode
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Figure 6.3 — MORM Adaptative DVFS selects the VF settings of a 3x3 cluster in both oper-
ation modes for a given application. Reference: no DVFS.

6.5.2  Task Mapping

MORM employs two mapping algorithms to meet the different goals of the two op-
eration modes. Besides that, the mapping algorithms also provide adaptability for remapping
when the cluster operation mode changes. The mapping algorithms receive the name of the
operation modes. Performance Mapping is a single-task mapping, which maximizes the
parallelism of applications and optimizes the execution time. The Energy Mapping employs
multi-task mapping to enable the SP sharing between tasks. The Energy Mapping follows
three constraints: (/) communicating tasks may be mapped in the same SP; (ii) parallel
tasks never share the same SP (as g1 to tg4 in Figure 6.3); (iii) tasks belonging to different
applications never share the same SP.

The mapping algorithms benefit from the hierarchical organization to reduce the
hop distance between communication task. Even if the system is large (e.g., 12x12), the
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cluster size is typically 4x4 [CMMM13] to reduce the search space of mapping. The mapping
algorithms select the SPs in a spiral order, which is the recommended way to transverse the
SPs in 2D-mesh NoCs [BGD*04]. Also, the algorithms traverse the application graph using
the Breadth-first search (BFS) algorithm. Finally, the algorithms try to find a contiguous
group of free SPs in the spiral path in such a way to avoid interleaving between tasks of
distinct applications when possible.

Figure 6.4(a-c) shows the task mappings for two applications in a 4x4 cluster. The
numbers labeling the graph vertices sort the tasks for mapping. The system admits the
blue application first (Figure 6.4(a)). For the applications in Figure 6.4(a), for example, Per-
formance Mapping produces the single task mapping (Figure 6.4(b)) while Energy Mapping
results in the multi-task mapping (Figure 6.4(c)). Note that, Energy Mapping example follows
the constraints defined for energy savings.
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Figure 6.4 — How MORM maps tasks of (a) two applications into a 4x4 cluster in (b) per-
formance mode and in (c) energy mode. MORM calls (d) Join Remapping when a cluster
running tasks in (b) performance mode shifts to energy mode. Similarly, MORM executes
(e) Split Remapping when a cluster running tasks in (c) energy mode shifts to performance
mode.

6.5.3  Task Remapping

When the GM changes the operation mode of a cluster, the CM executes task
remapping algorithms. When the change is from performance to energy mode, Join Remap-
ping maps communicating tasks in an SP following the assumptions of Energy Mapping. On
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the other hand, Split Remapping algorithm looks for tasks sharing SPs to split their execution
using more SPs when changing from energy mode to performance mode.

Figure 6.4(d-e) presents the remapping results from mapping examples of Figure
6.4(b-c). Both algorithms search for tasks to migrate on the opposite spiral order. The new
SPs to receive the migrating tasks are chosen in the spiral order. This search order is re-
quired to avoid fragmentation between idle SPs and running SPs concerning one application.
The fragmentation between idle SPs and running SPs can happen between applications, like
the one resulting mapping of Figure 6.4(d).

The main benefit of using the Split and Join remapping algorithms is to reduce the
number of task migrations. For instance, Join remapping (Figure 6.4 (d)) needs to migrate
four tasks (in red). If a new mapping targeting energy would be executed, the number of
migrations would be higher (eleven in this example).

Note that, task (re)mapping and DVFS deploy a joint effort to drive the cluster ac-
cording to the operation mode. MORM is aligned with Zhang et al. [ZH16] work, which shows
the cooperation of both hardware and software power knobs to optimize performance.

6.5.4  Cluster Power Variation Computation

The CM provides the estimated power variation value to the GM if the cluster oper-
ation mode changes. The GM employs the power variation for selecting the operating mode
while respecting power cap (Section 6.4.1). Algorithm 6.3 describes how CM estimates the
power variation.

Algorithm 6.3 Power Calculator
1: Input: cl
2: Outputs: pwrVariation
3: predictedPwr + 0
4: for each app; € cl.appse do
5: if cl.opMode = ENERGY then
6
7
8
9

predictedPwr+ = app;.profilePwrPerf
else
predictedPwr+ = app;.profilePwrEnergy
end if
10: end for
11: pwrVariation < cl.pwr — predictedPwr

When the cluster is running in energy mode, the CM estimates the power in per-
formance mode from profiling data of all running applications (lines 5-6) - Definition 23 (on
page 112). Otherwise, the CM predicts the power of all running applications in energy mode
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(lines 7-8). The difference between the current power value from the observing data and the
predicted power variation is the estimated power variation value (line 11).

Estimate the power before task or application events with accuracy is challeng-
ing due to events like NoC traffic, CPU utilization, and memory accesses. A more accu-
rate algorithm should consider all these features but most of them are unpredictable. Note
that, Algorithm 6.3 also does not consider remapping algorithms may generate different task
placements than mapping ones (Figure 6.4). Despite that, Algorithm 6.3 enables MORM to
respect the power cap employing a lightweight algorithm since the application power profiling
consider worst-case power samplings (Section 6.2.1).

6.6 Results

The experiments are conducted in an in-house clock cycle accurate RTL SystemC
model of the reference many-core system. The benchmarks are DTW (6 tasks), AES (5
tasks), MPEG (5 tasks) and Synthetic (communication-bound application with six tasks).
MORM is compared with state-of-art comprehensive system management targeting dy-
namic workloads. The Performance-objective control (PF-only) employs a first node se-
lection [FRD*12] for single task mapping aiming congestion reduction [HKR*15] and, from
the same authors, a feedback-based PID control that uses DVFS to follow the power-cap
reference [RHK*15]. The first node selection, the mapping algorithm, and the PID control
(overviewed in Section 2.7) are implemented in the reference platform.2 Carrying out a fair
comparison between MORM and PF-only requires that both systems share the following
assumptions:

» Observing epoch is 250 Kticks (ideal epoch for the reference platform [Cas17]);

» Both approaches consider the router energy. PF-only does not consider the NoC en-
ergy in its original version [RHK*15];

» The SPs running no tasks are considered off. Section 4.2.3 discusses the issues
related to this assumption, which is not used in the REM approach (Chapter 5).

The first set of experiments compares MORM and PF-only under a typical work-
load with peaks and valleys of utilization (Figure 1.1). This evaluation details the mapping
and vf-settings at different moments of the execution to highlight the MORM contributions
concerning adaptability and to distinguish the actuation approach of both managements.

The second set of experiments isolates the peak workload and the valley workload
for analysis. A test case with low workload and another one with high workload are created

2The PF-only system was validated with the Authors during the internship at University of California, Irvine.
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to illustrate the advantages and disadvantages of MORM and PF-only in distinct phases of
the workload.

The third set of experiments evaluates cluster level results. The goal is to com-
pare energy and performance modes considering only MORM Cluster Level Decisions and
demonstrate that MORM trades energy and performance according to the operation mode.

6.6.1 Typical Workload Results

To highlight the MORM contributions, the same test case runs applications arriving
in bursts in such a way to create a dynamic workload. At the beginning of the simulation,
the many-core is loaded with two /long applications®. Next, the second burst adds two short
applications to the workload. Finally, the last burst includes more two short applications on
the workload. Figure 6.5 presents the power consumption of PF-only and MORM under a
power cap of 180mW as well as illustrates when the application bursts occur (red vertical
bars) and when snapshots are taken for energy evaluation (blue vertical bars).
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Figure 6.5 — Average Power results for PF-only and MORM running typical workload. Y-axis:
power (mMW), X-axis: time (in Kticks).

The proactive actuation adopted in Operating Mode Selector allows MORM to run
with no capping violations, while the reactive PID controller in PF-only presents power vio-
lations after a burst of incoming applications. On the other hand, MORM underutilizes the
available power because the power predictions consider the worst-case application power
(Section 6.2.1) and the overshoots of power for PF-only might not be a problem in practice
due to thermal inertia [RLH*16].

3Long and short applications are related to the number of iterations of the applications.
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Table 6.2 presents the performance figures evaluated at each snapshot: (/) number
of executed iterations, which corresponds to the applications performance (higher numbers
corresponds to better performance); (ii) total consumed energy; (iii) occupancy, rate be-
tween the active SPs over total number of SPs; (iv) CPU utilization, SPs average utilization
including the SPs turned off (dark). Figure 6.6 presents the task mapping at each snapshot.
Note that PF-only adopts centralized management (1 CM), single task mapping, and single
DVFS mode per application. MORM adopts distributed management (4 CMs), multi-task
mapping, and fine grain DVFS.

Table 6.2 — Data from simulationsnapshots.

Metric Snapshot 1 Snapshot 2 Snapshot 3
PF-only MORM | PF-only MORM \ PF-only MORM
app1ong lter. 54 52 194 189 301 300
app2ong lter. 36 34 144 141 224 235
appisport lter. - - 366 321 860 844
app2snort lter. - - 18 28 95 130
app3short lter. - - - - 46 59
app4snort Iter. - - - - 27 40
Energy (mJ) 117.9 94.27 409.7 392.36 | 715.58 734.13
Occupancy 11/35 11/32 22/35 16/32 33/35 22/32
CPU Utilization (%) 22 23 38 43 54 55
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Figure 6.6 — System snapshots (6x6 many-core) taken according the moments highlighted
in Figure 6.5 to detail the task allocation and vf-settings.

Snapshot 1 (Figure 6.6 (a)) shows the system status after the first application burst.
Due to the low workload at this moment, PF-only and MORM execute the applications at
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VFuerr and still produce power slack (Figure 6.5). The performance of the applications at
Snapshot 1 is slightly better with PF-only due to the adopted mapping heuristic. Note that
MORM applies VF,, in the SPs with HI and LU thresholds (e.g., tasks 4 and tg) to save
energy even with the cluster in performance mode (observe this result in Table 6.2).

At Snapshot 2, two new applications are running (Figure 6.6 (b)). MORM dis-
tributes the workload between clusters, with three ones running in energy mode and one in
performance mode (with some tasks in VFn,). PF-only selects two applications to run in
VFperf (app1 long and appzlong)s one in VFEDP (3,0,01 short)a and one in VFmin (appzshort)- As a
result, the performance of the long applications remains slightly better in PF-only. However,
app2snhort is penalized due to the selection of VF,,;, by PF-only. On the other side, MORM
selects the energy mode for the two short applications due to its multi-objective cost-function
(trade-off energy-performance). MORM consumed energy is still lower because the lower
system occupancy reduces the energy from the leakage power. The smaller occupancy
results in higher SPs utilization due to the multi-task mapping. The main highlight from
Snapshot 2 is that MORM enables all applications to run with a good performance while
PF-only penalizes the performance of one application to run at VF,,, to respect the power
cap.

Snapshot 3 (Figure 6.6 (c)) illustrates both systems after the third application burst.
Due to power cap violation at the third burst using PF-only (Figure 6.5), all SPs shift to VF ..
Such action penalizes the performance of all applications in PF-only. In MORM, shifting all
clusters to energy mode is enough to cap the power because the system occupancy is
smaller than PF-only. The energy is higher in MORM at Snapshot 3 because 22 SPs are
running in VFgpp, while in PF-only 33 SPs are running in VF,;,. Snapshot 3 reveals the
benefit of adopting multi-objective management in a peak of workload: MORM respects the
power capping without penalizing the applications performance.

At the end of the execution of this scenario, MORM reduced the energy consump-
tion by 2.6% and the execution time by 5.7%. Overall, MORM presents the lower variation
in the applications performance when the workload varies due to joint actuation between
remapping and DVFS. An advantage of MORM is the fact that it may execute more tasks
than PF-only due to the multi-task mapping. Observe in Figure 6.6(c) that, since some pro-
cessors are off, the system manager could admit new applications if power were available.

6.6.2  Low and High Workload Evaluation

The workload variation presented in the previous Section does not allow an iso-
lated analysis of the peaks and valleys concerning MORM and PF-only. Thus, test cases
are created to isolate the peaks and valleys behavior by eliminating the workload variation.
In the low workload test case, the many-core is loaded at the beginning of the simulation
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with long applications so that the number of tasks is around 50% of the number of SPs. In
the high workload test case, the many-core is loaded at the beginning of the simulation with
long applications so that the number of tasks is around 125% of the number of SPs. The low
workload test case corresponds to the valley behavior while the high workload corresponds
the peak one. Relaxed and restricted power caps are imposed to the high workload test
cases to evaluate PF-only and MORM under restrictions of power and resources simultane-
ously. Accordingly, the experimental setup of this Section contains four scenarios: (/) LW —
low workload; (if) HW210 — high workload with a power cap equal to 210 mW; (/i) HW180
— high workload - 180 mW power cap; (iv) HW150 — high workload - 150 mW power cap.

Figure 6.7 illustrates the average power for the four scenarios concerning MORM
and PF-only. The first row of power graphs compares the power for the LW scenario, while
the remaining three rows show the HWs ones. The red shaded area represents the power
cap.
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Figure 6.7 — Average Power results for MORM and PF-only running low and high workloads.
Y-axis: power (mW), X-axis: time (in Kticks).

In the LW scenario, the power graphs present a similar behavior because all ap-
plications execute in VF,r in PF-only, and all clusters are in performance mode in MORM.
Therefore, the differences concerning the power are mostly related to the task mapping, as
depicted Figure 6.6(a), which is the snapshot of a workload valley. In the HW scenarios,
both RMs respect the power cap. Note that the execution time is inversely proportional to
the power cap, i.e., the execution time reduces when the power cap increases since the
power constraint is relaxed.

The MORM power curves in HW scenarios present power underutilization. This
behavior is also identified in an utilization peak in the typical workload scenario. As men-
tioned in the previous Section, the power underutilization increases with the power cap due
to the worst-case power predictions and to proactive-only actuations. At 210 mW power cap,
all clusters run in energy mode to open room for all applications. As a consequence, MORM
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cannot take advantage of a relaxed power cap to speed-up some cluster, explaining the
larger power underutilization. With smaller power caps (150 and 180 mW), the power curves
stay longer and close to the cap because the Application Admission proactively blocks the
allocation of a new application to avoid power violation. At 150 mW and 180 mW power
cap, a period without samples is observed in MORM (5000-35000 Kticks in 150mW, and
10000-30000 Kticks in 180mW) but without power cap violations.*

Concerning the power curves in PF-only for HW, the power stays around the cap
most of the time despite some overshoots. The unstable behavior around the cap line in
PF-only occurs because the PID control is constantly adjusting the vf-setting without finding
a steady state.®> This behavior in HW has two reasons: (/) the actuation at the application
level creates a larger impact in power compared to the SP grain assumed in MORM; (ii) the
NoC traffic has an intrinsic correlation with vf-settings [RHK*15] and is too high when the
system is fully loaded.

The X-axis in Figure 6.7 shows that MORM executes all applications faster than
PF-only for all cases. Figure 6.8 compares MORM and PF-only regarding execution time,
energy and EDP (Energy-Delay Product). Data is normalized according to PF-only.
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Figure 6.8 — System level results concerning execution time, energy and EDP. The normal-
ized histograms depict the results for the scenarios that represent valleys (a - low workload)
and peaks (b-d - high workload) of the workload concerning power capping variation.

In LW (Figure 6.8 (a)), MORM is 11% faster than PF-only because the adoption
of a centralized manager increases the NoC traffic traversing the applications. For instance,
for the same scenario with an observing epoch eight times larger, PF-only is 3.22% faster
than MORM and 16.72% faster than the PF-only with the original epoch settings. Since
the number of tasks and the number of active SPs are the same for both RMs, the energy
decreases at a similar rate than execution time: 10%. As a result, MORM is 20% more
efficient in LW because it saves time and energy.

In HW scenarios, the difference in the execution time is higher due to the clus-
ter organization adopted by MORM, and the reduced traffic due to observing. Besides
that, MORM can execute all applications simultaneously whether respecting the power cap.

4 the power graphs per cluster in the Appendix show that the power cap is met.
5 The Appendix presents detailed graphs of power for PF-only where the actuation moments are visible.



126

Some applications must wait for allocation in PF-only because the number of tasks over-
comes the number of SPs and the mapping in PF-only allows one task per SP. Moreover,
PF-only selects some applications to run in VF,, (as depicted in Figure 6.6(c)) while MORM
can reduce the power and delays by joining tasks in the same SP running in VFgpp. Although
MORM total execution time is significantly lower than PF-only, the energy consumption sav-
ings do not follow the same trend. The reason comes from the fact that PF-only executes
most of the tasks in VF,;,, which has the lowest leakage, and demands one task per PE
while MORM runs most of the time in VFgpp, which has an intermediate leakage but uses
fewer PEs due to the multi-tasking mapping.

According to Figure 6.8, in the relaxed power cap (HW210) the execution time
difference is higher because MORM allocates all applications at the beginning of the simu-
lation. This evidences the effect of the single task mapping limitation in PF-only. In HW150
and HW180 power caps, Application Admission forces applications to wait for allocation
while no power room is available.

Concluding, MORM is superior at workload peaks, resulting in smaller execution
time and energy. Also, even in peaks of workload MORM has space for optimization because
the power stays most of the time below the cap. In low workload scenarios, both RMs present
similar results.

Network Traffic Analysis

Figure 6.9 illustrates the control messages flow in PF-only and MORM. The hier-
archical organization reduces the traffic around the manager PEs in MORM by avoiding the
bottleneck in the centralized manager. This Section evaluates the network traffic for LW and
HW210 power caps.®

MORM

PF-only

i
B

(b

Figure 6.9 — Traffic flow of observing messages in (a) PF-only and (b) MORM.

As explained in Section 3.3.2, the router injection corresponds to the buffer utiliza-
tion in the local ports. It is considered as a high injection rate when the buffer utilization
reaches 75%. The routers report the percentage of cycles that the input buffer stays with
high utilization in the epoch.

6 The graphs for others caps are presented in the Appendix.
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Figure 6.10 presents box plots related to the router injection. As each SP reports
its router injection, box plots summarize the router injection of all SPs along the execution
time. Overall, the median value (black points in the graphs) is lower than 20% for all cases.
However, the variation in the third quartile demonstrates a large dispersion of the injection
rate, with worst-cases reaching values 40 times larger than the median value.
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Figure 6.10 — Router Injection (%), presented in the Y-axis (note that the scale of PF-only
with HW210 is not the same of the other graphs).

With LW, the PF-only router injection rate is around one fourth the MORM value
(average mean values: 4.13% and 1.04% for PF-only and MORM, respectively). Although
both injection rates may be considered low, the lower router injection rate contributes to the
11% smaller execution time in LW (Figure 6.8). Also, PF-only running with an epoch eight
times larger supports this statement because the execution time reduces 16.72%.

In HW210, the router injection increases because more SPs are running tasks and,
as a consequence, more control and data messages traverse the network. Besides that, the
PF-only mapping algorithm may not find a contiguous area to allocate the application (as
illustrated in Figure 6.6(c)) so that induces a larger number of hops to transmit the messages.
Therefore, the PF-only router injection in HW210 has a distribution with many samples
reaching 100% (buffer full). On the other hand, MORM router injection rate increases slightly
in HW210 compared to LW, with similar values (in the third quartile). MORM injection rate
in LW and HW210 demonstrates the scalability of the hierarchical organization.

Similarly to the router injection rate, the router congestion rate is evaluated. The
router congestion rate corresponds to the input buffer utilization in the non-local ports (north,
south, west, and east) higher than 75%. Figure 6.11 illustrates box plots related to the router
congestion rate.

In the LW scenario, the router congestion rate is low because the average router
injection rate stays below 7,9% for both RMs. Note that, for the worst-case evaluation, PF-
only reaches 7.62% and MORM 2.88%. In the HW?210 scenario, as expected, the router
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Figure 6.11 — Router Congestion (%), presented in the Y-axis (note that the scale of PF-only
with HW?210 is not the same of the other graphs).

congestion rate increase. In PF-only, the congestion increases due to traffic bottleneck
around the single manager PE. Again, MORM management can distribute de traffic in the
NoC while keeping the router congestion rate bellow 0.83% and 0.17% (average and mean
values respectively).

A consequence of the network congestion is the arrival delay of control messages.
This delay, named Dif Time, is the time, in clock cycles, for transmitting a message from a
source PE to a target PE (Section 3.3.4). Figure 6.12 compares the Dif Time of observing
messages for MORM and PF-only. The points in the graphs correspond to Dif Time of each
observing sample sent along the simulation while the line is an average of the Dif Time points
concerning the manager PE. Note that all control messages go to the centralized manager
in PF-only while the control messages target the clusters managers in MORM, as illustrated
in Figure 6.9.

MORM keeps the Dif Time approximately constant with the workload variation (be-
low 2,500 Kticks). The average value for the PF-only management is 5,000 and 18,000
Kticks for LW and HW?210 scenarios, respectively. In HW210 scenario, the worst-case can
reach a delay of 125,000 Kticks (half of the epoch). The reason to explain this delay is the
router congestion previously presented.

This Subsection showed why PF-only cannot achieve better results than MORM
although presenting a better power utilization. The centralized management in PF-only ex-
plains the effects concerning the network traffic and the delay in delivering the control mes-
sages. As discussed in Chapter 1, hierarchical and distributed management are mandatory
for NoC-based many-core systems [SDMI17], and one of the reasons is to avoid the bot-
tlenecks around the manager PE [CMMM13]. In particular, new NoC topologies have been
proposed to create the cluster organization in hardware [YLJ*16] instead software, as in this
proposal.
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Figure 6.12 — Dif Time shows the arrival delay of the observing messages coming from SPs
to manager PEs.

6.6.3 Cluster Level Results

This set of experiments evaluates the effect of the cluster size on the execution time,
energy, and EDP for 3x3 and 4x4 clusters. For each cluster size, it is evaluated scenarios
with single-task and multi-task mappings (up to 2 tasks per PE). All applications start at the
beginning of the simulation. To evaluate the Adaptive DVFS we consider three scenarios: (/)
reference — DVFS turned off; (ii) cluster in energy mode; (Jii) cluster in performance mode.
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Figure 6.13 — Cluster level results. (a) results normalized w.r.t. the reference scenario, for
performance and energy modes. (b) and (c) average and standard deviation results for 3x3
and 4x4 clusters, normalized regarding the performance mode.

Figure 6.13(a) summarizes the average results normalized to the reference sce-
nario. The EDP is lower in both operation modes because the Adaptive DVFS can identify
the tasks phase to reduce the energy consumption. In performance mode, there are more
opportunities to set VF,;, because the single task mapping leads to a lower CPU utilization.
In energy mode, the EDP reduction comes from the VFgpp. Comparing energy and per-
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formance modes, Adaptive DVFS optimizes the goal according to the mode. Note that the
performance mode slightly increases the execution time (average value: 3.2%), with gains
in energy and EDP.

Figures 6.13(b) and 6.13(c) evaluates different mappings, considering two cluster
sizes, normalized to the performance mode. For both modes, five different mappings are
considered. The performance mode adopts single task mapping while energy mode adopts
multi-task mapping. Results confirm that multi-task mapping is suitable for energy savings
while the single task is suitable for performance. The 3x3 cluster results reveal a small
standard deviation since the smaller cluster size restricts the mapping search space (Figure
6.13(b)). The 4x4 cluster results produce a larger standard deviation, but the operation
mode is still correctly driven for both cases. The standard deviation for performance mode
is larger in 4x4 clusters because traffic creates some congestion on the NoC because some
mappings increase the distance between communicating tasks. The congestion effect in the
energy mode is smaller because the multi-task mapping reduces the NoC traffic.

6.7 Final Remarks

This Chapter proposed a hierarchical Decision module for Resource Management
by using the Observe-Decide-Act paradigm, called Multi-Objective Resource Management -
MORM.

MORM can dynamically adapt the running applications according to peaks and
valleys of workload inherent to real systems while guaranteeing the power cap. MORM is a
comprehensive hierarchical approach that conjointly applies DVFS and mapping/remapping
to achieve runtime adaptability. The cluster-level adaptability, named as Operation Mode,
allows distinct areas of the many-core to execute under different goals: energy or perfor-
mance. The lightweight mapping algorithms drive the workload to the operation mode while
enabling fast adaptation in case of remapping.

Comparison with a state-of-the-art RM optimized for single objective showed MORM
outperforms the performance in 11.56% in a workload valley while achieves up to 49.43%
better performance in a workload peak for any power cap. Besides, MORM energy saving
are, in average, 8.27%. The comparison revealed relevant features to be considered in large
many-core systems: hierarchical organization, multi-task mapping, and jointly adaptability
between software (remapping) and hardware (DVFS) actuations.

Future works include: (/) include reactive actuations to avoid power underutiliza-
tion; (/i) propose a method for estimating the power of tasks at execution time; (iif) include
additional operation modes to the REM heuristic to meet goals as reliability, and security.
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7. CONCLUSIONS

This Thesis introduced the following fundamental problem in the Introduction: "how
fo control at runtime the set of actuators of a many-core-system in a coordinated way to
provide the required adaptability to enable the development of a hierarchical multi-objective
resource management running dynamic workloads.".

To address the fundamental problem, this Thesis stated the following hypothesis:
"to embed multi-objective resource management in large many-cores systems under a dy-
namic workload by combining, e.g., real-time constraints and energy consumption, or energy
consumption and TDP. The Thesis adopts the ODA (observe, decide, act) paradigm in a hi-
erarchical approach to ensure scalability. Observation is essential to provide an adequate
measurement infrastructure by monitoring computation and communication resources. Ac-
tuation adopts mechanisms, such as DVFS and task allocation, to meet the resource man-
agement goals. Decisions adopts comprehensive algorithms to control the system actuators
based on the observed data."

To demonstrate the Thesis hypothesis, the starting point of this work was the propo-
sition of hierarchical Resource Management (RM). This organization allowed the distribution
of the complexity for developing the RM along hierarchy levels, making the approach scal-
able. Furthermore, the developed RMs follows the ODA paradigm. The ODA paradigm
delimits the problem in three states, as a closed control-loop: Observe, Decide, and Act.
The manuscript structure followed the ODA states.

Concerning the Observe state, a characterization method defined the energy and
power parameters for router, memory, and processor. This method uses RTL descriptions
of the PE and derives energy and power values from netlist simulations. The observing of
energy and power at the PE level (the lowest level in the hierarchy) has low hardware in-
trusiveness. Results highlighted the method accuracy and demonstrated that widely used
power estimators, as McPAT, are not adequate at the RTL level. Next, the energy observ-
ing approach is applied in the many-core to provide power data at PE, cluster and system
levels. Besides the power data, the Observe state also monitors the processor and router
utilization to make the Decide state aware of communication and computation status, which
are essential data for efficient RMs. Results showed that the hierarchical observing has a
small impact on the NoC traffic, with the observing messages arriving at the target PEs with
a small delay. As a conclusion of the Observe state, two original contributions are claimed:
(/) the characterization method; (ii) hierarchical observing approach.

Regarding the Act state, the RM uses several actuation methods: DVFS, power
gating, clock gating, application allocation, task allocation, and task migration. The actuators
are classified according to the resources impact and latency for assigning the actuator to a
hierarchy level. The highest level of the hierarchy is in charge of managing the actuator with
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the highest impact on the performance and the lowest level is responsible for controlling the
actuators with the lowest impact. Due to the power cap inherent in many-core systems, the
Observe state evidences the power impact of each actuator. In the context of the resources
and power management, the challenge is to synchronize the actuators to follow a particular
goal while avoiding actuation overlapping. A large number of actuation methods increases
the management complexity but also enables the RM to achieve better results than RMs
with a restricted set of actuation methods [ZH16]. A state-of-the-art comparison shows
that no related works provide or detail the same comprehensiveness of actuation methods.
In particular, the DVFS actuator considers low-level features such as latency and DC-DC
converter overheads in such a way to design a realistic and accurate RM. To conclude the
Act state, an original contribution is claimed: the comprehensive actuation set enables RMs
to implement heuristics for multi-objective purposes.

The Decision state closes the ODA loop. The Decision state is in charge of set-
ting the Act state for meeting a given goal based on the data from the Observe state. The
Decision state follows the hierarchical structure assumed by other states. Decisiion state
embeds algorithm and heuristics to manage the system This Thesis presented two propos-
als of multi-objective RMs, sharing the same Observe and Act states, with distinct Decision
states. The first one is the Runtime Energy Management (REM) for real-time and best-effort
applications. The second proposal is the Multi-Objective Resource Management (MORM)
for trading energy and performance goals according to the workload behavior. Both RMs
proposals present the following features to manage dynamic workloads: hierarchical or-
ganization, multi-objective decisions, and consideration of communication and computation
loads.

REM is an energy-efficient RM for real-time and best-effort applications. REM em-
ploys distinct strategies for each type of application, which priority are the real-time ones.
The evaluation of the state-of-the-art showed that RMs for real-time applications neither con-
sider dynamic workloads nor require a design-time evaluation of the application set. REM
stands out from related works when assuming applications that can enter and leave the sys-
tem at any time (dynamic workload) without previous information to guide the heuristic, i.e.,
design-time profiling. Results showed that REM saves 18% of energy on average with neg-
ligible timing violations compared to an RM without DVFS. Results also showed REM could
save 25% of energy for real-time applications compared to 15.8% of related work assuming
a similar baseline platform for both proposals.

Regarding MORM, the management of operation modes at the cluster level stands
out from related works since clusters can dynamically prioritize a given objective, as long as
the power cap is met. MORM jointly coordinates DVFS heuristics, mapping, and remapping
to carry-out at runtime cluster adaptability. At the system level, if power and resources are
available, the proactive MORM heuristics admit an application, and choose the adequate
cluster and operation mode. Considering a typical dynamic workload of many-core sys-
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tems, MORM can run applications 11% faster in a workload peak and up to 49% faster in a
workload valley compared to a single-objective approach optimized for performance.

The above paragraphs corroborate the assumptions made in the Thesis hypothesis.
REM and MORM are multi-objective resource managers to trade-off conflicting objectives in
a scalable way, with support to dynamic workloads. Key enablers for reaching these resource
managers are the hierarchical organization, the observing infrastructure and the rich set of
actuators.

71 Future Works

As a guideline for future works, this Thesis has room for improvements as follows:

» Observe: a validation of the characterization method in a real chip, and include DMNI
in the characterization flow;

+ Act: development of a realistic power gating model,

» Decide, REM: the heuristics assume a per-core capping instead of a system level one.
One real-time task per PE limits the resource utilization;

» Decide, MORM: the average power at system level presents exceeding slack (differ-
ence between power cap and the power consumption)

Future works to continue the research in resource management and to fullfill the
improvements previously mentioned are as follows:

* Apply the characterization method for other technologies where the leakage has a
minor impact, such as SOI technologies;

» Perform validation of the characterization method in a real chip;

+ Join the scheduling of real-time applications from REM and the operation mode ab-
straction to propose a more comprehensive and sophisticated Resource Management
with at least three objectives such as QoS per application, energy per cluster, perfor-
mance per cluster, system performance;

 Improve the power utilization by adding reactive actuations;

* Integrate machine learning to perform runtime RM considering unpredictable events
such as interruption, network traffic, and task phases;

» Develop RM using the application layer, i.e., insert system calls in the application code
to carry out part of the management;
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 Take advantage of the operation mode abstraction to include other upcoming desirable
features to a many-core such as security, fault tolerance, among others.
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APPENDIX A — GRAPHS

A1 MORM Average Power Results at the Cluster Level

Figure 6.7 shows average power results for all scenarios in Subsection 6.6.2. In
MORM results a lack of samplings is observed in HW150 and HW180 scenarios at the
system level because the GM has an application waiting for admission and cannot process
the messages from CM to generate a system level sample. To check the power cap is
attended for all scenarios, as it was mentioned in Subsection 6.6.2, Figure A.1 exhibits the
MORM average power results at the cluster level. Note that, the sum of the power curves for
all clusters does not overcome the power cap at any moment in Figure A.1.
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Figure A.1 — MORM power results per cluster running (a) HW150, (b) HW180, (c) HW210,
(d) LW scenarios. Note that in LW scenario Cluster 0 has no applications because only three
applications are running
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A.2 PF-only Average Power Results at the System Level

PF-only exhibits more disturbances in the power profiling compared to MORM as
well as some power overshoots (Average power results in Figure 6.7). The noise in the
power curve has three main reasons: (i) the centralized manager creates bottlenecks and
the observing message gets delay in the receiving; (ii) proactive and reactive actuations in
a PID control triggers more actuation compared to MORM and achieve a better utilization
of the power cap; and (iii) DVFS at application level employed in PF-only generates more
impact in power curve than the DVFS at PE level used in MORM. Figure A.2 shows the
power profiling for all scenarios and highlights all actuation moments triggered by PF-only
with vertical lines. The blue vertical lines are actuations to reduce the vf-pair for slowing
an application down and the red one corresponds to an increase of the vf-pair to speed an
application up.
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Figure A.2 — PF-only power results running (a) HW150, (b) HW180, (c) HW210, (d) LW
scenarios. Vertical lines highlight when the centralized controller triggers actuations.
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Subsection 6.6.2 shows router congestion results only to HW2710 and LW scenar-
ios. Figure A.3 shows router congestion results for all scenarios.
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Figure A.3 — Router Congestion (%) results running (a) HW150, (b) HW180, (c) HW210, (d)

LW scenarios.
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A.4 Router Injection

Subsection 6.6.2 shows router injection results only to HW210 and LW scenarios.
Figures A.4 show router injection results for all scenarios.
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Figure A.4 — Router Injection (%) results running (a) HW150, (b) HW180, (c) HW210, (d) LW

scenarios.
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Subsection 6.6.2 shows Dif Time results only to HW210 and LW scenarios. Figure
A.5 shows Dif Time results for all scenarios.
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Figure A.5 — Dif Time results running (a) HW150, (b) HW180, (c) HW210, (d) LW scenarios.
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