
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALEXANDRE DE MORAIS AMORY

Lógica e Escalonamento de Teste para
Sistemas com Redes Intra-Chip

Baseadas em Topologia de Malha

Tese apresentada como requisito parcial
para a obtenção do grau de
Doutor em Ciência da Computação

Prof. Dr. Marcelo Lubaszewski
Orientador

Prof. Dr. Fernando Gehm Moraes
Co-orientador

Porto Alegre, Agosto 2007

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Amory, Alexandre de Morais

Lógica e Escalonamento de Teste para Sistemas com Redes
Intra-Chip Baseadas em Topologia de Malha / Alexandre de
Morais Amory. – Porto Alegre: Programa de Pós-Graduação
em Computação, 2007.

178 f.: il.

Tese (doutorado)– Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2007. Orientador: Marcelo
Lubaszewski; Co-orientador: Fernando Gehm Moraes.

1. Teste de sistemas intra-chip. 2. Lógica envoltória
de teste. 3. Escalonamento de teste. 4. Redes intra-
chip. I. Lubaszewski, Marcelo. II. Moraes, Fernando Gehm.
III. T́ıtulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valqúıria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

à vó Carminha

AGRADECIMENTOS

O peŕıodo do doutorado é longo e cansativo. Percorrer esse caminho com o
apoio que tive certamente tornou a caminhada mais simples. Inicialmente gostaria
de agradecer o apoio financeiro da Capes e CNPq; não agradeço somente a ajuda
finaceira, mas também a oportunidade de fazer estágio no exterior, que realmente
expandiu meus horizontes. Falando em novos horizontes no exterior, gostaria de
agradecer a Erik Jan Marinissen e Kees Goossens da Philips Research Labs pela
oportunidade e aprendizado.

Nao é por falta de imaginação, eu sei que já usei essa passagem de Gandhi
antes, mas ainda não consegui achar uma passagem que representasse melhor o meu
agradecimento aos meus orientadores Marcelo Lubaszewski e Fernando Moraes: “...
I have always felt that the true text-book for the pupil is his teacher. I remember very
little that my teachers taught me from books, but I have even now a clear recollection
of the things they taught me independently of books”. O conhecimento ‘dos livros’
é obviamente necessário para a conclusão do doutorado. Isso definitivamente recebi
nas nossas inumeras discuções, brain-storms, e revisões de texto. Entretanto, o
conhecimento técnico, principalmente nessa área ligado à tecnologia de ponta, fica
defasado rapidamente. Porém, o ensinamento mencionado na frase de Gandi não
deteriora. Pode passar muito tempo mas, mesmo que involuntariamente, ainda
estarei usando esse conhecimento, e eventualmente passando adiante.

Doutarado muitas vezes envolve muito stress; isso é inevitável. Quem melhor
para aliviar (ou melhor, evitar) esse stress do que com seus amigos, tomando uma
cervejinha ? Felizmente tive bons amigos para recorrer como: o Fabiano, amigo
de longa data; o pessoal do GAPH: Ost 1, Möller, Ewerson, Edson, e Castanha; o
pessoal do GME: Gustavo, Lazzari, Edgard, Zé, Júlio, Paulo, Renato e Brião; People
from Eindhoven: Tobias, Sylvain, Ram, Patrick, Vlado, Goran, Rodrigo, Samir, and
Saurin; e mais recentemente tem o pessoal do CEITEC. Obrigado! vocês tornaram
minha caminhada mais tranquila.

Muito bem, amigos ajudam e muito a aliviar/evitar stress. Mas e quando isso
não é o suficiente ? A quem recorrer nos momentos bons e também nos “não tão
bons assim”? recorrer tanto na hora certa quanto na hora errada ? No meu caso eu
recorria as meninas da minha vida: Ariela, Duda, Camila, Leticia e Sonia. Tenho
muito a agradeçer a elas. Não sei nem por onde começar. Sei que também tenho
muito que me desculpar, principalente pela ausência pois essa coisinha chamada
“Doutorado” consume muito. À Leticia, que esteve comigo esse tempo todo, obri-
gado pela paciência em aguentar meu mau humor! Obrigado pela ajuda! Obrigado
pelo apoio! Obrigado pelo carinho! ... Obrigado por tudo! Enfim, terminou!

1Viu só! não me esqueci de ti dessa vez !!! Não pude perder a oportunidade :-P

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 11

LIST OF SYMBOLS . 13

LIST OF FIGURES . 17

LIST OF TABLES . 19

LIST OF ALGORITHMS . 21

ABSTRACT . 23

RESUMO . 25

1 INTRODUCTION . 27
1.1 Problems to be Solved . 31
1.2 Goals . 31
1.3 Contribution . 32
1.4 Outline of the Thesis . 32
1.4.1 Background, Definitions, and Models 32
1.4.2 DfT Design for NoC Reuse . 32
1.4.3 Test Optimization . 33

2 RELATED BACKGROUND . 35
2.1 Modular Testing . 35
2.2 Networks-on-Chip . 38
2.2.1 Functional NoC Model . 43
2.2.2 Some Industrial NoC Approaches . 47

3 PRIOR WORK . 49
3.1 Test Wrapper . 49
3.1.1 IEEE Std. 1500 Compliant Test Wrapper Design 51
3.1.2 Test Wrapper Optimization . 55
3.2 Test Access Mechanism . 56
3.2.1 Functional Access or Reuse of Functional Interconnect as TAM 57
3.2.2 Dedicated Bus-Based Access . 59
3.3 Test Scheduling . 59
3.4 Test Resource Partition . 60
3.4.1 Off-Chip Tester . 60
3.4.2 Hardwired On-Chip Tester . 60

3.4.3 Programmable On-Chip Tester . 61
3.5 Other Relevant Test Approaches 63
3.5.1 NoC Testing . 63
3.5.2 FIFO Testing . 64
3.5.3 Interconnect Testing . 66
3.6 Discussion . 67

4 PROPOSED TEST MODEL . 69
4.1 Fundamental Hypotheses . 69
4.2 Properties of Proposed Test Model 70
4.3 Test Traffic Requirements . 70
4.4 Sources of Jitter in NoCs . 71
4.4.1 Shared Channels . 71
4.4.2 Shared Routers . 71
4.4.3 Load Fluctuation . 71
4.5 Introduction to the Proposed Model 72
4.5.1 ATE Interface . 72
4.5.2 Test Wrapper . 72
4.5.3 The NoC Partition Method . 73
4.5.4 More Examples about the NoC Partition Approach 74
4.6 Reducing the Jitter Bound Using NoC Partitioning 75
4.6.1 Shared Channels and Routing Logic 77
4.6.2 Load Fluctuation . 77
4.7 Overall Problem Statement . 77
4.8 Proposed Design Flow . 80
4.9 Comparison with Previous Approaches 80
4.10 Summary . 82

5 TEST WRAPPERS FOR CORES . 85
5.1 Problem Statement . 85
5.2 Wrapper Design Overview . 86
5.3 Wrapper Design and Optimization 88
5.3.1 Core Terminal Classification . 88
5.3.2 Wrapper Cell Design and Assignment 89
5.3.3 Partitioning and Ordering of Wrapper Chain Items 91
5.3.4 NoCs With and Without Guaranteed Services 93
5.4 Experimental Results . 94
5.4.1 Simplified Illustrative Example . 94
5.4.2 Wrapper Area and Core Test Length Impact 95
5.4.3 Wrapper Area for NoCs Without Guaranteed Services 97
5.5 Discussion . 97
5.6 Summary . 100

6 DFT FOR SOURCES AND SINKS . 103
6.1 Reuse of Embedded Processors . 103
6.1.1 Results . 104
6.1.2 Discussion . 105
6.2 ATE Interface . 105
6.2.1 ATE Interface in the Proposed Design Flow 105

6.2.2 Functional Description of the ATE Interface 106

6.2.3 Block Diagram of the ATE Interface 107

6.2.4 Timing Diagram of the ATE Interface 107

6.2.5 Integrating the ATE Interface to the SoC 107

6.2.6 Synthesis Results . 110

6.2.7 Discussion . 110

6.3 Summary . 112

7 DFT FOR NETWORKS-ON-CHIP . 113

7.1 Introduction . 113

7.2 Case Study: the SoCIN Network 114

7.3 Main Challenges . 114

7.4 Evaluating Standard Test Strategies in NoCs 115

7.5 Proposed Test Strategy for NoCs Based on Identical Routers . 117

7.5.1 Router Testing . 117

7.5.2 NoC Testing . 117

7.5.3 Test Wrapper for NoCs . 119

7.6 Experimental Results . 120

7.7 Limitations . 122

7.8 Summary . 123

8 TEST SCHEDULING . 125

8.1 Problem Statement . 125

8.2 Proposed Test Strategy . 127

8.2.1 Previous Test Scheduling Algorithm 127

8.2.2 Employed Data Structure . 127

8.2.3 The Proposed Algorithm . 128

8.2.4 Minimizing Test Length and Silicon Area 134

8.3 Results . 134

8.3.1 Experimental Setup . 134

8.3.2 Introduction to Relevant Variables . 135

8.3.3 Experiment Model . 135

8.3.4 Definitions . 137

8.3.5 Pruning Search Space . 137

8.3.6 Main Results . 139

8.3.7 Illustrative Example . 140

8.3.8 Estimating Wire Length Savings . 140

8.4 Discussion . 146

8.5 Limitations . 146

8.6 Summary . 147

9 DFT OPTIMIZATION AND GENERATION 149

9.1 Proposed Algorithm for Buffer Sizing 149

9.2 Results . 150

9.3 Discussion . 151

9.4 Summary . 151

10 CONCLUSION . 153
10.1 Qualitative Analysis . 153
10.1.1 Toward a General NoC-Reuse Approach 153
10.1.2 Compatibility with Conventional SoC Modular Testing 153
10.1.3 Detailed DfT Design . 154
10.1.4 Comparison with Conventional Test Architecture 154
10.2 Quantitative Analysis . 154
10.2.1 SoC Test Length . 155
10.2.2 Silicon Area for DfT Modules . 155
10.3 Prospected Impact . 155
10.4 Accomplished Goals and Contribution 155
10.5 Limitations and Issues Not Addressed 156
10.6 Future Work . 157

REFERENCES . 159

APPENDIX A . 169

APPENDIX B . 177

LIST OF ABBREVIATIONS AND ACRONYMS

ASIC Application-Specific Integrated Circuit

ATE Automatic Test Equipment

ATPG Automatic Test Pattern Generation

AXI Advanced eXtensible Interface

BE Best-Effort

BIST Built-in Self-Test

CUT Core-Under-Test

DfT Design-for-Test

DSM Deep Sub-Micron

DTL Device Transaction Level

FIFO First-In First-Out

GT Guaranteed Throughput

IP Intellectual Property

LFSR Linear feedback Shift Register

MISR Multiple Input Signature Register

NI Network Interface

NoC Network-on-Chip

OCP Open Core Protocol

QoS Quality of Service

SoC System-on-Chip

TAM Test Access Mechanism

TRP Test Resource Partition

UDL User-Defined Logic

vTAM virtual Test Access Mechanism

LIST OF SYMBOLS

ipg the input test port of the module g. Page 77.

op
g the output test port of the module g. Page 77.

pg the number of test patterns of the module g. Page 77.

ig the number of functional input terminals of the module g. Page 77.

og the number of functional output terminals of the module g. Page 77.

bg the number of functional bidirectional terminals of the module g.
Page 77.

sg the number of scan chains of the module g. Page 77.

lg,k the scan length of the scan k of the module g. Page 77.

fg the number of scan flip-flops of the module g. Page 77.

wmax the maximal number of test wires assigned for the test scheduling.
Page 77.

c the physical channel width of the NoC. Page 77.

r() the routing algorithm used by the NoC. Page 77.

vTAM the tuple {d, k, w, Ratei, Rpart}. Page 77.

d the FIFO depth assigned to the ATE interfaces and wrappers in
this vTAM. Page 77.

k the packet size used to send test stimuli. Page 77.

w the number of test wires assigned to the ATE interfaces and wrap-
pers in this vTAM. Page 77.

Ratei the set of ATE interfaces in a given vTAM. Page 77.

Rpart the set of routers in a given vTAM. Page 77.

ATE interface tuple {tw, d, V}. Page 105.

pi the parallel-to-serial loading and serial-to-parallel unloading time of
the stimuli path. Page 86.

po the parallel-to-serial loading and serial-to-parallel unloading time of
the responses path. Page 86.

ci the number of data bits that comes from the NoC to the DfT mod-
ule. Page 86.

co the number of data bits that goes from the DfT module to the NoC.
Typically ci = co = c. Page 86.

SDI the set of selected data input terminals of an input test port. Page 88.

SDO the set of selected data output terminals of an output test port.
Page 88.

RSDI the set of remaining selected data input terminals of an input test
port. Page 88.

RSDO the set of remaining selected data output terminals of an output
test port. Page 88.

DI the set of data input terminals of a test port. Page 88.

DO the set of data output terminals of a test port. Page 88.

CI the set of control inputs of a test port. Page 88.

CO the set of control outputs of a test port. Page 88.

DIin the set of data input terminals of the input test port. Page 88.

DOin the set of data output terminals of the input test port. Page 88.

CIin the set of control inputs of the input test port. Page 88.

COin the set of control outputs of the input test port. Page 88.

DIout the set of data input terminals of the output test port. Page 88.

DOou the set of data output terminals of the output test port. Page 88.

CIout the set of control inputs of the output test port. Page 88.

COout the set of control outputs of the output test port. Page 88.

FI the set of all functional input terminals that are not part of the
selected test ports. Page 88.

FO the set of all functional output terminals that are not part of the
selected test ports. Page 88.

SI the set of scan-in terminals. Page 88.

SO the set of scan-out terminals. Page 88.

wc sd1 coi the ‘regular’ wrapper cell. Page 89.

wc sd1 coi g the guarded wrapper cell. Page 89.

si scan-in length. Page 91.

so scan-out length. Page 91.

Tconv conventional core test length. Page 91.

ti scan-in time. Page 92.

to scan-out time. Page 92.

Tnew proposed core test length. Page 92.

btest maximal supported bandwidth of a given wrapper. Page 93.

bout
o maximal supported output bandwidth of the output port. Page 93.

bin
i maximal supported input bandwidth of the input port. Page 93.

wmax maximal supported number of test wires of a given wrapper. Page 93.

V a set of the tuple {nburst, header, nword}. Page 105.

nburst the number of test packets to send the test set. Page 105.

header the header content of each test packet. Page 105.

nword the number of flits of each test packet. Page 105.

Pg the Pareto curve of a core g. Page 125.

LIST OF FIGURES

Figure 1.1: Projected relative delay for wires and logic gates. 28
Figure 1.2: Evolution of communication architectures. 28
Figure 1.3: Comparison between communication architectures. 29

Figure 2.1: general conceptual test architecture. 35
Figure 2.2: Example of TestRail architecture and test schedule. 36
Figure 2.3: Core test length for non-preemptive and preemptive test. 37
Figure 2.4: Core test length vs. bandwidth. 38
Figure 2.5: A simple NoC instance. 39
Figure 2.6: A typical router architecture. 39
Figure 2.7: Examples of physical channel flow control. 40
Figure 2.8: Latency from the source to the destination. 41
Figure 2.9: Protocol layers and the main building blocks of a NoC-based design. 42
Figure 2.10: Initiator and target ports; read and write transactions. 43
Figure 2.11: Protocol of an OCP-like port. 44
Figure 2.12: A more complex NoC instance. 45
Figure 2.13: Block diagram of the PCI Express IP core. 46
Figure 2.14: Block diagram of the GPIO IP core. 46

Figure 3.1: Classification of problems in SoC test field. 50
Figure 3.2: Relation among the surveyed problems and the addressed problems. 50
Figure 3.3: IEEE Std. 1500 wrapper architecture. 52
Figure 3.4: IEEE Std. 1500 wrappers at the top-level. 53
Figure 3.5: Example of an IEEE Std. 1500 compliant wrapper. 53
Figure 3.6: IEEE Std. 1500 wrapper’s test mode. 54
Figure 3.7: Scan-in and scan-out lengths of wrapper elements. 56
Figure 3.8: LPT algorithm used to optimize test wrappers. 56
Figure 3.9: Classification of TAM designs. 57
Figure 3.10: Classification of on-chip ATE approaches. 60
Figure 3.11: Different network topologies and their degree. 64
Figure 3.12: FIFO designs. 65

Figure 4.1: Example of load fluctuation in an input test path. 72
Figure 4.2: Example of partitioned NoC. 74
Figure 4.3: Test model based on NoC partition. 76
Figure 4.4: NoC abstracted as a pipeline and the required test data timing. . 77
Figure 4.5: Design flow in terms of the variables used in the problem statement. 79
Figure 4.6: Comparing conventional and proposed test architectures. 83

Figure 5.1: Overview of the (a) conventional and (b) new IEEE Std. 1500
compliant wrapper design. 87

Figure 5.2: Example core with two DTL read-write ports. 90
Figure 5.3: Implementation of wrapper cells. 90
Figure 5.4: The order of wrapper items per wrapper chain. 92
Figure 5.5: Detailed wrapper design. 95
Figure 5.6: Wrapper waveform. 96
Figure 5.7: Comparing the proposed with the conventional wrapper design. . 101

Figure 6.1: Test length with different number of reused processors. 104
Figure 6.2: Block diagram of the ATE interface. 107
Figure 6.3: Timing diagram of the ATE interface. 108
Figure 6.4: Alternatives to the ATE interface design 109
Figure 6.5: Interface of the ATE interface. 110
Figure 6.6: Long wires required to connect the test pins to the ATE interface. 112

Figure 7.1: Splitting the input FIFOs: (a) original and (b) modified for testing.118
Figure 7.2: Testing multiple identical routers. 118
Figure 7.3: Comparator block. 119
Figure 7.4: Proposed test wrapper for NoCs. 120
Figure 7.5: Test costs versus NoC silicon area. 123

Figure 8.1: Building Pareto curve for the test scheduling. 125
Figure 8.2: Scheduling design flow. 126
Figure 8.3: Illustrative example of the original optimization algorithms. . . . 128
Figure 8.4: Transforming the input system in to the employed data structure. 129
Figure 8.5: Example of the FixStartSolution. 131
Figure 8.6: Example of optimization caused by OptimizeTestWires. 133
Figure 8.7: Example of a partitioned NoC. 134
Figure 8.8: Flow of an experiment for each SoC. 136
Figure 8.9: OCP port used in the experiments. 136
Figure 8.10: Evaluating channel width and router weight on the SoC test length.138
Figure 8.11: Impact of the placement on SoC test length. 139
Figure 8.12: Comparing conventional and NoC reuse test length. 140
Figure 8.13: Example of both schedulings for the d695 SoC. 141
Figure 8.14: NoC-based system modeled as regular tiles. 142
Figure 8.15: Estimated wire length required to create the dedicated TAMs. . . 143
Figure 8.16: Minimum rectilinear steiner tree algorithm. 145

Figure 9.1: DfT generation step. 149
Figure 9.2: Conceptual simulation environment. 150
Figure 9.3: Waveform of the simulation environment. 152

LIST OF TABLES

Table 1.1: Comparison between bus and network. 30

Table 3.1: Multiplexer configuration for each test mode. 55
Table 3.2: Properties of interconnect test sequences. 66
Table 3.3: Comparison between the TAM approaches. 67

Table 5.1: Example classification of port terminals. 89
Table 5.2: Control generator parameters for test output port. 91
Table 5.3: List of considered ITC’02 SoC Test Benchmarks. 96
Table 5.4: Size of the wrapper’s FIFO in NoCs without guaranteed services. 98
Table 5.5: The core test length as function of the number of test wires. . . . 99
Table 5.6: Test wires for our approach and (GOEL; MARINISSEN, 2003a). . 99

Table 6.1: Area of the ATE interface compared to a wrapper. 111

Table 7.1: Comparing the RASoC router and the Plasma processor. 115
Table 7.2: Standard test strategies applied to a 3x3 NoC. 116
Table 7.3: Results for the proposed test strategy. 121

Table 8.1: Extended results with the SoCs set up to c = 128 and r =medium. 141
Table 8.2: Average wire length for dedicated TAMs. 145
Table 8.3: Number of wires of a NoC with 32-bit width channels. 146
Table 8.4: Percentage of the wires of a NoC with 32-bit width channels. . . . 146

LIST OF ALGORITHMS

Algorithm 6.1: Initiator ATE Interface . 106
Algorithm 6.2: Target ATE Interface . 106
Algorithm 8.1: Main Scheduling Algorithm 128
Algorithm 8.2: FixStartSolution . 130
Algorithm 8.3: ModifiedReshuffle . 131
Algorithm 8.4: OptimizeTestWires . 132
Algorithm 8.5: FindATEInterfaces . 133
Algorithm 8.6: HalfPerimeter(V) . 143
Algorithm 8.7: Minimum Rectilinear Steiner Tree(V) 144
Algorithm 9.1: Minimize Buffer Size(w) . 150

ABSTRACT

With the advance of microchip technology, global and long wires will cost more
in terms of delay than in terms of logic gates. In addition, long wires are more sus-
ceptible to signal integrity problems such as crosstalk. A recently proposed global
interconnect called network-on-chip alleviates the limitation of long wires. More-
over, on-chip networks allow decoupling communication and computation to divide
a complete system into manageable and independent sub tasks. Thus, it is possible
to integrate more logic into the chip using network-on-chip. However, the complex-
ity growth of cores also increases the test costs since more logic is embedded into
a single chip. These embedded cores need a test access mechanism for test data
transportation, typically implemented as test-dedicated buses. As mentioned be-
fore, global wires are expensive, then, adding test buses may not be feasible in the
near future. On the other hand, the on-chip network has access to most cores of
the chip. This network could be used also for test data transportation, avoiding
additional test-dedicated buses.

The goal of this thesis is to study the reuse of on-chip networks for test data
transportation, looking for a general reuse approach that can be easily used in a
given network. To reach this goal, the thesis is divided in three parts: models,
design, and optimization. This thesis proposes a functional model of a network,
compatible with most recently proposed best-effort on-chip networks. Based on
this functional model, a test model is devised. The test model comprises of a set
of necessary and sufficient information required to optimize the test architecture.
The test architecture consists of DfT logic and scheduling algorithm. The design of
DfT logic comprises adaptation logic for the external tester and test wrappers for
the modules. The optimization procedure, focused on mesh-based best-effort NoCs,
schedules test data such that the chip test length and DfT silicon area are minimized.

A conventional SoC test architecture based on test-dedicated buses is compared
to the proposed approach for best-effort NoCs. The experimental results show that
SoC test length has increased 5% on average. The results have also shown that the
area overhead for proposed DfT is around +20% compared to the silicon area to
implement the DfT of a conventional test architecture. On the other hand, we have
also presented a simpler design flow and 20% to 50% of global wiring savings due
to the use of NoC for test data transportation. The results corroborate with the
conclusion that the proposed NoC reuse is a good approach for complex systems
based on a large number of cores and routers.

Keywords: Modular Testing, System-on-Chip Testing, Core-Based Testing, Test
Wrapper, Test Scheduling, Networks-on-Chip.

RESUMO

Lógica e Escalonamento de Teste para Sistemas com Redes Intra-Chip
Baseadas em Topologia de Malha

Com o avanço da tecnologia de fabricação de chips o atraso em fios globais será
maior que o atraso em portas lógicas. Além disso, fios globais longos são mais
suscet́ıveis a problemas de integridade como crosstalk. Uma proposta recente de in-
terconnecção global chamada redes intra-chip reduz essas limitações referentes a fios
longos. Além dessas vantagens, redes intra-chip permitem desacoplar comunicação
e computação, dividindo um sistema em sub tarefas independentes. Devido as es-
sas vantagens é posśıvel integrar mais lógica em um chip que usa redes intra-chip.
Entretanto, o acréscimo de lógica no chip aumenta o custo de teste. Os módulos do
chip precisam de mecanismos para transportar dados de teste, que são tipicamente
barramentos usados exclusivamente para teste. Entretanto, como mencionado an-
teriormente, fios globais são caros e acrescentar barramentos de teste pode não ser
posśıvel em um futuro próximo. Por outro lado, uma rede intra-chip tem acesso a
maioria dos módulos do chip. Esta rede pode ser usada para transportar dados de
teste, evitando o acréscimo de barramentos dedicados ao teste.

O objetivo dessa tese é estudar o uso de redes intra-chip para o transporte de
dados de teste, enfatizando uma abordagem genérica que possa ser aplicada a uma
dada rede. Para tanto, essa tese foi divida em três partes: modelos, projeto, e
otimização. A tese propõe um modelo funcional de rede que é compat́ıvel com
a maioria das recém propostas redes intra-chip. O modelo de teste, baseado no
modelo funcional da rede, compreende o conjunto de informações necessárias para
otimizar a arquitetura de teste. A arquitetura de teste, por sua vez, consiste de
lógica para teste e algoritmo de otimização. A lógica de teste compreende lógica
para ATE interface e lógica envoltória para módulos de hardware. Os algoritmos
otimizam o tempo de teste e a área de lógica de teste no ńıvel dos módulos e no
ńıvel do chip.

Uma arquitetura convencional de teste de SoCs baseada em barramento de teste
dedicado foi comparada com a arquitetura proposta para SoCs baseados em redes
intra-chip. Os resultados apontam que o tempo de teste do SoC com a arquitetura
proposta aumenta em média 5%. Os resultados também mostram que a lógica de
teste da arquitetura proposta é cerca de 20% maior que na arquitetura de teste
convencional. Por outro lado, o fluxo de projeto baseado na arquitetura de teste
proposta é mais simples que a convencional. Além disso, a arquitetura proposta
reduz o número de fios globais em torno de 20% a 50% para SoCs complexos. Estes
resultados demonstram que a arquitetura proposta é melhor para sistemas complexos
com um grande número de módulos.

Palavras-chave: teste de sistemas intra-chip, lógica envoltória de teste, escalona-
mento de teste, redes intra-chip.

27

1 INTRODUCTION

The scaling of micro chip technology enables more logic, or an entire system,
embedded in a single chip (System-on-Chip - SoC). It creates the opportunity to
design tightly coupled parallel applications for example, for embedded systems in a
portable device. However, it also brings challenges in terms of design productivity,
design of global interconnect, and test for manufacturing defects (KEUTZER et al.,
2000; ZORIAN; MARINISSEN; DEY, 1998).

The exponential shrink of the transistor size increases the available resources in
a chip and increases the design complexity since more modules are embedded in the
chip. In addition, the market competition demands a shorter design cycle. This mo-
tivates the adoption of some practices to deal with the design complexity, such as,
core reuse, design partition, decoupling communication and computation, and higher
levels of abstraction. The system is partitioned in independent sub tasks to ease
its design and verification. These independent tasks rely on decoupling communi-
cation and computation to avoid the interference of other tasks. With independent
tasks, higher levels of abstraction can be used to help the design. Moreover, the
tasks are designed with standard interfaces to ease their integration. The system
usually follows a layered design methodology to abstract the global interconnect
implementation.

Another challenge of SoC design is related to the design of global interconnect.
With the scaling of microchip technology, the computation is becoming cheaper
than the communication because wires do not scale as transistor due to physical
limitation of global wires such as signal integrity (fabrication defects, crosstalk, noise
sensitivity) and power consumption. Figure 1.1 from ITRS illustrates the delay gap
between wires and transistors for near future technologies. It can be observed that
global wires are the most critical in terms of delay, thus, the time spent on global
communication can overcome the time spent on local processing. For this reason,
there is a need for cost-effective global communication architecture for future SoC
design.

As an answer for the need for a cost-effective global communication for chips, one
can observe that the functional interconnects have evolved from point-to-point links,
to single and multiple hierarchical buses, and recently to networks-on-chip (NoC)
(Figure 1.2). Each of these functional interconnects provides different features as
illustrated in Figure 1.3. The increase of number of communicating cores suggests
shared and segmented global wires to deal with, respectively, routing area and long
wires. On-chip interconnect based on shared global wires are easier to generalize,
reducing the design effort, since every core in the system just need to be connected
to these global shared wires. However, shared global wires reduce the bandwidth

28
18 P a p e r A

4 · T. Bjerregaard and S. Mahadevan

Fig. 2. Projected relative delay for local and global wires and for logic gates of near future technologies [ITRS
2001].

As a reaction to the inherent limitations of global synchrony, alternative concepts such
as GALS (Globally Asynchronous Locally Synchronous systems) are being introduced.
A GALS chip is made up of locally synchronous islands which communicate asyn-
chronously [Chapiro 1984][Meincke et al. 1999][Muttersbach et al. 2000]. There are
two main advantageous aspects of this method. One is the reducing of the synchroniza-
tion problem to a number of smaller subproblems. The other relates to the integration
of different IP (Intellectual Property) cores, easing the building of larger systems from
individual blocks with different timing characteristics.

—Design productivity. The exploding amount of processing resources available in chip
design together with a requirement for shortened design cycles have pushed the pro-
ductivity requirements on chip designers. Between 1997 and 2002 the market demand
reduced the typical design cycle by 50%. As a result of increased chip sizes, shrinking
geometries and the availability of more metal layers, the design complexity increased
50 times in the same period [OCPIP 2003a]. To keep up with these requirements, IP
reuse is pertinent. A new paradigm for design methodology is needed, which allows the
design effort to scale linearly with system complexity.
Abstraction at register transfer level (RTL) was introduced with the ASIC design flow
during the 90s, allowing synthesized standard cell design. This made it possible to de-
sign large chips within short design cycles, and synthesized RTL design is at present the
defacto standard for making large chips quickly. But the availability of on-chip resources
is outgrowing the productivity potential of even the ASIC design style. In order to uti-
lize the exponential growth in number of transistors on each chip, even higher levels of
abstraction must be applied. This can be done by introducing higher level communica-
tion abstractions, making for a layered design methodology enabling a partitioning of
the design effort into minimally interdependent subtasks. Support for this at the hard-
ware level includes standard communication sockets, allowing IP cores from different
vendors to be plugged effortlessly together. This is particularly pertinent in complex
multi-processor system-on-chip (MPSoC) designs. Also, the development of design

Figure 1.1: Projected relative delay for local wires, global wires, and logic gates for
near future technologies from (ITRS, 2007).

2

processor memory RF

processor D/A DSP

processor memory RF

processor D/A DSP

bus

network-on-chip

processor memory RF

processor D/A DSP

point-to-point

Figure 1.2: Evolution of communication architectures; from dedicated point-to-point
links to buses and network-on-chip (adapted from (BJERREGAARD; MAHADE-
VAN, 2006)).

and increase the communication bottleneck, reducing the parallelism. In addition,
segmented global wires increase the communication latency, but this problem can
be reduced supporting pipeline.

Point-to-point links are optimum in terms of bandwidth, as they are designed
for a specific application. But the number of links increases exponentially as the
number of cores increases creating routing problems. Moreover, long wires are re-
quired in case of distant cores. Long wires degrade the signal, which become more
sensitive to noise and crosstalk. Shared global wires alleviate the routing problem,
but in case of buses, the problem related to long wires remains. Networks are an
approach that share global wires but they are also segmented to avoid long wires.
The evolution toward NoCs is a response for the need to reduce the design effort of
complex applications (layered design approach, decoupling of communication from
computation), need for generalized interconnect solutions, need to deal with Deep
SubMicron (DSM) interconnect problems such as power, routing, performance, relia-
bility, and predictability (DALLY; TOWLES, 2001; GUERRIER; GREINER, 2000;
BENINI; DE MICHELI, 2002; JANTSCH; TENHUNEN, 2003; BJERREGAARD;
MAHADEVAN, 2006). Table 1.1 has been adapted from (GUERRIER; GREINER,
2000; BJERREGAARD; MAHADEVAN, 2006)) to demonstrate some differences of

29

3

bus

NoC

point-to-
point

shared bottleneck routing area bandwidth latency segmented long wires generalize

Figure 1.3: Comparison between communication architectures.

buses and networks.
Finally, although there are many practical issues to be addressed, it is generally

agreed that the NoC approach offers several outstanding benefits for future SoCs
(BENINI; DE MICHELI, 2002):

• Modularity, thanks to the ability to use basic components such as the Network
Interface and the Router (to be presented in Section 2.2);

• Abstraction, a property of the layered approach;
• Flexibility/scalability of the network, as a consequence of packet-based com-

munication;
• Regular and predictable electrical properties to cope with DSM issues;
• Re-use of the communication infrastructure viewed as a platform.

Testing SoC for manufacturing defects is an important challenge since it involves
more logic to be tested (ZORIAN; MARINISSEN; DEY, 1998). The test of systems
on board is based on the integration of previously tested ICs, and the “system” test
comprises only the test of the interconnection among these ICs. However, the test
of SoCs require testing all the modules. The increase of the number of transistors
in a chip increases the challenges to test the chip. The main reason is the difficulty
to access embedded logic through the pins.

NoC solves the problems related to global interconnect, which enables use of
newer technology which are more susceptible to manufacturing defects and delay
faults. The inclusion of delay test patterns increases the test volume. In addition,
since the main motivation of NoC is to give support to design of more complex
systems (i.e. more logic), it is expected more test data volume to be transported
during test application, increasing the test time and test costs. On one hand, as
stated before, the wires are becoming more expensive than logic. The test buses
to access the embedded cores will be more expensive. On the other hand, the NoC
has access to most cores of the chip and it also supports parallel communication.
The reuse of NoC to transport test data, which is the focus of this thesis, seems
to be an appealing approach to overcome the costs of test-specific buses. Cota
et al. (2003) initially proposed the reuse of a specific NoC architecture for test
data transportation. Compared to previous work, our approach is an attempt to
generalize and characterize the DfT costs for a given network.

One could ask why it is relevant to study the reuse of NoC instead of point-to-
point or buses. The first motivation is to study communication architecture for future
complex SoCs, which has been demonstrated that both point-to-point and buses can
not be applied efficiently. Indeed, there are papers that investigated the reuse of
these interconnects for test (COTA et al., 2002; HUANG et al., 2001a; HARROD,

30

Table 1.1: Comparison between bus and network (adapted from (GUERRIER;
GREINER, 2000; BJERREGAARD; MAHADEVAN, 2006)).

bus network
Every unit attached adds parasitic - + Only point-to-point one-way

capacitance, degrading the electrical wires are used, therefore wire
performance. performance is not degraded.

Bus timing is difficult in a deep - + Network supports pipelined
submicron process. communication

Bus testability is problematic and slow. - + Network can be used to transport
test data and network supports
multiple parallel communication

Bus arbiter delay grows with the - + Routing and arbitration logic
number of masters. are distributed.

The arbiter is instance-specific. - + The same arbitration logic
is implemented in each router

Bandwidth is limited and shared - + Aggregated bandwidth scales
by all units attached. with the network size.

Bus latency is zero once arbiter + - Internal network contention
has granted control. increase the latency (1).

The silicon cost of a bus is + - The network has a significant
near zero. silicon area (2).

Any bus is almost directly + - wrapper and conversion logic
compatible with most available IPs, in both software and hardware
including software running on CPUs. are required (3).

The concepts are simple and + - System designers need reeducation
well understood. for new concepts (4).

31

1999; BURDASS et al., 2000; HWANG; ABRAHAM, 2001; FEIGE et al., 1998).
However, these approaches would not perform well on both test and functional
domains in the near future. Moreover, a NoC is easier to generalize than point-to-
point links, essential issue for any DfT approach; and it supports more parallelism
and bandwidth than buses, essential to reduce the chip test time.

1.1 Problems to be Solved

We believe that the effective adoption of NoC reuse in actual designs depends
on the following items:

• The actual benefits of NoC reuse compared to conventional approaches based
on dedicated TAMs :
The benefits and cost related to NoC reuse approaches are not clear enough.
The most common claim of authors proposing NoC reuse is that it would save
area since no test-specific TAM is required. On one hand, there are some
design approaches based on dedicated TAMs that use information of place-
ment of the cores to minimize the TAM wiring length, reporting negligible
TAM costs (despite of the more complex design flow) (GOEL; MARINISSEN,
2003b). On the other hand, most papers about NoC reuse are about opti-
mization algorithms under different constraints, but they do not focus on the
requirements for the NoC reuse. i.e. which modifications are required in the
design in order to reuse the NoC to transport test data ? What is the impact
of the required DfT for NoC reuse in silicon area and test length compared to
dedicated TAMs ? If the only benefit of NoC is to save wiring area, how much
area are we saving with NoC reuse ?

• Simple, general, and application-independent test approach:
Test designers have adopted modular testing approach for the test of complex
chips since it is simple. It is mostly based on the well-know scan chains for
intra-core access and simple TAMs, which are just wires, for inter-core access.
Differentiated core structures, like memories, use BIST approaches. However,
the BIST control itself is connected to the chip test control logic by, for ex-
ample, boundary scan (i.e. more scan-based approaches). Simple approaches
usually cost less in area and are easier to automate. In addition, scan can be
used to most logic cores, so they are general and independent of design. On
the other hand, NoCs are much more complex than conventional dedicated
TAM, there is no general NoC design, and the NoC design is totally depen-
dent on the application requirements; so, why reuse NoC for test instead of
test-specific TAMs ? Is it possible to generalize NoC reuse ? Is it possible to
simplify the test view of a given NoC ?

1.2 Goals

The strategic goal of this thesis is to propose a general1 approach for the reuse
of on-chip networks for test data transportation. To accomplish this strategic goal,
the following specific objectives should be fulfilled:

1The term ’general’, unless specified, refers to a test approach that is applicable to most best-
effort and mesh-based NoC designs, which was the class of NoC most used along this thesis.

32

• Make the requirements for NoC reuse explicit;

• Determine the test logic required to enable the reuse of both best-effort (BE)
and guaranteed throughput (GT) NoCs;

• Determine the optimization algorithms for the DfT modules;

• Propose a test schedule tool for overall test architecture optimization consid-
ering BE NoCs;

• Compare the proposed test architecture with the conventional test architecture
based on dedicated TAM to establish the actual advantages and drawbacks of
NoC reuse.

1.3 Contribution

The main contribution of this thesis is a general test model for NoC-based SoCs
such that this proposed model is compatible with the current test methods. Others
contributions are:

1. Concise functional NoC definition (Chapter 1);

2. Extensive analysis of prior work (Chapter 3);

3. General test model for a BE NoC-based chip (Chapter 4), partially published
in Amory (2007);

4. Detailed design and optimization of DfT required to enable the reuse of both
BE and GT NoCs as TAM (Chapters 4 to 7), published in Amory et al. (2005;
2006; 2007; 2007);

5. Test planing tool based on the proposed test model to optimize the chip test
length (Chapter 8), to be published.

1.4 Outline of the Thesis

This thesis is organized in three parts as presented below.

1.4.1 Background, Definitions, and Models

Chapter 2 presents background related to SoC testing and NoCs. In sequence,
the prior work is reviewed in Chapter 3; topics like wrapper design, TAM design,
FIFO testing, and recent papers about test of NoC are analyzed. Later, in Chapter 4,
we propose a test model that represents the necessary and sufficient information of a
BE NoC-based system to implement the DfT and optimization procedures proposed
in this thesis.

1.4.2 DfT Design for NoC Reuse

Once the NoC definition is established and the set of required information for
test is defined, we detail the design processes required to modify the chip for test.
The second part of this thesis, in Chapters 4 to 7, presents the DfT logic required to
use both BE and GT networks to transport test data.

33

To use the network for test, some additional logic is required to interface the
external tester to the network, to the cores, and to the network building blocks as
well. It has been identified, for example, that not only the cores, but also the test
pins require a wrapper logic in order to connect to the NoC. Besides, the wrapper
requires a different design compared to the conventional modular test approaches
because the “TAM” works with well-defined protocols. The proposed wrappers
have been designed to abstract the test path as “pipelines” that can pump data at
different rates.

1.4.3 Test Optimization

Considering the chip information required for test enumerated in the test model
and the required test circuitry, the final step is to integrate it into a test planning
tool that optimizes the test architecture in terms of test length and silicon area
(Chapters 8 and 9).

34

35

2 RELATED BACKGROUND

The following sections present basic concepts related to test of SoC, basic con-
cepts of NoC design, and the outline of this thesis.

2.1 Modular Testing

Modular testing (GOEL; MARINISSEN, 2003a), i.e. testing individual SoC mod-
ules as stand-alone units, has been used for SoCs. Non-logic modules such as em-
bedded analog and memories require modular testing since they use different test
strategies then random digital logic. The ability to use the most appropriate test
strategy for every core increases the test quality. Black-boxed cores, such as hard or
encrypted cores which no implementation detail is given, require modular testing
because they need to be tested with test vectors supplied by the core provider. In
addition, modular testing provides an attractive “divide-and-conquer” test develop-
ment approach that reduces the time to generate the test vectors, and allows for
test reuse when a core is used in multiple designs.

Nevertheless, a core is typically embedded in the SoC and there is no direct
access from the SoC pins to the core terminals. Modular testing requires every core
to have test access from its terminals to the chip pins, and to be isolated from its
surrounding circuitry. Zorian et al. (1998) introduced a general conceptual test
architecture (Figure 2.1) for modular testing of SoCs. It consists of three elements
per Core-Under-Test (CUT): (i) a test pattern source and sink, which generates and
evaluates the test stimuli and responses, respectively (ii) a Test Access Mechanism
(TAM), which transports test data from the source to the CUT and from the CUT
to the sink, and (iii) a test wrapper for isolation during test mode and to enable
switching between the functional access to the test access through the TAM.

13

EtherEther ROMROM SRAMSRAM

CPUCPU CUTCUT

DRAMDRAM

UDLUDL

wrapper

sourcesource

sinksink

TAM

Figure 2.1: general conceptual test architecture (from (ZORIAN; MARINISSEN;
DEY, 1998)).

36

19

AA BB

CC DD EE

FF

W1=3

W2=4

W3=2

A B

C D E

F

(a) (b)

SoC

Figure 2.2: (a) Example of TestRail architecture and (b) corresponding test schedule
(adapted from (GOEL; MARINISSEN, 2003a)).

The test architecture design problem can be defined as (GOEL; MARINISSEN,
2003a): for a given set of cores and a given number of test pins, determine the
TAM type, the number of TAMs, the width of each TAM, the assignment of cores
to the TAMs, and the wrapper design, such that the chip test length is minimized.
Several papers have investigated test architecture designs, such as test bus (VARMA;
BHATIA, 1998) and TestRail (MARINISSEN et al., 1998), and how to optimize the
test architecture (CHAKRABARTY, 2000; MARINISSEN; GOEL; LOUSBERG,
2000; HUANG et al., 2001b; GOEL; MARINISSEN, 2003a). Figure 2.2 illustrates
an example of resulting test architecture and test scheduling (GOEL; MARINISSEN,
2003a).

Two test flows are required to test a core. The stimuli test flow transports the
test stimuli from the source to the CUT and the response test flow transports the
test responses from the CUT to the sink. The stimuli and the response test flows
may transport different data amounts. For instance, let us assume the test of a core
with one input terminal, no internal scan chains, and one hundred output terminals.
Each test pattern of this core requires one bit in and one hundred bits out. The test
data volume, the number of bits required to test a core, considering both stimuli and
responses, is given by the core provider, thus, the test data volume is considered
invariant.

Since the amount of test data is fixed, the core test length1 depends on how fast
the amount of test data can be transported over the TAM. This variable is called
test data rate. A recommended test data rate should range from 1 bit/clock cycle to
a certain maximum which depends on the core and on the TAM width. The minimal
test data rate of 1 bit/clock cycle is recommended, but not mandatory, because it
keeps a minimal but constant data flow and it reduces the core test length.

Interruptions on the data flow require mechanisms to halt the test. The usual
approaches are the use of clock gating or holdable scan cells. Clock gating halts
the clock for a certain period. The drawback is that it requires changing the clock
tree, which is generally not recommended for complex systems. The other approach
to freeze the test is to implement holdable scan cells, i.e. scan cells that can keep
the current value, but this approach requires an extra multiplexer for each scan
cell. Holdable scan cells increase the area for DfT. Moreover, it is not feasible for

1the term test length is used when the unity is clock cycles. Test time is used when we refer to
seconds.

37

11

(b) test time with preemption

(a) test time without preemption

test pattern 0test pattern 0 test pattern 1test pattern 1

test response 0test response 0

test pattern 0test pattern 0 test pattern 1test pattern 1test response 0test response 0 test response 1test response 1
preemption

test response 1test response 1

co
re

 te
st

 ti
m

e

co
re

 te
st

 ti
m

e

additional
test time

Figure 2.3: Core test length for non-preemptive and preemptive test.

hard-core since it is not possible to change the hardware description.

Interruptions in the data flow have an additional drawback in test length. Every
time the flow is interrupted, the parallelism between scan-in and scan-out is broken,
increasing the core test length. This effect, illustrated in Figure 2.3(a), is referred
as test pipeline. Figure 2.3 shows that preemptive test increases the core test length
since scan-in is not carried out in parallel with the scan-out.

Another drawback related to interruptions or gaps in the data flow is that most
ATEs expect test stimuli and responses as streaming data. ATEs are typically not
prepared for more complex interactions with the SoC.

On one hand, assuming a constant test data rate avoids halting the test. On
the other hand, the TAM has to guarantee this constant data rate. Dedicated test
architectures like the one illustrated in Figure 2.2 naturally guarantee a certain test
data rate because the TAM is basically just wires and buffers connecting the test
pins to the CUTs. In addition, each core in a TAM is usually tested sequentially to
guarantee the exclusive access to the core.

Figure 2.4 illustrates the effect of the assigned test wire on core test length. It
also demonstrates two concepts: Pareto optimal test wires (a multi-variable opti-
mization) and the maximal test wire (GOEL; MARINISSEN, 2003a). For example,
let us assume a hypothetical hard-core with four internal scan chains, each one with
50 flip-flops. Assigning just one test bit for the test of this core results in a scan
length of 200 cycles because the four scan chains are concatenated. As more test
wires are assigned, the scan length reduces. However, the reduction has a limit, in
this case, when 4 bits/cycle are assigned. Beyond this limit the scan length does not
reduce. Moreover, the scan length reduction plot does not have a perfect stair-case
behavior. Some situations, like the one with 3 bits/clock cycle, may not result in
a reduction in the scan length compared to, for example, 2 bits/clock cycle. This
effect occurs due to the sizes of the internal scan chains.

Only scan configurations that strictly reduce the scan length are allowed. That
is, if two scan configurations lead to the same scan length for a core, the one with
smaller number of test wires is chosen. In our example, 4 is a Pareto optimal test
wire because 1, 2, and 3 lead to a higher test length than 4. In contrast, 5 is not
Pareto optimal because 4 leads to the same test length than 5. Maximal test wire is
the maximal Pareto optimal test wire. The maximal bandwidth for the example in

38

6

(e) scan partition over 4 test wires

(c) scan partition over 2 test wires

(b) scan partition over 1 test wire

(d) scan partition over 3 test wires

sc3–50 FFsc3–50 FF sc4–50 FFsc4–50 FF

sc3–50 FFsc3–50 FF sc4–50 FFsc4–50 FF

20
40
60
80

100
120
140
160
200

21 3

TAM width (bits)

te
st

 le
ng

th
 (c

yc
le

s)

(a) test length vs. TAM width

sc1–50 FFsc1–50 FF sc2–50 FFsc2–50 FF

sc1–50 FFsc1–50 FF sc2–50 FFsc2–50 FF

sc3–50 FFsc3–50 FF
sc1–50 FFsc1–50 FF sc2–50 FFsc2–50 FF

sc4–50 FFsc4–50 FF

sc3–50 FFsc3–50 FF

sc1–50 FFsc1–50 FF
sc2–50 FFsc2–50 FF

sc4–50 FFsc4–50 FF

(f) scan partition over 5 test wires

sc3–50 FFsc3–50 FF

sc1–50 FFsc1–50 FF
sc2–50 FFsc2–50 FF

sc4–50 FFsc4–50 FF

4 5

maximal
data rate

Pareto optimal
data rate

Figure 2.4: Core test length vs. bandwidth.

Figure 2.4 is 4 bits/cycle. Defining the test bandwidth to the maximum would min-
imize the core test length. Nevertheless, it would require expensive communication
resources from the chip. Moreover, a SoC typically has multiple cores. Assigning
the maximal bandwidth for each core is unfeasible since the number of test pins
is usually small. One of the goals of a test scheduling tool is to find this trade-
off such that the chip test time is minimized. A cost effective distribution of test
bandwidth to the cores to minimize the test length is a common subject of research
(CHAKRABARTY, 2000; HUANG et al., 2001b; IYENGAR; CHAKRABARTY;
MARINISSEN, 2002a; GOEL; MARINISSEN, 2003a).

2.2 Networks-on-Chip

This section presents basic concepts regarding NoCs. It is not intended to be a
extended review of network design; for such, titles like Duato et al. (2003), McCabe
(2003), Jantsch and Tenhunen (2003), and Bjerregaard and Mahadevan (2006) can
be used. The emphasis is given on the basic concepts, the most important building
blocks (architecture and hardware implementation), their role (capabilities that can
be useful for test), and their interaction (protocols, timing, and terminal-to-terminal
binding).

A given application in the context of chips consists of nodes, which are typi-
cally processing units, memory, standard I/O, or combination of them, that need to
communicate with each other to complete a certain task. Different kinds of commu-
nication media can be employed; each of them with different costs and performance.
NoCs are a recent proposal which are more cost effective for very complex designs. In
a NoC-based chip, cores communicate with each other via a network which consists
of network interfaces (NI), routers, and links (two channels in opposite directions)
(RADULESCU et al., 2005). Figure 2.5 illustrates a floorplan and a common logical

39

7

RR
RR

RR

RR

RR

core
6

core
6

core1core1

core
2

core
2

core4core4 core3core3

RR
core5core5

RR RR

RR RR

RR

RR

C3C3C2C2C1C1

C4C4C5C5C6C6

chip floorplan
logical view

link routerNI

Figure 2.5: A simple NoC instance.

9

routing/
arbitration

LC

LC LC

LC

LC LC

switch

(a) input and output buffers

routing/
arbitration

LC

LC LC

LC

LC LC

switch

(b) input buffers only

Figure 2.6: A typical router architecture (DUATO; YALAMANCHILI; NI, 2003).
LC denotes link controller.

view of a possible NoC instance.

A router, which can also be called switch in the literature, is the main building
block of a network; it handles the message communication among the nodes. A
router has a number of input and output ports (i.e. the router degree), where one
of these ports may connect to a node and the remaining connect to neighbors or
adjacent routers. The way that adjacent routers are connected define the topology
and can be modeled by a graph G(N, C), where the vertices of the graph N represent
the set of routers and the edges of the graph C represent the set of channels. Many
topologies have been proposed to balance performance and cost parameters.

Nodes communicate with each other sending messages, which for performance
reasons may be divided into packets before the transmission. Packets are the unit of
communication that contains the packet header which carries additional information
such as the destination address. A routing algorithm determines the intermediate
routers transversed (the path) by the packets to reach the destination. The routing
algorithm determines the output port of a packet.

A typical router architecture is illustrated in Figure 2.6. Inside a router, when a
packet header arrives in an input channel, the switching mechanism determines how
and when the network resources are allocated for the message transfer (DUATO;
YALAMANCHILI; NI, 2003). The typical resources are channels and buffers. The
buffers are used to store data temporally until the output channel is chosen or it is
freed. Flow control mechanism establishes the communication between two adjacent
routers, controlling the data flow as the buffer space is free. Examples of channel
flow control are illustrated in Figure 2.7.

The architecture of a router, illustrated in Figure 2.6, typically consists of the
following components (DUATO; YALAMANCHILI; NI, 2003):

40

13

clock

data[] w w w w w w R1R1 R2R2

clock

data

R1R1 R2R2

rq

data

ack

(a) synchronous physical channel flow control

(b) asynchronous physical channel flow control

rq

ack

Figure 2.7: Examples of physical channel flow control (adapted from (DUATO;
YALAMANCHILI; NI, 2003)). (a) synchronous and (b) asynchronous.

• Buffers : They are First-In First-Out (FIFO) buffers used to store messages in
transit. They can be implemented in the input ports (Figure 2.6(b)), output
ports, or both (Figure 2.6(a)).

• Switch: This component is responsible for connecting the input ports to the
output ports.

• Routing and Arbitration: This component implements the routing algorithm
and selects the output port for an incoming message. This component also
provides arbitration in case there are multiple requests for the same output
port.

• Link Controller(LC): This component implements the channel flow control
between adjacent routers.

The switching mechanism, flow control mechanism, and buffer management have
direct impact on the network performance (DUATO; YALAMANCHILI; NI, 2003;
MCCABE, 2003). Let us define some performance metrics. Throughput is the
rate (bits/s) at which a network device sends or receives data. Bandwidth is the
maximum theoretical throughput. It indicates the maximum amount of data that
can pass from one point to another in a unit of time. Throughput is more like a
measure of the usage of a resource and bandwidth is the measure of the resource
itself. Latency, or delay, is the time elapsed from the beginning of data transmission
until the time data is received at destination. Jitter is a measure of delay variation
over time.

Routers with different designs and architecture require a different analytical per-
formance model. For example, Equations 2.1 and 2.2 model the no-load packet
latency (latency in the absence of any traffic) for the router architectures depicted
in Figure 2.6(a) and (b), respectively (DUATO; YALAMANCHILI; NI, 2003).

The packet to be transferred has a size of L bits. The physical data channel
width has W bits. Assuming a one word header, the total packet size is L/W bits.
The router does the routing decision in tr seconds; the physical channel runs at B
Hz. Thus, the physical channel bandwidth is B × W bits per second. Assuming
that the channel wires can complete a transmission in one clock cycle. Therefore,
the propagation delay is tw = 1

B
. Once the routing path has been set up, the

switching delay is denoted by ts. Thus, a word can be transferred from the input
channel to the output channel in ts seconds. The distance between the source and
destination is assumed to be D hops. Figure 2.8 illustrates these variables. The
expression D(tr + ts + tw) represents the network latency, while the rest of the
equation represents the time to transfer a given amount of data L over W wires

41

8

RR RR RR RRRR

source destination
tw

link 1

tr

ts link D

Figure 2.8: Latency from the source to the destination (adapted from (DUATO;
YALAMANCHILI; NI, 2003)).

in a pipelined manner. With input and output buffers, the pipeline cycle time is
determined by the maximum of the switch delay and the wire delay max(ts, tw). For
input-only or output-only, the cycle time is the sum of ts + tw.

twormhole1 = D(tr + ts + tw) + max(ts, tw)×
⌈

L

W

⌉
(2.1)

twormhole2 = D(tr + ts + tw) + (ts + tw)×
⌈

L

W

⌉
(2.2)

These equations exemplify how router design decisions impact the network per-
formance. This level of design details may be considered complex for our goal of
designing general network models since there is a huge number of possible design
variations, thus, huge number of corresponding analytical models.

Up to now, just the most basic communication ‘services’ have been described.
However, complex applications may require more complex services. For examples,
some applications may require additional reliability, thus, services as error detection,
error correction, and packet retransmission may be implemented. Choosing a proper
boundary and location of the required services are perhaps one of the first design
steps. The end-to-end design principle (SALTZER; REED; CLARK, 1984), applied
for distributed systems, says that it is usually better to place application-dependent
functions (or services) closer to the application that uses the function. In the case of
core-based chip design the ‘application’ is a core and the ‘function’ is, for example, a
mechanism to give support to reliable data transfer. For this reason, only the basic
communication services are implemented in the routers (in side the network) and
the optional and application-dependent services are implemented in the boundaries
of the network with the cores, commonly called Network Interface (NI). Note that
the application-dependent services could also be implemented in the cores, but it
would impair the core reusability to other systems.

The services implemented in the NIs are usually described in a layered manner,
with the advantage of abstracting the most basic services which are closer to the
implementation details (MCCABE, 2003; RADULESCU et al., 2005; KEUTZER
et al., 2000). The global on-chip communication can be decomposed into five layers
(TANENBAUM, 1996). The protocol stack enables different services and allows
Quality of Service (QoS) mechanisms, providing to the programmer an abstraction
of the communication framework. Layers interact through well-defined interfaces
and they hide the low-level physical DSM issues. Figure 2.9 correlates the most
important protocol layers and where they are implemented in the NoC. The Phys-
ical layer refers to the electric details of wires, the circuits and techniques to drive

42

11

physical
link

network
transport

application
NI

router

link

core

Figure 2.9: Protocol layers and the main building blocks of a NoC-based design.

information (drivers, repeaters, and layout). The Data Link level ensures a reliable
transfer and deals with medium access (sharing/contention). The Network level
deals with issues related to the topology and routing scheme. Finally, the Transport
layer manages the end-to-end services and the packet segmentation/re-assembly.
QoS, which helps to decouple communication from the computation, is also imple-
mented at the transport layer. The Application is implemented in the set of cores of
the chip. For the core point-of-view the services should be transparent (abstracted).
For example, a core sends and receives raw data (without packetization) without
knowing that there is a NI that provides reliable data transfer.

The communication services can be implemented either in software or in hard-
ware, however, in the context of chips, which has tighter latency constraints, it is
preferable to implement these services in hardware. In addition, recall that not
all nodes in a NoC are programmable, thus, if additional services are required, they
have to be implemented in hardware. Therefore, just an indispensable set of services
is implemented since there is also area constraint. The set of most used network
services are (MCCABE, 2003): packetization, responsible for inserting and removing
the header, the sequence number, the parity, the CRC, or the check sum information
into the packet; buffering used to overlap communication an computation, which re-
quires an end-to-end flow control mechanism to control the buffer usage; packet
ordering in case adaptative routing is supported, which also requires sequence num-
ber in the packet header; reliable data delivery ensures that the destination receives
the correct information. It may include error detection, error correction, or packet
retransmission mechanisms; soft or hard performance guarantees for latency, jitter,
or bandwidth, which may require mechanisms for resource reservation; collective
communication like the support of one-to-many and one-to-all communication pat-
terns rather than just one-to-one.

Another relevant consideration is how the cores are connected to the network. It
has been demonstrated that the cores are connected to the router network through a
NI, however, NIs need a standard interface to do the terminal-to-terminal connection
of the cores to the NoC. Thus, the NoCs assume that both cores and NIs are con-
nected via a memory-mapped on-chip port like OCP (OCP-IP, 2003), AXI (ARM,
2004a), VCI (ALLIANCE, 2000), or DTL (PHILIPS SEMICONDUCTORS, 2002).
The advantage is that no matter the NI design, the connection of the cores and
the network is facilitated, reducing the design effort. Such practice has been used
for other interconnect, like buses. Indeed, these memory-mapped types of ports are
inherited from buses. They are used for NoCs just to keep the compatibility with ex-
isting cores, since they increase the packet latency when used for NoCs (OST et al.,
2005). In the near future new communication approaches specific for networks (like
message passing) may come up for NoCs to reduce the packet latency.

43

16

portport

(a) read transaction

portport

initiator target
command
channel

data
channel

portport

(b) write transaction

portport

initiator target
command
channel

data
channel

initiator target
data request

command

ack

data

initiator target
data transfer

command

ack

data

Figure 2.10: Initiator and target ports; read and write transactions.

A port may be classified as initiator or target (sometimes also called master or
slave), and as read, write, or read/write port. An initiator port starts transactions
which are sent to a target port; a target port just receives and executes transac-
tions. A transaction can be split into read or write commands. A read command
(Figure 2.10(a)) sends a request command from the initiator to the target port;
the target port acknowledges it and sends the requested data. A write command
(Figure 2.10(b)) sends data from the initiator to the target; the target consumes
the received data and acknowledges it. A port is usually configurable, thus, it may
not necessarily support both read and write commands. For example, some valid
port usages are: an initiator read port starts read commands; an initiator write
port starts write commands; a target read/write port answers both read and write
commands.

Figure 2.11 illustrates an OCP-like port and its protocol. The main principles
can be applied to other protocols. Event 1 in Figure 2.11 represents the request of a
write command to send two words, which is accepted in the next clock cycle, during
the event 2. The first word is sent during the event 3, when the data valid is high.
In event 4 the target does not accept the second word, but it is accepted in event 5.
The read command works in a similar way.

One may have realized that several concepts about router design were not pre-
sented on this Section. Recall that the main goal of this thesis is to conceive a
general test approach for NoC based on network reuse to transport test data. If all
kind of design decision is required to a model, the generality is compromised. Thus,
just the required notions were presented.

2.2.1 Functional NoC Model

This section presents the informal functional NoC model and its assumptions.
This is the functional NoC model used in this thesis. Figure 2.12 demonstrates one
valid instance of the proposed functional model:

• Routers are connected to other routers and to zero or one NI via links;
• A link consists of two pairs of router ports and two channels such that data

flows in both directions in the channels (see Section 2.2.1.1);
• Router ports implement the channel protocol, like the one illustrated in Fig-

44

12

Addr[]

BusrtSize[]

Cmd[]

CmdAccept

DataValid

DataAccept

Data[]

RespAccept

RespValid

RespData[]

w

A

r

0 5

C

1 2

3

6 7

8

B

4 5

2 1

Figure 2.11: Protocol of an OCP-like port.

ure 2.7, and all router ports have the same configuration, i.e. the same width,
bandwidth, and protocol (see Section 2.2.1.1);

• Core ports implement an on-chip protocol such as OCP. Each core port is
configured individually and the data flow can be unidirectional or bidirectional;

• A NI has one or more core ports and only one router port;
• A core connected to the NoC has two or more core ports. Core ports are not

required for cores not connected to the NoC;
• A NI connects to one or more cores via core ports;
• A core connects to zero or more NIs via core ports;
• Pins are connected only to cores (see Section 2.2.1.2);
• Only synchronous systems are considered (see Section 2.2.1.3);
• The routers must be organized in a mesh topology.

The model requires NIs to do the interface among the cores and the routers. The
minimum requirement for NI is packetization (i.e. conversion from a core protocol
like OCP to a channel protocol like handshake) to abstract the packet format from
the cores. Thus, the cores manipulate raw data through the on-chip ports. Core
are typically memory mapped, thus, the address information sent from the core to
the NI via the port is used to select the destination. In this way, the cores do not
realize the existence of a NoC; they just have to obey the on-chip protocol.

Note that there is no information related to the implementation of the modules,
except by packetization for NIs and routing algorithm. For instance, we do not
require multicast service, or any other kind of network service. For this reason this
functional model is used as a stepping stone for the proposed general test model
presented in Chapter 4.

2.2.1.1 Link and Router Configuration

There might be NoCs with unidirectional links, like in ring topologies. In ad-
ditional, it is also possible to have NoCs whose channel widths are different. For
instance, a certain channel might require higher bandwidth, so wider channel width
might be used. Likewise, there might be routers whose ports have different width
or even different channel protocols. We believe that these considerations might be
implemented, however, they are unusual. Thus, we assume, for sake of simplicity,

45

23

NI5

C6

NI4

C4

core port

chip pins

NoC-Based Chip

C5
NI3

NI2 C2

C3

NI1

C1

NoC

channel

channel

router port

link

router port

R8

R5

R2

R7

R4

R1

R9

R6

R3

Figure 2.12: A more complex NoC instance.

that all channels have the same width, single channel protocol, and bidirectional
links.

2.2.1.2 On-chip vs Off-Chip Protocols

We assume that pins are not connected directly to the NoC, i.e. there will al-
ways have some logic between the pins and the NoC. The reason for this realistic
assumption is that on-chip and off-chip communication requires different interfaces,
buses, and protocols (the rest of the document uses just protocol). Examples of on-
chip protocols are wishbone (OPENCORES, 2006a), OCP (OCP-IP, 2003), AMBA
AXI (ARM, 2004a), AMBA APB (ARM, 2004b), VCI (ALLIANCE, 2000), DTL
(PHILIPS SEMICONDUCTORS, 2002), CoreConnect (IBM, 2006) while some ex-
amples of off-chip protocols are PCI express (PCI-SIG, 2006), RapidIO (RAPIDIO,
2006), FireWire (IEEE, 2006), USB (USB, 2006), Rambus FlexIO (RAMBUS,
2006a), Rambus XDR (RAMBUS, 2006b), Rambus RDRAM (RAMBUS, 2006c).
Another reason is, as stated in Section 2.1, most ATEs do not support more com-
plex interaction with the SoC, like executing a protocol.

The complexity of the off-chip protocols is the main reason why they are not
used for on-chip communication. On-chip protocols are simpler and require less
silicon area while off-chip protocols are more complex. For example, a Firewire
core (CAST, 2006a) requires 38,834 gates, a PCIe core (CAST, 2006b) requires
from 35,500 to 50,700 gates, and a USB core requires 13,800 gates. On the other
hand, on-chip interfaces require around 1,000 gates depending how it is configured.
Off-chip protocols are more complex because they require extra logic for reliability
issues (error control), high-performance signaling, complex synchronization schemes.
Typical on-chip protocols do not require such features, thus, they are much simpler.

In the typical scenario an interface core is the logic connected to pins, not the
NoC. Figure 2.13 shows a typical block diagram of a PCI-Express interface core from
CAST (CAST, 2006b). The main core is the PCIe-EP module while the PCIe-IF

46

17

PCIe-IF

PCIe-EP PCIe-IF
PCIe

link
SoC
interface

OCP
master

OCP
master

OCP
slave

OCP
slave

P
C

Ie
-E

P

(a) (b)

Figure 2.13: Block diagram of the PCI Express IP core (from (CAST, 2006b)).

18

gpio_tri

gpio_o

gpio_i

gpiodir

gpio_out

gpio_in
input/
output

APB
interface

paddr
pwdata
prdata

psel
penable
pwrite

Figure 2.14: Block diagram of the GPIO IP core (from (CAST, 2006c)).

does the interface with OCP protocol. The module PCIe-IF has four independent
OCP ports. This architecture where the main core is separated from the inter-
face ease the support of other on-chip interfaces. For instance, this PCIe core also
supports wishbone and AMBA APB interfaces. The same core provider also has
a Firewire core (CAST, 2006a) with support to several interfaces. These exam-
ples of commercial IP cores show that the use of standard protocol for inter-core
communication is a common practice.

Even when pins are not related to an off-chip protocol, some logic is still required
to adapt the pins to the on-chip protocol. This is the case of the GPIO IP core
(CAST, 2006c) which connects a configurable number of input and output terminals
to AMBA APB protocol. Figure 2.14 illustrates the block diagram of this IP core.
The right side shows the IO pins and the left side shows the AMBA APB interface.

These two examples illustrate that typically there will be some protocol conver-
sion logic between the pins and the NI. Thus, a DfT logic is required to connect the
test pins the NoC during test application. One might think that it could be possible
to use the native protocol to send data from the pins to the NoC. The problem is
that the ATE would need to use, for instance, USB, PCIe, or any other off-chip
protocol, which is not realistic nowadays.

2.2.1.3 Synchronous and Single-Clocked Systems

We assume the system is synchronous and has a single test clock frequency for
sake of simplicity.

Since there are multiple buffers in a NoC, they can be used to decouple different
test frequencies. Liu et al.(2005) presented a high-level NoC model with support to
reusing NoCs with different frequencies. However, there is no information about the

47

modification of DfT modules to support this feature. Future work can detail the
DfT for the support of multiple test frequencies.

There are also asynchronous networks (FELICIJAN; FURBER, 2004; BAIN-
BRIDGE; FURBER, 2002; BJERREGAARD; SPARSO, 2005a; BJERREGAARD,
2005; WANG et al., 2005). The first papers about testing asynchronous networks
came up recently (EFTHYMIOU; BAINBRIDGE; EDWARDS, 2004, 2005; TRAN
et al., 2006). The DfT strategy for asynchronous circuits is slightly different from
the one for synchronous circuits. For instance, asynchronous circuits have feedback
loops that are hard to test. Scan cells are used to break these loops, however, a full-
scan approach leads to a very high area overhead (typically 80%) (BEEST et al.,
2002; EFTHYMIOU; BAINBRIDGE; EDWARDS, 2005). For these reasons it is
not the scope of this work to support asynchronous networks.

2.2.2 Some Industrial NoC Approaches

This section briefly highlights some features of some industrial NoC instances.
Analyzing industrial applications of NoC is not an easy task since details about
tools and design are not publically available. However, it is an interesting exercise
because it helps to visualize short to medium-term industrial use of NoCs. Finally,
this section shows that the first test chips are coming up (CLERMIDY; VARREAU;
LATTARD, 2005; LEE S-J. LEE; YOO, 2005) and that other companies are joining
the research effort. Moraes et al. (2004) and Bjerregaard and Mahadevan (2006)
surveyed several other NoC approaches.

Philips Research has investigated different facets of NoC design, like design of
basic building blocks like router and network interface (RIJPKEMA et al., 2003;
RADULESCU et al., 2005), and design of tools for rapid and cost-effective NoC
instantiation like application mapping tools, NoC synthesis, NoC debug, NoC for-
mal and functional verification (GOOSSENS et al., 2005; MURALI et al., 2006;
CIORDA et al., 2006). The target application domain of the Æthereal NoC plat-
form is embedded systems and consumer electronics with real-time performance
constraints. Goossens et al. (2005) presented a communication centric design flow
where the applications consist of a number of communicating tasks. These tasks are
characterized in terms of communication requirements, like maximum latency, min-
imum bandwidth, traffic class (best-effort or guaranteed). Later, the application is
mapped onto an application-specific NoC topology, and its VHDL code is generated
and verified. The supported on-chip interfaces are OCP, DTL, and AXI.

ST Microelectronics (2005) presents the STNoC which implements the Spidergon
topology, based on a regular chordal ring. Few informations are available about it,
however, it is possible to compare some feature with the Æthereal approach; Æthe-
real is based on application-specific topology, while STNoC is based on regular and
homogeneous router design with three ports. Both approaches support best-effort
and guaranteed communication services. STNoC supports OCP on-chip interface
(MAGARSHACK; PAULIN, 2003).

Silistix (2006) is a spin-off from the University of Manchester. The company’s
focus is the development of self-timed on-chip network architecture called CHAIN
(BAINBRIDGE; FURBER, 2002). Tools are available for NoC instance with sup-
port to OCP and AXI on-chip interfaces. The target is low power application
domain. Although there is no information about support to guaranteed services,
the issue is being investigated (FELICIJAN; FURBER, 2004).

48

Arteris (2006) is a start-up company based in Paris and founded in 2003. The
company’s focus is on on-chip communications design and tools. Arteris is develop-
ing tools to efficiently connect and manage the on-chip traffic requirements among
all the various elements required in today’s core-based SoC designs. The supported
on-chip interfaces are OCP and AXI.

Clermidy et al. (2005) presented the FAUST NoC architecture, supported by
ST Microelectronics, which is based on a mesh topology. FAUST supports both
best-effort and QoS traffic. A NoC-based prototype for telecom applications is
demonstrated. This architecture contains 23 IP connected to a 20 nodes network
for a total complexity of 8 Mgates (0.13µ technology).

Lee et al. (2005) from Korea Advanced Institute of Science and Technology
(KAIST) presented three test chips using 0.38µ, 0.18µ, and 0.18µ technology and
die sizes of 6.0mm× 10.8mm, 5mm× 5mm, and 5mm× 5mm, respectively.

49

3 PRIOR WORK

The goal of this chapter is to review the state-of-the-art in the SoC test field. Fig-
ure 3.1 presents a graphical classification of several problems in SoC test, adapted
from (MARINISSEN; IYENGAR; CHAKRABARTY, 2002). This list is not in-
tended to enumerate all the possible problems, but to help to identify the main
problems that this thesis deals with. The problems are classified in four categories:
(i) core test wrapper, (ii) test access mechanism (TAM), (iii) test scheduling, and
(iv) test resource partition (TRP). The categories are sub-divided such that the sub-
categories related to ‘design’ consist of actual design proposal and the sub-categories
‘optimization’ refer to finding design parameters such that ‘objectives’ are met un-
der certain ‘constraints’. The literature related to these four broad categories is
surveyed along this chapter such that each section is related to one category. For
example, test wrappers are presented in Section 3.1; TAMs are presented in Sec-
tion 3.2; test scheduling is presented in Section 3.3; test resource partition, which
consists of different ways to implement embedded test sources and sinks, is pre-
sented in Section 3.4. The Section 3.5 presents more specific test approaches for
NoCs, interconnects, and FIFOs.

Figure 3.2 illustrates a graph of influence among the surveyed literature and the
problems addressed by this thesis. It shows why certain subjects were surveyed and
where this knowledge was used to develop the approach proposed in this thesis.
The left side of this figure shows the sections of this chapter. The right side shows
the main addressed problems. These problems are: to build a general system test
model, ATE interface, DfT for routers and NIs, DfT for cores, and test scheduling.

For instance, the overall system test model, presented in Chapter 4, emphasizes
the compatibility with conventional TAMs, thus, it has a stronger relation with
Section 3.2. The ATE interface, the DfT module used to connect the test pins to
the NoC, is related to TAMs (Section 3.2) and it is related to the different types of
TAMs (Section 3.4). The proposed wrapper design for cores (AMORY et al., 2006)
is obsviously related to the review of test wrappers (Section 3.1). The wrapper for
routers (AMORY et al., 2005) was influenced by the study presented in Section 3.5.

3.1 Test Wrapper

This section describes the main functionality and the design of a test wrapper
with focus on the IEEE Std. 1500 wrapper proposal (SILVA, 2005; MARINISSEN
et al., 2002). Other wrapper designs, like the one presented in (MARINISSEN;
GOEL; LOUSBERG, 2000), have the same main principles. The goal of a wrap-
per is to switch between different access mechanisms. The switching capability is

50

24

SoC Test Automation

wrapper TAM scheduling

TAM design +
scheduling

TAM
optimization

TAM
design

wrapper
optimization

wrapper
design

objectives &
constraints

core test time
TAM width

objectives &
constraints

SoC test time
TAM width

ATE buffer reload

power dissipation

objectives &
constraints

SoC test time

TAM width

ATE buffer reload

power dissipation
resource conflict
precedence relations

pre-emption

1 2 3 4

data
compression

pseudo-random
BIST

objectives &
constraints

SoC test time

compression ratio

area overhead

test bandwidth

TRP designTRP design +
scheduling

test resource
partition (TRP)

power dissipationwire length

Figure 3.1: Classification of problems in SoC test (adapted from (MARINISSEN;
IYENGAR; CHAKRABARTY, 2002)). The numbers identify the four main problem
categories.

32

System Model

ATE Interface

DfT for Routers and NIs

DfT for Cores

Test Wrapper

Test Access Mechanism

Test Resource Partition

Other Relevant Test
Approaches

Test Scheduling Test Arch. Optimization

Figure 3.2: Relation among the surveyed problems and the addressed problems.
The numbers represent the section number. The thicker arrow means a stronger
relation.

51

implemented in the following modes:

• Normal Mode - The wrapper logic is transparent to the core, connecting the
core terminals to the functional interconnect;

• Internal Test Mode - It is used during the actual test of the core. It configures
the wrapper to access the core’s primary I/O and internal scan chains via the
TAM. The width of the TAM is configurable;

• External Test Mode - This mode is used to test logic between the wrapped cores
and to test the functional interconnect. Controllability is provided from the
output wrapper cells to test the interconnect logic, likewise, the observability
of the interconnect responses is provided by the input cells of the wrapper;

• Bypass Mode - This mode is required when there are several cores connected
in the same TAM. Cores already tested are bypassed to reduce the test path
length.

A wrapper design problem can be informally formulated as: Design a wrapper for
a given core, such that the core test length and the number of test wires is minimized.
The number of test wires is a top-level constraint that is based on the number
of test pins available. This problem has been identified as a NP-hard problem
(MARINISSEN; GOEL; LOUSBERG, 2000). More about wrapper optimization is
presented in Section 3.1.2. Next section describes the wrapper proposed by the
IEEE Std. 1500.

3.1.1 IEEE Std. 1500 Compliant Test Wrapper Design

Since the core-based design involves the core provider and the core user, it is
required to transfer information about the core’s test from the core provider to
the core user. The core provider adds the appropriate core’s DfT hardware (e.g.
internal scan chain for random logic) and create the test patterns, while the core
user integrates the test of all the cores into a top-level system test and adds the test
of non-wrapped logic. IEEE Std. 1500 standardizes (SILVA, 2005; MARINISSEN
et al., 2002) the test knowledge transfer and part of the test wrapper. The motivation
of this standard is to enable test reuse and the test interoperability between cores
from different sources. The IEEE Std. 1500 proposes a language to express test-
related information of cores and a scalable wrapper design, which is the main topic
of this section.

The goal of the standard wrapper is to define a uniform and flexible hardware
interface to transport test patterns to a given core. The standard wrapper is required
to enable an easy integration of cores. On the other hand, it must be flexible to
allow the core user to explore trade-off like test quality, test length, silicon area,
and performance impact. The standard wrapper must have the following features:
(i) support multiple operational modes: normal, internal test, external test, and
bypass; (ii) connect any number of core terminals to any TAM width. Figure 3.3
presents the structure of the wrapper:

• Functional data terminals represent the core’s I/O terminals which are defined
by the core provider;

52

33

WBY

WIR

WPI WPO

Core
W
B
R

W
B
R

test stimuli

functional
data

test control
+ test stimuli

test responses

functional
data

test control
+ test responsesWSI WSO

WIP

Figure 3.3: IEEE Std. 1500 wrapper architecture (from (MARINISSEN et al.,
2002)).

• Wrapper Interface Port (WIP) is a six-control signals that controls the Wrap-
per Instruction Register (WIR). The WIR register can be loaded from WSI
(Wrapper Serial Input);

• Test can be loaded serially via WSI and unloaded from WSO;

• Test can also be loaded via Wrapper Parallel Input Port (WPI) and unloaded
from WPO. The width is user-defined;

• Wrapper Bypass Register (WBY) is used to bypass serial data from WSI to
WSO to enable a shortened test access path. The wrapper can also have a
parallel bypass register to bypass WPI to WPO;

• Wrapper Boundary Registers (WBR) consist of wrapper boundary cells that
provide the test access to the core terminals. There is one cell per terminal and
its basic functionality is to be transparent in functional mode and to provide
controllability from the WPI and WSI ports, and observability from the WSO
and WPO ports.

Figure 3.4 presents how the cores are connected at the top-level. The wrapped
cores are connected to a serial TAM and, optionally, connected to a user-defined
parallel TAM. The test controller may contain user-defined JTAG compatible in-
structions.

3.1.1.1 Wrapper Example

Figure 3.5 illustrates an example of the IEEE Std. 1500 compliant test wrapper.
The core under test has two internal scan chains of six and eight bits, five primary
inputs, and three primary outputs. The implemented wrapper has a serial TAM,
and a parallel TAM of three bits. The wrapper cell implementation is presented
in Figure 3.5(b) and (c). This implementation comprises six operational modes.
Figure 3.6 presents the path activated in each of these modes and Table 3.1 presents
the multiplexer configuration.

53

32

User-defined TAM

IEEE 1500
wrapper

Core 1

wir

JTAG TAP
controller

IEEE 1500
wrapper

Core N

wir wsowsi

serial TAMserial TAM

wip

wso wsi

fofifofi

wpowpi wpowpi

sinksource

SoC

Figure 3.4: IEEE Std. 1500 wrappers at the top-level (from (MARINISSEN et al.,
2002)).

34

(c) wrapper input cell

from wsi/wpi
to wso/wpo

from chip
to core

shift wci

clock

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

w
pi

[0
:2

]

w
po

[0
:2

]

sc
clk

wsi wso

(b) wrapper output cell

from wsi/wpi
to wso/wpo

from core
to chip

shift wco

clock

(a) wrapper design

Figure 3.5: Example of a IEEE Std. 1500 compliant wrapper (from (MARINISSEN
et al., 2002)).

54

35

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(a) 36

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(b)

37

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(c) 38

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(d)

39

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(e) 40

Core A

scan chain 0 (6FFs)

scan chain 1 (8FFs)

d[0]

d[1]
d[2]

d[3]
d[4]

q[0]

q[1]

q[2]sc clk

WBY

WIR

11

12

8

6

10

9

4

5

3

2

1

7

WIP

q[0]

q[1]

q[2]

d[0]

d[1]
d[2]

d[3]
d[4]

wpi[0:2] wpo[0:2]

sc
clk

wsi wso

(f)

Figure 3.6: IEEE Std. 1500 wrapper’s test mode. (a) normal mode; (b) serial bypass
mode; (c) serial internal test mode; (d) serial external test mode; (e) parallel internal
test mode; (f) parallel external test mode (from (MARINISSEN et al., 2002)).

55

Table 3.1: Multiplexer configuration for each test mode (MARINISSEN et al., 2002).
mode wci wco m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12

Normal 0 0 x x x x x x x x x x x x
Serial x x x x x x x x x x x x 1 0
Bypass
Serial 1 0 1 1 1 1 1 0 0 0 x x 0 0
InTest
Serial 0 1 1 1 1 x x 1 0 0 x x 0 0
ExTest
Parallel 1 0 0 1 1 0 0 1 0 0 0 0 x x
InTest
Parallel 0 1 0 0 0 x x 1 1 1 1 1 x x
ExTest

3.1.2 Test Wrapper Optimization

3.1.2.1 Wrapper for Hard-cores

Hard cores require a wrapper since the internal DfT cannot be modified and a
third party provides the test patterns. A test planning tool decides how many test
wires each hard core requires and the wrapper is designed based on this number
of test wires. In order to reuse the test patterns, a test protocol expansion tool
translates the core-level test pattern file to the top-level tests.

The next paragraph, taken from Marinissen et al. (2000), presents the problem
statement for the wrapper design of hard cores.

Given the number of test patterns p, the number of functional input terminals
i, the number of functional output terminals o, a set of scan chains S, where each
scan chain s ∈ S has length in number of flip-flops l(s). Furthermore, a number
m that represents the maximum number of TAM wires that can be used is given.
Determine the wrapper design such that the core test length (in clock cycles) is
minimized and m is not exceeded.

The core test length is calculated based on the Equation 3.1

T = {1 + max(si, so)} × p + min(si, so)} (3.1)

where si and so represent the scan-in and scan-out lengths, respectively, and p
represents the number of test patterns. Since p is given, the goal of a optimization
algorithm is to minimize both si and so to result in the minimal core test length.
Figure 3.7 illustrates a wrapper test wire and its scan-in and scan-out elements.
Distributing the IO terminals over m TAM wires can be solved optimally in linear
compute time. However, distributing the scan chains over multiple TAM wires such
that the core test length is minimized is aNP-hard problem (MARINISSEN; GOEL;
LOUSBERG, 2000). Therefore, algorithms focus on the optimization of the scan
chain distribution.

The most popular algorithms are Largest Processing Time (LPT) and Combine
by Marinissen et al. (2000), and Best-Fit Decreasing (BFD) by Iyengar et al. (2002a).
The LPT algorithm, for example, initially sorts the internal scan chains in decreasing
order of length and then assigns the scan chains to the test wire with shortest length.
The goal is to minimize the maximal test wire length. Figure 3.8 demonstrates an

56

36

scan chainsinput terminals output terminals

scan-in length

scan-out length

Figure 3.7: Scan-in and scan-out lengths of wrapper elements.

36

• Input
• scan lengths: 120, 50, 23, 123, 50
• number of test wires : 3

• After ordering:
• 123, 120, 50, 50, 23

• Final result
• Test wire 1: 123
• Test wire 2: 120
• Test wire 3: 50, 50, 23
• Max length of 123

Figure 3.8: LPT algorithm used to optimize test wrappers.

example. Suppose the core has five scan chains of lengths 120, 50, 23, 123, 50, and
the test wrapper should use three test wires. In the beginning, the test wire 1 has
length zero, so it receives the first scan chain with length 123. The next iteration
the test wire 2 is the shortest one, then it receives the scan chain with length 120.
The third test wire receives the three remaining scan chains with lengths 50, 50, and
23, which sums up 123. As a result, we get a maximal length of 123.

3.1.2.2 Wrapper for Soft-cores

The decision whether a soft core uses or not a test wrapper depends on the size
of the core and if it will be reused in other designs. If it is not the case, the core
can be merged with glue logic or interconnect logic, and be tested as part of the
interconnect. The next paragraph presents the problem statement for the wrapper
design of soft cores.

Given all parameters as specified in the previous problem but instead of a set of
scan chains S and the length l(Si) for each scan chain Si, the total number of scan
flip-flops f is given. Determine the wrapper design such that the core test length
(in clock cycles) is minimized and m is not exceeded.

The scan partition problem for soft-cores is trivial. The expression d f
m
e finds

the shortest scan chain configuration. Thus, no optimization procedure is needed to
optmize wrappers for soft-cores.

3.2 Test Access Mechanism

The classification of TAM design alternatives illustrated in Figure 3.9 is inspired
on Xu and Nicolici (2005). The first two approaches are not scalable enough for
complex SoCs, thus, they are briefly presented in the next paragraph. The functional
access and dedicated bus-based access approaches are presented in the following
sections.

57

23

functional access

test access mechanism design

isolation ring access

bus-based

direct access

point-to-point wires

NoC-based
dedicated bus-based access

Figure 3.9: Classification of TAM designs.

The direct access approach multiplexes core terminals to the chip pins so that
the test patterns can be applied and observed directly. However, as the number of
embedded cores increases, the number of core terminals may exceed the chip pins.
So, the direct access approach does not scale with the number of cores. In addition,
this approach introduces a large routing overhead. The isolation ring access consists
of isolating each core using boundary scan and serially controlling the core terminals.
This approach has lower routing overhead than the direct access, but it has longer
test application time due to the serial access.

3.2.1 Functional Access or Reuse of Functional Interconnect as TAM

There are papers proposing the reuse of different functional interconnects for test,
such as, directly connected wires, buses, and NoCs. The difference between these
interconnects regarding the reuse for test data transportation motivates the study
of NoC reuse rather than other interconnects. As presented in the introduction,
NoCs have the required feature for future complex chips. Moreover, NoCs support
parallelism, important to reduce test length.

3.2.1.1 Reusing Point-to-Point Wires

Cota et al. (2002) present a tool that reuses point-to-point wires. Transpar-
ent mode is implemented in the wrapper, and mismatches between the number of
functional wires and test wires are solved implementing parallel-to-serial and serial-
to-parallel conversions. The main drawbacks are the scalability in terms of number
of supported cores in the chip and the wire usage of the functional interconnect,
important features for future chips. Moreover, test data is usually not pipelined,
increasing the test application time.

3.2.1.2 Reusing Buses

There are several papers about reusing buses for test. Huang et al. (2001a) reuse
a PCI bus with VCI interface. The wrapper has internal memory-mapped registers.
Thus, an embedded processor can write and read these registers easily. There are
some registers responsible for storing the core mode (test or normal), and registers
used to store primary inputs, primary outputs, scan inputs and scan outputs. One
drawback is that the approach requires a special test packet. It means that both
ends of a transaction should know this special packet format, which is negative
for abstraction. Their wrapper implementation requires buffers for core primary

58

input and outputs, and buffers for scan-in and scan out to temporally store test
patterns and test responses. This implementation choice increases the wrapper area
proportionally to the number of I/Os and scan chains of a core (area overhead for
the wrapper is not presented in the paper). Another drawback is that the buffer for
primary inputs is also used by the primary outputs, which means that the wrapper
does not support test pipelining.

Hwang and Abraham (2001) present a reuse model based on a Wishbone bus.
They develop a test wrapper which they claim that implements the same protocol as
the bus, but no details are given about the implementation, and they do not specify
if it is possible to extend the wrapper to other buses and protocols. They present
area and test time results, but it is compared to boundary scan, known to require
a large test time due to the serialization and large area to implement its wrapper
cells and control logic.

Harrod (1999) and Burdass et al. (2000) present an industrial approach for
AMBA bus. The system has a module that, when it is in test mode, it acts as
the bus master and it reconfigures the external bus interface to provide a high-speed
32-bit parallel interface. This approach is best suited to functional test. However,
Feige et al. (1998) extend the approach to support scan-based test. An ATPG is
run at the core level and a test protocol expansion tool translates the generated test
patterns to the system level format, i. e. to the AMBA interface. The wrapper cells
are also modified to support scan-based test. It means that both the test protocol
expansions tool and the scan insertion tool are modified to support AMBA test pro-
tocol, which means that the approach has a poor backward compatibility in terms
of test tools. In addition, it is a specific solution for AMBA-based systems. The
authors do not claim a general bus reuse approach.

All the above mentioned approaches suffer the common drawbacks of all reuse
approaches based on buses; they require clock gating to halt the test when there
is no data, the bus does not support test pipelining, and the cores must be tested
sequentially. Moreover, like in point-to-point wires, buses are not scalable enough
for future complex chips, and they may not provide sufficient bandwidth for the
functional application. For these reasons, the reuse of NoCs for test has been studied
recently.

3.2.1.3 Reusing Networks-on-Chip

Cota et al. (2004) propose preemptive test scheduling, where the test of a core
can be interrupted if there is no free path between the source to CUT or CUT to sink.
A test packet can also take different paths depending on their availability, but the
shortest available is selected. The drawbacks are that preemptive test may reduce
the test pipelining, clock gating is required to halt the test when there is no data,
and the simple wrapper employed incurs in a significant waste of test throughput,
increasing the test time. Liu et al. (LIU et al., 2005) proposed non-preemptive
testing. A single path from source to CUT and from CUT to sink is established
in the beginning of the test and the test packets are sent one after another on
this dedicated path. Although this approach preserves test pipelining, it does not
guarantee that there will be a new test data in each clock cycle. For example, there
are some clock cycles that are used to pack/unpack data, and also some clock cycles
to execute the functional protocol. The exact timing depends on the packet format,
that may be different in each design; then, the clock gating or holdable scan cells

59

must be used.

Despite all the advantages of NoCs for both the functional and the test domains,
a NoC is more complex than a dedicated TAM. A common aspect to all the previous
approaches is the large amount of NoC implementation details required for the
test model. All kinds of functional implementation details (e.g. used arbitration
algorithm), temporal details (e.g. time to route a packet), and organizational details
(e.g. network topology) are required, in addition to a cycle-accurate scheduling used
to determine the available paths between the test source, CUT and test sink. This
amount of implementation details requires major efforts to adapt the test model to
different NoCs, reducing the generality of the approach. In addition, there is no
detailed description of the requirements for test reuse, such as wrapper design and
support to functional protocol. The case study is usually a specific and simplified
NoC instance that does not represent most current NoC designs.

3.2.2 Dedicated Bus-Based Access

A TAM provides a path for test data transportation between the embedded
cores and the test sources and sinks. In case of dedicated TAMs, this bus is used
only during test application. The main design parameters that can be chosen by
the system integrator are the number of TAMs, the width of each TAM, and the
assignment of modules to the TAMs. Changing these parameters the test designer
can trade-off between several test costs like DfT area, test application time, and
power consumption. The benefits of dedicated TAM are the support to test protocol
expansion (MARINISSEN; LOUSBERG, 1999) and test pattern reuse. It is also
flexible because designer can trade-off, for example, test application time and silicon
area by tuning the TAM width. The main benefit of dedicated TAM compared to
functional access is the guaranteed test access, since the accessibility of a module
does not depend on the functional chip design. The main costs are the design time,
which is minimized with automation, and the increased routing area.

Two approaches, called Test Rail (MARINISSEN et al., 1998) and Test Bus
(VARMA; BHATIA, 1998), are described in the literature. Cores connected to the
same TAM based on Test Bus can only be tested sequentially. Thus, Test Bus does
not support external test mode (see Section 3.1), used to test the logic between
cores and the core interconnect. On the other hand, Test Rail supports external
test mode and also a bypass mode, used if multiple cores are connected to the same
TAM. The cores that are not been tested are in bypass mode to reduce the test path
to the CUT. This mode includes a bypass register used to reduce propagation delay
when there are multiple cores serially connected. Figure 2.2, page 36, illustrates a
Test Rail TAM.

3.3 Test Scheduling

Several techniques for SoC test scheduling have been proposed for dedicated
TAMs. A recent paper by Xu and Nicolici (XU; NICOLICI, 2005) surveys these ap-
proaches. A considerable amount of research has been done in this area. For exam-
ple, there are scheduling considering static (GOEL; MARINISSEN, 2003a) and con-
figurable wrappers (KORANNE, 2002a), preemptive (IYENGAR; CHAKRABARTY,
2001) and non-preemptive test (GOEL; MARINISSEN, 2003a), co-optimization
of scheduling and wrapper (GOEL; MARINISSEN, 2003a), scheduling algorithms

60

22

on-chip source and sink

programmable

reused for test

hardwired

dedicated for test

design approach

test data compression
pseudo-random test

Figure 3.10: Classification of on-chip ATE approaches.

based on integer linear programming (CHAKRABARTY, 2000), based on graph the-
ory (KORANNE, 2002b), based on packing problems (IYENGAR; CHAKRABARTY;
MARINISSEN, 2002b), scheduling algorithms considering power and precedence
constraints (IYENGAR; CHAKRABARTY, 2001), among several other variations.
It makes sense to propose NoC-reuse approaches that can use most of this knowledge.

3.4 Test Resource Partition

Some types of sources and sinks are surveyed and classified in terms of their
implementation as illustrated in Figure 3.10.

3.4.1 Off-Chip Tester

An off-chip tester can be embedded into the board of the system, where test data
is loaded from, for example, a memory or a RF link. However, the most common
type of off-chip test application is by means of an Automatic Test Equipment (ATE).
The tester is loaded with a test program, usually generated by an ATPG tool. The
test application cost is typically calculated in seconds per device for a given ATE
and it determines the factory throughput, i.e. the number of chips manufactured per
day. The cost of a tester depends on the number of pins and on the vector memory
depth (Mbit per channel). The number of pins limits the test parallelism and the
test time, while the memory depth limits the test data volume for a chip. Besides
the cost of such equipment, ATE is still the most used test application approach.
However, it is predicted that the increase of logic per pin and the high test frequency
will require even more expensive testers, increasing the chip cost. For this reason,
alternative on-chip test application methods are investigated.

3.4.2 Hardwired On-Chip Tester

This class consists any type of embedded tester designed and optimized specif-
ically to test a specific set of cores (one or more cores). The tester would require
redesign to test a different set of cores than the set it was designed for. This type
of tester typically requires tools to generate the test logic. The most common type
of embedded tester is Built-in Self-Test (BIST) related logic.

An alternative to ATE-based test application is the use of BIST, where hardware
modules responsible for the test pattern generation and response analysis are em-
bedded into the chip (BARDELL, 1987; STROUD, 2002). BIST reduces the amount
of data transferred between the ATE and the chip, thus, a cheaper tester can be

61

used. BIST enables at-speed test to increase test quality.
Hetherington et al. (HETHERINGTON et al., 1999) present results for the ap-

plication of logic BIST for industrial designs. Practical issues are reported in order
to generate BIST-compliant cores for at-speed testing. The paper reports fault cov-
erage and area overhead comparison between ATPG and logic BIST. The results
present that logic BIST can achieve similar test quality to ATPG with minimal area
overhead and few changes to the design flow.

On the other hand, many authors say that the main problem related to pseudo-
random test is the large number of test patterns and, in several cases, low fault
coverage. One can argue that the issue related to the number of test patterns can
be alleviated considering that, for example, the LFSR runs faster than the external
tester. Related to the low fault coverage, several papers have demonstrated the
advantages of using BIST schemes based on multiple polynomials and seeds.

Hellebrand et al. propose in (1995; 1996) a BIST scheme that supports LFSR
with multiple polynomials and seeds. A set of seeds is obtained to increase the
fault coverage by solving systems of linear equations. Fagot et al. (1999) propose
a simulation based method to compute an efficient seed of a LFSR. The method
is intended to produce a single seed that tests the hardest to detect faults of the
CUT and achieves a high fault coverage. Krishna and Touba (2001; 2002) propose
a loss-less test vector compression technique which combines LFSR reseeding and
statistical coding to provide a high encoding efficiency.

The main problem related to reseeding approaches is the computation time re-
quired to find the good seeds and to find a good trade-off between number of seeds
(i.e. memory requirement) and fault coverage.

A hardwired on-chip tester can also implement test data decompression (RA-
JSKI; TYSZER; ZACHARIA, 1998). This approach also enables the use of a slower
external tester to provide compressed test data, which is decompressed on-chip and
applied to the CUT. The test responses are compressed and sent back to the external
tester.

The main challenge related to test data decompression is the trade-off between
compression rate (i.e. memory requirement) and complexity of decompression al-
gorithms. Very efficient compression algorithms exist but their complexity would
increase the area overhead in case it is implemented in hardware, or the test time
in case it is implemented in software.

3.4.3 Programmable On-Chip Tester

A programmable on-chip tester has the advantage that the same hardware can
be used to test different cores, changing just the “test program” and test data. This
type of tester can be dedicated for test or reused from the functional cores.

3.4.3.1 Dedicated Programmable Tester

Cota et al. (2001) propose an embedded test controller to test some blocks of
the SoC that require at-speed testing. Such a controller, called MET, is embedded
into the system with the purpose of test data manipulation and controlling. As the
test controller is synthesized in the same technology of the SoC, at-speed test can be
performed. The MET approach relies on the definition of test-specific instructions.
Additionally, the test vectors and response are assumed to be stored in the memories
that are usually available in the SoC.

62

Amory et al. (2004) propose a programmable LFSR and MISR with support to
reseeding to increase the fault coverage. These modules were integrated to a IEEE
Std. 1500 compliant wrapper in order to provide a reusable and programmable BIST
approach that could be used to test a large set of cores.

Some papers (APPELLO et al., 2003; HUANG et al., 1999) propose a program-
mable memory BIST processors. The BIST processor can be programmed with
different memory test algorithms, such as March algorithms, and be reused to test
different memory cores.

Although the main motivation of programmable and dedicated on-chip testers
is to reuse the same hardware for different cases, there are tools, like memory BIST
and logic BIST from Mentor Graphics, that automatically insert customized BIST
for a specific core. In addition, programmable tester also needs a tool to generate
efficient test programs.

3.4.3.2 Reused Programmable Tester

The reuse of an embedded processor for testing other cores in a SoC has been
largely studied in the literature (HUANG et al., 2001a; HWANG; ABRAHAM,
2001, 2003; AMORY; OLIVEIRA; MORAES, 2003; KRSTIC et al., 2002). The
approaches proposed so far consider different aspects of the processor reuse, ranging
from the reuse as test controller to the use as a built-in test pattern generator with
compression features.

Huang et al. (2001a) present a bus-based architecture with a MIPS processor,
a PCI bus, and VCI interfaces. Using this architecture, the authors evaluate the
test time and fault coverage of some ISCAS89 benchmarks. Lai and Cheng (2001)
use the same architecture presented in (HUANG et al., 2001a) to evaluate test
programs generated for four ISCAS89 benchmarks, using the DLX processor. The
test program length ranges from 40 to 27,000 bytes while the test length ranges from
94 to 30,430 clock cycles. The results point to important requirements in terms of
test memory and test length compared with hardware-based test.

Hwang and Abraham (2001) present a bus-based architecture with an ARM
processor and Wishbone interface. The authors compare the test time and area over-
head between software-based test and boundary scan. In both cases, the software-
based test present better results. In (HWANG; ABRAHAM, 2003), the same authors
evaluate a new test pattern compression method in which test data can be decoded
rapidly on embedded processors. They compare the compression results with other
compression methods implemented on embedded processors. They use ISCAS89
benchmarks as CUT.

Amory et al. (2003) present a CAD tool, which helps the designer to integrate
cores on a bus-based SoC and generate test programs. These test programs are
loaded into the processors to test other cores. Results are presented using a subset
of ISCAS benchmarks as CUT.

Marcon et al. (2004) evaluated the implementation of several memory BIST
algorithms running in different processors against a hardware implementation. Test
time, memory, requirements for the test code, area overhead, and power dissipation
were evaluated.

In most sittuations, the reuse of embedded processor for test depends on the reuse
of functional interconnect for test data transportation. All the previous mentioned
approaches suppose that the chip interconnect is a bus. The problem with this

63

assumption is, in case there are multiple processors embedded into the chip, their
use for test may not represent shorter test length because the bus is the bottleneck
to the data transfer. For this reason Amory et al. (2004; 2005) did the first attempt
to evaluate the reuse of multiple embedded processors for testing NoC-based SoCs.
The results show that the combined use of external test and multiple processor reuse
can reduce the test length in case the tester has few test pins.

Processor reuse for test has the advantage that the “source” and “sink” are
already embedded and connected to the “TAM” (i.e. the functional interconnect).
Thus, their use has no additional cost. However, the main challenges for an effective
reuse of embedded processors are the trade-off between the program complexity, fault
coverage, and test length. On one hand, a very simple and fast test program with
small program size can be used, but the number of required test patterns may
become an issue. On the other hand, a more complex test program implementing a
complex decompression algorithm requires more clock cycles to decompress a single
test pattern and requires more memory to store the test program.

3.5 Other Relevant Test Approaches

3.5.1 NoC Testing

Previous papers presented the problem of NoC testing (AKTOUF, 2002; UBAR;
RAIK, 2003; VERMEULEN et al., 2003). Ubar et al. (2003) and Vermeulen et al.
(2003) suggested that a wide variety of standard DfT solutions can be used, from
BIST for FIFOs, to functional testing of wrapped routers. However, these proposals
have not been applied, to the best of our knowledge, to actual NoCs. In addition, a
NoC can also be tested using standard core-based modular testing strategies (SILVA,
2005), i.e. the use of an IEEE Std. 1500-compliant test wrapper and the use of scan-
based approaches to test the routers. Hence, the NoC can be considered either a flat
core, i.e. a single test wrapper is inserted into the NoC interface, or a hierarchical
core, i.e. additional test wrappers for each router are necessary.

Amory et al. (2005) evaluated the boundary-scan approach and the core-based
modular testing in a NoC. The results presented a very high area overhead for
these approaches brought from board-level testing and chip-level testing, respec-
tively. These results motivated the research for test approaches specific for NoCs.
Amory et al. (2005) proposed a test strategy for NoCs based on identical routers.
The authors claim that the test costs (DfT area, test length, test data volume,
and ATPG run) can be reduced when there are a large number of identical routers
on the NoC. The paper presents a wrapper design with broadcast capability, the
DfT required by the routers, and the hardware for on-chip test response evaluation.
However, the approach is limited by the number of identical routers existing in the
chip. In addition, output comparison may lead to a higher wiring length (WU;
MACDONALD, 2003), which was not evaluated in the paper.

Grecu et al. (2005) proposed and evaluated an approach for testing the NoC
routers. The approach is based on progressive test of the NoC, where the already
tested NoC routers are used to transport test data to the routers under test. The
approach minimizes the use of TAM to transport the test data and minimizes the
test length since it explores the parallel path of the NoC and the multicast capability.
The authors assume that all the routers on the NoC are identical, hence, the same
test patterns are used to test them. The test length using sequential testing (i.e.

64

17

55 55 55

55 55 55

55 55 55

(a) torus

33 44 33

44 55 44

33 44 33

(b) mesh
55 55 55 55

77 77

33 33 33 33

77 77

33 33 33 33

77 77

33 33 33 33

77 77

33 33 33 33

(d) butterfly fat tree

22

33

22

33

44 44

33

(c) arbitrary topologies

Figure 3.11: Different network topologies and their degree; torus, mesh and fat tree
used in (GRECU et al., 2005), and an arbitrary topology used in (HOSSEINABADY
et al., 2006). The number indicates the router degree.

unicast) and multicast testing are compared; area overhead is not evaluated. The
authors present a series of assumptions like the test response is compared locally,
the existence of identical routers, the existence of multicast, and the reuse of NoC
channels. Hosseinabady et al. (2006) proposed a test data broadcast approach. The
authors do not focus on how the internal FIFOs and interconnect are tested. Like
Grecu et al. (2005), Hosseinabady et al. (2006) did the same assumptions.

Let us compare a single feature of the presented previous approaches (AMORY
et al., 2005; GRECU et al., 2005; HOSSEINABADY et al., 2006). All of them assume
that all routers are identical. This assumption is not a problem at all, when used
in the correct context. Torus topology MAY have identical routers. For example,
all routers in a torus topology have the same degree, i.e. number of ports. However,
the NoC designer has the freedom to specify, for example, that a specific router have
bigger FIFOs than the other because it is the bottleneck of the application. That
is why a torus topology MAY have identical routers. On the other hand, Grecu
et al. (2005) evaluated mesh and fat-tree topologies; Hosseinabady et al. (2006)
evaluated arbitrary topologies. One can not assume that all routers are identical
because, as counter-example, routers have different degree in mesh, fat-tree, and in
arbitrary topologies (See Figure 3.11 where the number in each router represents
the router degree considering that each router is also connected to a core). Routers
with different degree means that routers have different number of primary inputs
and outputs, thus, different test patterns, thus, broadcast to send test stimuli is
limited, thus, output comparison can not be used to evaluate all the routers. In
conclusion, equal number of ports is a necessary condition for identical routers, but
it is not the only condition. For example, buffer sizes and logic should necessarily
be equal too.

The assumption of identical routers is just one example of simplification that can
reduce the scope of the proposed test approach. It brings us the problem of finding
a more general test approach, which is the main focus of this thesis.

3.5.2 FIFO Testing

The area for FIFO buffers corresponds to a considerable amount of the NoC
area (RIJPKEMA et al., 2003; MORAES et al., 2004; SAASTAMOINEN; ALHO;
NURMI, 2003). Thus, these buffers are designed as small as possible, just sufficient

65

42

D Q

R

D Q

R

D Q

R

D Q

R

D Q

R

data
in

data
out

Rreq

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out

Rreq
controllercontrollerWreq

(a)
42

D Q

R

D Q

R

D Q

R

D Q

R

D Q

R

data
in

data
out

Rreq

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out

Rreq
controllercontrollerWreq

(b)

43

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out
Rreq

controllercontrollerWreq

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out

Rreq
controllercontrollerWreq

(c) 43

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out
Rreq

controllercontrollerWreq

D Q

en

D Q

en

D Q

en

D Q

en

D Q

en

data
in

data
out

Rreq
controllercontrollerWreq

(d)

Figure 3.12: FIFO designs. (a) Conventional shift register; (b) push-in shift-out
register; (c) push-in bus-out register; (d) push-in mux-out register; (from (BENINI;
DE MICHELI, 2006)).

to support the functional communication requirements, in order to reduce the size
of the NoC (SAASTAMOINEN; ALHO; NURMI, 2003). Other approaches use full-
custom FIFOs to reduce the area (RIJPKEMA et al., 2003). Considering a 0.38µm
technology library, the area of a SRAM cell is 84µm2 while the area of a DFF is
984µm2 (BENINI; DE MICHELI, 2006). For performance reasons, the NoC designer
can use FIFOs on the NoC in different positions (in the inputs, outputs, or even
centered). Moreover, different FIFO designs can be used in NoCs (see Figure3.12);
each one requires different fault models and BIST circuitry. One should not forget
that the NoC is composed of dozens of small FIFOs distributed over the chip. These
characteristics complicate the development of a general test approach for the NoC
FIFOs.

The most common FIFO designs are shifting-type FIFOs and the RAM-type
FIFOs (GOOR; SCHANSTRA; ZORIAN, 1995). The former is based on a shift
register that shifts data from the write port to the last unused location. The latter
has a read and write address register to access data. RAM-type FIFOs can also be
implemented as single-port or dual-port FIFO.

The papers about FIFO testing can be classified as: fault model proposal, BIST
proposal, or scan based. Van de Goor et al. (1995) proposed a fault model for
shifting-type FIFOs. Aitken (2004) proposed a modular wrapper for at-speed BIST
and repair of small memories. The approach is specially interesting for a large
number of distributed register files and FIFOs. The DfT overhead presented for a
64x64 FIFO is 28%, while for smaller FIFOs the area overhead increases even more,
which can be considered high for NoCs. The area overhead can be reduced if the
logic related to memory repair is removed.

The main drawback of BIST circuitry to test small and distributed memories is
the large area overhead. The memories may be distributed throughout the chip to
allow sharing the BIST circuitry. An alternative approach, presented in (REARICK,
1999; AMORY et al., 2005), is defining a general DfT for FIFOs. Both papers
propose the insertion of scan chains around the memory matrix, i.e. scan chain in
the data input, data output, and address registers. Thus, any test algorithm, like
the one proposed in (GOOR; SCHANSTRA; ZORIAN, 1995) to test the memory

66

Table 3.2: Properties of interconnect test sequences (from (JUTMAN, 2004)).
count. true/compl. interl. walking
seq. seq. true/compl. seq.

of dlog2(N)e 2× dlog2(N)e 2× dlog2(N)e N
vectors
defects shorts shorts, shorts, shorts,

opens, opens, opens,
(delays) delays (delays)

diag. bad good good best

matrix, can be employed via scan chains to test the FIFOs. Scan based test of
FIFOs increases the test length, but the area overhead is significantly reduced.

3.5.3 Interconnect Testing

Testing and diagnosis of NoC channels is also important. It is highly recom-
mended to use delay fault model to test the global interconnects which may have
long wires. Delay fault testing requires a sequential application of two vectors such
that the path through the logic is set-up by the first vector while the second vector
produces the transition for the delay fault detection.

We highlight two approaches for that: at-speed interconnect BIST and scan-
based delay test. Jutman (2004) described a new test sequence, called Interleaved
True/Complement code, and BIST circuit for interconnect. Test length and detected
faults of the proposed test sequence were compared to sequences like Counting Se-
quence, Walking One, and True/Complement (Table 3.2). The proposed approach
detects both static and dynamic faults on interconnects and it supports at-speed di-
agnosis without aliasing. The proposed parallel test pattern generator and on-chip
at-speed response analyzer are very efficient in area. Jutman et al. (2005) applied
the approach proposed by (JUTMAN, 2004) for testing the NoC interconnect. How-
ever, the test of the flow control wires of a channel was not addressed. In addition,
a complete NoC may have several channels and the total overhead for the intercon-
nect BIST may become relevant. The second problem is that typically the channels
does not work at-speed, but according a certain protocol. For example, handshake
typically takes two clock cycles to perform a transaction. Running the test faster
than the functional speed may over-test the wires. Moreover, power consumption
may become an issue while testing several channels in parallel and at-speed.

The second usual approach is a scan-based delay testing, called enhanced-scan
test (BUSHNELL; AGRAWAL, 2000), which requires scan cells with an extra latch
called hold latch. This latch temporally stores the second vector used for delay fault
detection. A recent approach called first level hold proposes a delay fault testing
technique, which allows enhanced scan-like test application, but with lower area
overhead (without the hold latch) (BHUNIA et al., 2005). The approach holds the
state of the combinational circuit by gating the VDD and GND of the first level
logic gates. It does not require extra area and signals, it does not change the test
generation/application process, it reduces the delay overhead and power compared
to enhanced-scan approach.

The test length of scan-based approaches requires shifting test patterns, then
they have higher test length than interconnect BIST approaches, however, scan-

67

Table 3.3: Comparison between the TAM approaches.
application- support simple trade-off future
independent parallelism design test costs chips

point-to-point no yes no ? no
bus yes no yes no no
NoC no yes no ? yes

dedicated TAM yes yes yes yes ?

based approaches have lower area cost.

3.6 Discussion

Since the main goal of this thesis is to reuse the NoC in a cost-effective manner,
we concentrate the discussion on different TAM approaches. Table 3.3 compares
five TAM features among the reviewed TAM approaches.

Application-dependency informs how likely the TAM design changes according
to the application requirements (performance and cost). The support to parallelism
tells if the TAM supports independent communication flows in parallel and supports
high bandwidth. Simple design measures whether it is easy to integrate the test
approach into the overall SoC design flow. The ability to tune the TAM design
according to test requirements is indicated in trade-off test costs. Future chip informs
how likely the TAM can be used in complex chips using future technologies.

A comparison between the reuse of these three types of functional interconnects
reveals that NoCs have two striking advantages compared to buses and point-to-
point: NoCs are more likely to be supported by future complex chips (BJERRE-
GAARD; MAHADEVAN, 2006; JANTSCH; TENHUNEN, 2003; BENINI; DE MICHELI,
2002; GUERRIER; GREINER, 2000; ZEFERINO; SUSIN, 2003) and NoCs support
parallelism (see hypothesis 1, page 69).

The comparison between NoC and dedicated TAMs tells that both of them
support parallelism to reduce the test length. On one hand, dedicated TAMs are
based on a very simple design, they are application-independent, and they allow
trade-off test costs (XU; NICOLICI, 2005). However, it is unclear if dedicated
TAMs can be efficient in future chips because of the routing overhead and long
global wires (see hypothesis 2, page 69).

Concerning NoCs, as far as we know, there is no work demonstrating that it
is possible to trade-off test costs in NoC architectures and none of the existing
approaches was able to abstract the NoC complex and application-dependent design.
We believe that if these three issues can be overcome, then NoC reuse might be a
competitive approach.

68

69

4 PROPOSED TEST MODEL

This chapter introduces the proposed test model. It presents hypothesis, required
properties, test requirements, the sources of jitter in NoCs, the proposed test model,
an overall problem statement, and the proposed test flow.

4.1 Fundamental Hypotheses

The proposed test approach presented in this thesis relies on two fundamental
hypotheses:

Hypothesis 1: NoC will be the main communication architectures for future and
complex chip designs. There are several papers in the literature demonstrating
advantage of NoCs compared to other communication architectures. In addition,
as demonstrated in Section 2.2.2, there are several industrial approaches coming
up and, recently, a test chip based on NoC has been announced (CLERMIDY;
VARREAU; LATTARD, 2005).

Hypothesis 2: Can dedicated TAM be the main test access mechanism for these
future and complex chip designs ? The answer is probably not. The reason for this
is that traditional global on-chip interconnects, like buses (a dedicated TAM is a
kind of bus), are becoming the bottleneck in terms of bandwidth, signal integrity,
and power dissipation of complex chip designs (ITRS, 2007).

In addition, one can observe that most test planning algorithms proposed in the
literature minimize the chip test length, but minimization of TAM design costs (e.g.
wiring length) has received little attention; they are based on layout constraints to
minimize the TAM wiring length. For example, according to Goel and Marinissen
(GOEL; MARINISSEN, 2003b) the wiring length can be reduced about 83% with
a test length penalty of 4%. However, these approaches assume that the layout
position of every core is known a priori. This assumption complicates the design
flow since, in the early stages of design, the layout information is not available. To
get the information it would be required to build the layout of the full chip, then
return to the initial design steps to insert the TAM constrains and re-implement the
layout with optimized TAMs.

In conclusion, approaches for wire length minimization of TAMs are required for
complex chips, nevertheless the approach based on core layout position complicates
the design flow. New approaches for TAMs are required.

70

4.2 Properties of Proposed Test Model

Building a general NoC reuse approach for BE NoCs is the main concern of this
thesis. We have identified in the Prior Work that one of the main problems with
most reuse approaches is that they are application-dependent and not general since
the interconnect design is typically either application-dependent or complex.

Our second main concern is compatibility with the conventional test model based
on dedicated TAM. We enforce this compatibility because, based on the conclusion
of the Prior Work section, the SoC test approach based on dedicated TAM seems
to be the most cost-effective approach so far. In addition, we build the proposed
test model on top of existing and well-established research and standards. Thus,
we can use the same optimization procedures, DfT logic, and tools for the proposed
approach. In fact, few adaptations for the DfT logic and the algorithms are required,
but we reuse the core optimization algorithms and DfT design strategies. These
adaptations are one of the main contributions of this thesis.

The remaining concerns and required properties are:

(i) The trade-off of test cost parameters to tune the approach under several con-
straints. The proposed approach optimizes DfT area and test application time.
Other cost functions like power consumption can be included in future work;

(ii) The DfT modules should be connected as plug-and-play, without modifying
any other module except the DfT modules;

(iii) In addition, the DfT modules should have minimal impact on the functional
requirements and the proposed method should fit easily in a chip design flow.
Recall that, as seen in Section 4.1, the dedicated TAM approach with layout
constraint complicates the design flow;

(iv) The support to multiple TAMs to allow testing multiple cores in parallel re-
ducing the test application time.

The six classes presented below summarize the required properties of the pro-
posed approach:

1. general and application-independent test approach;

2. Compatibility with conventional test approach;

3. Enable design-space exploration and trade-off test cost parameters;

4. Fit easily in a chip design flow;

5. Minimal influence on the functional requirements;

6. Support to multiple TAMs.

4.3 Test Traffic Requirements

Test traffic requires uncorrupted, lossless, in-order data delivery, zero-jitter, and
scalable and constant bandwidth. We want to keep these requirements to preserve
the natural test streaming expected by the ATEs and the CUTs.

71

The proposed approach requires that the NoC provides the previous mentioned
requirements. The first two requirements are usually implemented in NoCs. The
third one is easily accomplished by sending test data over a single path. Jitter is
caused because NoCs have several shared resources (channels and routers). Shared
resources require arbitration schemes, which cause jitter. Scalable and constant
bandwidth is easily solved if the zero-jitter requirement is fulfilled; it only requires
to send/receive data at regular time intervals.

In conclusion, zero-jitter requirement is the most critical to be met. The next
section identifies the sources of jitter in NoCs.

4.4 Sources of Jitter in NoCs

4.4.1 Shared Channels

Channels are shared in a network to save area for wiring. However, when two
packets compete for the same channel, the arbitration logic grants access to one of
them. The other stream is delayed, causing jitter and disrupting the test application
of a core.

4.4.2 Shared Routers

The routing time of a router, i.e. the time it takes to find the output port, also
causes jitter. There are two types of router schemes that are relevant for test: routers
with distributed and centralized routing (DUATO; YALAMANCHILI; NI, 2003).

In the first case, the routing logic is typically located at the input ports, thus, it
usually requires more silicon area to replicate the routing logic to every input port.
However, it can route several independent packets (packets that do not require the
same output channel) in parallel without any loss of performance. Therefore, the
routing delay is deterministic and known a priori.

Centralized routing schemes save in silicon area but cause an indeterminate time
to route a given packet. Usually, even if two packet request different output channels,
the packet that arrives first to the router is routed first, while the other routing
requests wait. Therefore, the routing delay varies according to the router utilization.

Since it is not up to the test engineer to decide whether centralized or distributed
routers are used in a design, the test strategy must support both types of routers.

4.4.3 Load Fluctuation

Figure 4.1 illustrates the test data flow from the input test pins to the input of
the CUT. The input test pins receive continuous test data from the tester (line 1)
and the CUTs expect the same traffic shape (last line). However, one can realize that
the traffic shape at the input of router 1 (line 2) is different from the wrapper input
(line 5). This deformation is called load fluctuation and it is caused by the routing
delay, which in this example is four clock cycles. Thus, the data is ‘condensed’ every
router, and, at the end of the flow the traffic has a bursty format (line 5). This traffic
shape is not interesting for test because it creates gaps (line 5) in the data delivery.
Then, our solution uses a FIFO buffer to transform the previous bursty format to
the periodic format (line 6). The periodic traffic shape is preferred because it is
easier to transform it to the original traffic shape sent by the tester (lines 1 and 7).

72

71

router2

CUT
input

wrapper
input fifo

routern

router1

input test pins
(line 1)

input router 1
(line 2)

input router 2
(line 3)

input router n
(line 4)

input wrapper
(line 5)

output FIFO
(line 6)

test wire
(line 7)

one-bit stream

header flit

data flit of four bits

core test start
…

test pin

ATE
interface

gap

pi

pi

routing
delay

Figure 4.1: Example of load fluctuation in an input test path. pi is defined in Equa-
tion 5.1, page 86.

4.5 Introduction to the Proposed Model

This section briefly introduces the basic DfT modules and the NoC partition
method.

4.5.1 ATE Interface

An ATE interface (AMORY et al., 2007) is the DfT module that connects the
test pins to the NoC. In realistic designs, NoCs use standardized on-chip protocols,
like OCP (OCP-IP, 2003), different from the test protocol used by ATEs. Thus,
some protocol conversion logic is required. Recall the discussion in Section 2.2.1.2,
page 45.

The main tasks of an ATE interface are to do width conversion between the num-
ber of test pins and the network channel width, protocol conversion to communicate
the ATE with the NoC, and traffic shaping, i.e. to correct the traffic deformation
caused by jitter. Section 6.2 presents more details about the ATE interface design.

4.5.2 Test Wrapper

Test wrappers are required to all modules of the chip along with, including cores,
routers, and NIs (it may be convenient to combine a router with its NI to reduce
the total number of wrappers). The basic principle of conventional test wrappers
remains the same. The main difference is that the network transports the test data.
It implies that the wrapper has the same three tasks of the ATE interface (width
conversion, implement the on-chip protocol, and traffic shaping) plus the tasks of a
conventional wrapper. Chapter 5 details the wrapper design and optimization.

The basic and common approach to design wrappers for NoC reuse is to define
an input port, where test data comes in, and an output port, where the test data

73

goes out the module (AMORY et al., 2007). The words received from the source in
the input port are shifted to the remaining core terminals and scan chains. After
loading the complete stimuli, the test is applied and the responses are captured in
the output wrapper cells and in the scan chains to be shifted out to the output
port. The output port sends the response to the sink. The wrapper must know the
network address of the sink to build a correct test response packet.

The structure of wrapper for routers is the same, but it uses different proto-
cols, which requires slightly different wrapper control logic to execute the protocol.
For instance, cores use OCP on-chip protocol while routers use credit-based router
protocol.

4.5.3 The NoC Partition Method

Basically, there are two approaches to guarantee the zero-jitter requirement: one
can use NoC with guaranteed jitter (approach 1) or DfT must be added to the NoC
to provide the jitter guarantee (approach 2). The former requires less area for DfT,
but it requires more complex NoCs. Moreover, the NoC reuse can only be used in
NoCs with such guaranteed jitter service, reducing the scope of the approach. The
latter approach (adding DfT) naturally requires more silicon area for DfT than the
former one, however, it can also be used on low cost network without any guaranteed
service.

Amory et al. (2007) presented a wrapper design and optimization procedure
for NoC with guaranteed jitter. The same authors have also demonstrated that,
compared to the approach 1, the approach 2 requires only a small FIFO in each
wrapper input (AMORY et al., 2007).

The approach proposed by this thesis is based on the second approach. In sum-
mary, the proposed DfT is built to avoid resource competition and packet collision,
which are the main sources of jitter, in NoCs without guaranteed services.

On the other hand, the proposed DfT modules can be easily adapted for the
first approach by removing the FIFOs. The FIFOs are still required to remove load
fluctuation, even considering NoCs with guaranteed jitter. However, in most cases
these FIFOs are located inside the NI (RADULESCU et al., 2005), then, they are
not required in the wrapper.

The proposed solution is to sub-divide the network into different logic partitions.
Suppose, that a directed graph models the entire NoC-based chip design, such that
routers, NIs, and cores are nodes and the channels are edges. A NoC partition is a
sub-graph of the system graph such that there are ATE interfaces, which represents
the test source and sink in the partition, and all nodes of the partition can be reached
from these sources and sinks. A module belongs to only one NoC partition and every
module must be in one partition. The test inside a NoC partition is serial in order
to avoid resource competition that causes jitter. The test data is transported only
within a single partition and it cannot have access to the other partitions also to
avoid possible resource competition.

The modules of a NoC partition are tested sequentially. However, the entire
system can have multiple NoC partitions, supporting parallel testing. Figure 4.2
presents a SoC and its test partitions. This figure is a simplified view of an entire
system where we can see only the routers. In fact, this figure is useful to show the
partitions. When a router is part of a partition, it means that the router and all
nodes attached to it, like its NI and the cores attached to the NI, are also part of

74

b
01

b
11

a
21

b
31

d
00

b
10

b
20

b
30

c
02

b
12

a
22

a
32

Figure 4.2: Example of partitioned NoC. The letters identify the partitions, the numbers
refer to the routers, and the circles with fat lines indicated where the ATE interfaces are located.

this partition.

For instance, partitions a, b, c, and d in Figure 4.2 are running in parallel. The
ATE interfaces of partition b are located in routers 11 and 30. Two ATE interfaces
are required because, assuming XY 1 routing algorithm is used, there is no single
position where the ATE interface would have access to all nodes of partition b. In
this case, the ATE interface 11 tests routers 01, 11, 12, while the ATE interface 30
tests 10, 20, 30, and 31. If more than one ATE interface is required for a partition,
then only one is activated at a time to avoid packet collision an also because these
ATE interfaces share the same test pins.

4.5.4 More Examples about the NoC Partition Approach

Let us take the system illustrated in Figure 4.3(a) as an example. Figure 4.3(b)
shows three possible NoC partitions.

Considering a NoC partitioning, the modules between the source, a CUT, and
the sink represent a NoC test path. Let us take core2 in the NoC partition 1 as an
example. The NoC test path required to test this core is illustrated in Figure 4.3(c).
This figure says that, assuming that its ATE interface is connected to the ni1 and
considering a given network routing algorithm, the test stimuli pass through ni1,
router1, router2, ni2, and then it reaches core2. The responses path works in a
similar manner. The same concept also applies to reach network modules like routers
or NIs. For example, Figure 4.3(d) illustrates the test path to test router9 in the
NoC partition 1. However, note that in this example the stimuli path and the
responses path do not necessarily consist of the same modules.

To build the test paths of a partition, the partition can be modeled as a directed
graph, where vertices are routers, NIs, or cores, and the edges are determined by the
physical direction of the data flow and the routing algorithm. The routing algorithm
is important because the test model must not allow impossible NoC test paths since
the test data is sent while part of the network is in functional mode (i.e. respecting
a routing algorithm). Figure 4.3(e) represents the test paths to test the modules
of partition 1 considering the XY routing algorithm. This is the reason that, due
to the constraint of the XY routing algorithm, router9 has router2 as an incoming
router and router4 as an outgoing router. Note that the graph in Figure 4.3(e) has
a relation of partial order. The partial order is required because the modules in the
test path of a given CUT must have been tested first. This figure says, for example,

1The packet is routed in the horizontal axis first, then it is routed in the vertical axis.

75

that:

• the first modules to be tested are either c1 or ni1;

• to test r1, ni1 must be tested first;

• to test c2, the ni1, ni2, r1, and r2 must be tested first. Figure 4.3(c) shows the
stimuli path and the responses path for c2 considering a XY routing algorithm;

• to test r9, the ni1, r1, r2, and r4 must be tested first. Figure 4.3(d) shows the
stimuli path and the responses path for r9 considering a XY routing algorithm.
Note that in this case the stimuli path and responses path do not involve the
same set of modules.

The total number of test pins is distributed among the test partitions and the
partitions can receive different number of test pins, according to the test data band-
width required to test the modules within the partition. The number of partitions,
the modules in each partition, and the number of test pins assigned to each parti-
tion are the main problems to be solved such that the chip test length is minimized.
Figure 4.3(f) shows a valid test scheduling for this example design.

Figure 4.4(a) illustrates a typical test data flow in the proposed approach. Let
us assume that the stimuli data set of a certain core consists of a set of m flits and
the responses data set consists of a set of n flits. Then, the latency of all words
of a stimuli data set (Ls) must be equal (Ls

0 = · · · = Ls
m−1, thus, zero-jitter). The

value of the latency does not matter for the test model (Section 4.9 explains the
impact of latency for test). The latency of all words of a responses data set (Lr)
must also be equal (Lr

0 = · · · = Lr
n−1), but not necessarily equal to the latency of

stimuli data set because the number of routers of both paths can be different. Of
course, the latency to test a different core can also be different because the test path
is different (different number of routers). With this timing characteristics, the NoC
partition works as a pipeline (Figure 4.4(b)) driving test data to its cores, exactly
like dedicated TAMs and external testers.

The most important feature of this model is that there is only one active test
source and sink per partition, which test just modules within its partition, causing
no packet collision. Once there is no packet collision, complex dynamic network
issues like packet scheduling, packet congestion, and cycle accurate network model
are not required. Few design information is required to model the system, what makes
the model simpler and more general.

4.6 Reducing the Jitter Bound Using NoC Partitioning

This section shoes how the NoC partition method solves the zero-jitter problem.

FIFO buffers (line 6 of Figure 4.1) are typically used to eliminate the jitter.
However, the size of the buffer is proportional to the jitter bound (ZHANG, 1995).
Thus, a small jitter bound implies in a lower silicon area for DfT. The rest of this
section shows how the proposed approach reduces the jitter bound and minimizes
the silicon area for DfT.

76

50

ni2ni2ni1ni1 ni3ni3

C7C7

R1R1 R3R3

R6R6 R8R8

R2R2

R7R7

C6C6

C3C3C2C2C1C1

ni7ni7ni6ni6 ni8ni8

C8C8

R4R4 R5R5R9R9C4C4 C5C5ni5ni5ni4ni4

core port router port

NoC

(a)

44

ATE
interface

ATE
interface

ATE
interface

ATE
interface

ATE
interface

ATE
interface

ni2ni2ni1ni1 ni3ni3

C7C7

R1R1 R3R3

R6R6 R8R8

R2R2

R7R7

C6C6

C3C3C2C2C1C1

ni7ni7ni6ni6 ni8ni8

C8C8

R4R4 R5R5R9R9C4C4 C5C5ni5ni5ni4ni4

partition 1 partition 2

partition 3

test pins

test pins

(b)

45

ATE
interface

ATE
interface

testertester

ni1ni1 R1R1 R2R2 ni2ni2 C2C2 ni1ni1R1R1R2R2ni2ni2

stimuli path responses path

(b) test path of core C2 of partition 1

ATE interface

ni2ni2ni1ni1

R1R1 R2R2

C2C2C1C1

R4R4 R9R9C4C4 ni4ni4

partition 1

ATE interface

(c) 46

ATE interface

testertester

R1R1 R9R9R2R2 R1R1R4R4

(c) test path of router R9 of partition 1

ni1ni1 ni1ni1

stimuli path responses path

ni2ni2ni1ni1

R1R1 R2R2

C2C2C1C1

R4R4 R9R9C4C4 ni4ni4

partition 1

ATE interface

ATE
interface

ATE
interface

(d)

39

partition 1

C1

ni1 R1

R2

R4

R9

ni2

ni4

C2

C4

(e)

38

partition 1

partition 2

partition 3

ni1ni1 R1R1 R2R2

ni3ni3 C3C3 R3R3 R5R5 ni5ni5 C5C5

C8C8 ni8ni8 R8R8 R7R7 R6R6 ni6ni6 C6C6 ni7ni7 C7C7

ni2ni2 R4R4 C1C1 ni4ni4 R9R9 C4C4 C2C2

test time

(f)

Figure 4.3: Test model based on NoC partition. (a) an example of NoC; (b) a valid
NoC partition; (c) test path for core c2; (d) a test path for router r9; (e) dependency
graph for partition 1; (f) the test scheduling.

77

s0 s1 s2 s3

s0 s1 s2 s3

r0 r1 r2 r3

r0 r1 r2 r3

Lr3
Lr2

Lr1
Lr0

Ls3
Ls2

Ls1
Ls0

Ls0 = Ls1 = Ls2 =Ls3

Lr0 = Lr1 = Lr2 = Lr3

0ns 25ns 50ns 75ns 100ns 125ns

Clock

Inputs test pins[0..3]

Input test wires[0..3]

Ouput test wires[0..3]

Output test pins[0..3]

(a)

53

target
ATE

interface

target
ATE

interface

on-chip port

CUTCUT
initiator

ATE
interface

initiator
ATE

interface stimuli pipe responses pipe

input test pins output test pins

4
4

input test wires output test wires

(b)

Figure 4.4: NoC abstracted as a pipeline and the required test data timing.

4.6.1 Shared Channels and Routing Logic

The proposed NoC partition solves the problem of shared channels because there
is only one active test source and sink (the ATE interface) per partition causing no
competition for channels and packet collision. With the proposed partition method
it is possible to give guarantees of jitter even in networks without guaranteed services
because the proposed approach avoids the main source of jitter, i.e. shared channels.

The NoC partition approach also helps to solve the shared router problem be-
cause no more than two flows compete for router services: the stimuli test flow and
the responses test flow (Figure 4.4(b)). Thus, the number of flows competing for
routers is bounded to two flows.

4.6.2 Load Fluctuation

While NoC partition is used to reduce the jitter bound, the jitter is actually
eliminated with FIFO buffers at the end of the data flow (both stimuli and response
data flows). The goal of the FIFO buffer is to receive a variable input rate (line 5 of
Figure 4.1) and to create at the output a constant rate (line 6 of Figure 4.1). The
FIFO works as an elastic buffer in which the data is temporarily stored and then
retransmitted at a constant rate.

4.7 Overall Problem Statement

First, we have to define formally the system functional model described in Sec-
tion 2.2.1, page 43. The system can be modeled as a weighted directed graph. A
weighted directed graph G is a pair (V, E), where V is a set of vertices, and E is a set
of edges between the vertices E = {(u, v)|u, v ∈ V }. In addition, there is a function
w(v) that represents the weight of the vertices such that v ∈ V and w(v) ∈ IN. The
vertices are classified as NI, router, or core. The edges represent the router ports

78

and core ports. Finally, the weights represent the test data volume (i.e. number of
bits to test a core) required to test each vertex.

In addition, a virtual TAM (vTAM) is defined as a tuple {d, k, w,Ratei, Rpart},
where d is the FIFO depth of the DfT modules in Rpart, k is the packet size used
during test, w is the number of test wires used to test the modules in Rpart, Ratei is
the set of ATE interfaces, and Rpart is the set of routers in the partition such that
Ratei ⊂ Rpart ⊂ G. The test architecture optimization problem must determine: (i)
the vTAMs (the FIFO depth, the packet size, the number of test wires, the set of
modules, and the set of ATE interfaces of each vTAM), (ii) the wrapper design for
the modules, and (iii) the ATE interface design for the vTAMs.

Problem 1 [Test Optimization of NoC-Based Chips]
Given:

• a graph G which defines the SoC where for each g ∈ G:

– there are a test input ipg and a test output port op
g;

– number of test patterns pg;

– number of functional input terminals ig;

– number of functional output terminals og;

– number of functional bidirectional terminals bg;

– the number of scan chains sg for each scan chain k with scan length lg,k

(for hard cores only);

– the number of scan flip-flops fg (for soft cores only).

• the maximal number of test wires wmax;

• the physical channel width c, in bits;

• the routing algorithm r() used by the NoC.

Determine:

1. the sets of vTAMs;

2. the wrapper design for each module;

3. the ATE Interface design.

4. the SoC test length, in clock cycles.

Such that:

i. the SoC test length and the silicon area for DfT are minimized while wmax is
not exceeded and the width of each vTAM is ≤ c/22.

�

79

72

g1g1

wc/2 g1wc/2 g1

w2 g1w2 g1

WrapperOptWrapperOpt

DfTGenerationDfTGeneration

w1 g1w1 g1

wc/2 g|G|wc/2 g|G|

w2 g|G|w2 g|G|

w1 g|G|w1 g|G|

wmax

r()

ipg
op

g
pg
ig

og
bg
sg
lg,k

g|G|g|G|
ipg
op

g
pg
ig

og
bg
sg
lg,k

SchedulingScheduling

testscheduling
testw

rapperoptim
ization

b
01

b
11

a
21

b
31

b
00

b
10

b
20

b
30

c
02

b
12

a
22

a
32

c

vTAMn =
{--, w,Ratei, Rpart}

vTAMn =
{--, w,Ratei, Rpart}vTAM1 =

{--,--, w,Ratei, Rpart}
vTAM1 =

{--,--, w,Ratei, Rpart}

vTAMn =
{d, w,Ratei, Rpart}

vTAMn =
{d, w,Ratei, Rpart}vTAM1 =

{d,k,w,Ratei, Rpart}
vTAM1 =

{d,k,w,Ratei, Rpart}

D
fT

generation

G

C

w2 B

w1

A tw3

Figure 4.5: Design flow in terms of the variables used in the problem statement.
w1g1 refers to the wrapper of the module one which uses one test wire.

80

4.8 Proposed Design Flow

Figure 4.5 illustrates the proposed design in terms of the variables presented
in Section 4.7. It also presents how the overall problem is divided in three sub-
problems: wrapper optimization, test scheduling, DfT optimization and generation.

The wrapper optimization algorithm for NoC reuse (Chapter 5 and (AMORY
et al., 2007)) optimizes test wrappers for all modules considering vTAM widths from
1 to c/2 test wires. The wrapper optimization takes ipg, op

g, pg, ig, og, bg, sg, lg,k, and
c of each module g ∈ G to generate the c/2 optimized wrappers for each module.
For instance, w1g1 means the wrapper with one test wire for the module g1, w1gc/2

means the wrapper with 1 test wires for the module gc/2, w2g|G| means the wrapper
with two test wires for the module g|G|.

The optimized wrappers for all modules, r(), wmax, and G are used by the
scheduling tool (Chapter 8) to determine the vTAMs, the schedule, and the SoC
test length. However, the vTAMs are not completely defined by the scheduling
tool. For instance, assuming vTAMa presented in Figure 4.5, vTAMa is defined as
{−−,−−, w3, {22}, {21, 22, 32}} after the scheduling.

The FIFO depth d and packet size k are defined in the DfT optimization phase
(Chapter 9 and (AMORY et al., 2007)) by a simulation based approach. This step
takes the partial DfT defined in the scheduling and simulate the design to determine
the minimal FIFO depth and minimal packet size for each vTAM, minimizing the
silicon area. After this step all parameters required that represent the proposed test
architecture are defined and the HDL of the DfT modules can be generated.

4.9 Comparison with Previous Approaches

Despite of the problem statement previously presented in Section 3.3, the pro-
posed problem statement requires the graph G to inform how the modules are con-
nected to each other (while the previous algorithm only needs the set of modules). It
also requires input and output ports for each module, the function r() representing
the NoC routing algorithm, and the channel width c.

On the other hand, compared to previous NoC-reuse approaches (COTA; LIU,
2006), our approach only requires the channel width and the routing algorithm.
The previous approach requires full cycle-accurate time model to determine when
the resources are available.

In conclusion, the proposed approach is between the conventional and the pre-
vious NoC-reuse test scheduling in terms of the amount of information required. In
this sense, our test model is more general than (COTA; LIU, 2006).

This section also analyze some other features of the proposed approach, compar-
ing it informally to dedicated TAM (presented in Section 2.1, page 35, and illustrated
in Figure 2.2). The results presented along this thesis confirm these claims.

Unlike stated in previous NoC reuse approaches (COTA et al., 2003), the silicon
area required to implement the DfT for NoC-reuse test architectures in this thesis is
higher than the silicon area for test architectures based on dedicated TAMs. On one
hand, the extra silicon area consists of just gate logic, not long wires as dedicated

2In most actual NoCs it is not possible to sustain the full physical channel bandwidth since
there is also other network control information in the traffic. For this reason we assume that the
maximal vTAM bandwidth is half of the physical channel bandwidth.

81

TAMs. As presented before, long wires are expected to cost more than logic in terms
of design effort, delay, and power dissipation. On the other hand, it does not mean
that the proposed DfT is less efficient than previous one. It means that we take
into account design issues not considered before. For instance, we have proposed
ATE interfaces for the test pins that are not connected to the NoC and test wrappers
that deals with functional protocol. None of these required DfT has been addressed
before.

In terms of timing for test data transportation, both proposed and conventional
SoC test are based in constant and continuous test data streaming which is natu-
rally provided by dedicated TAMs. The previous approaches based on functional
interconnect reuse usually do not provide this feature (COTA et al., 2003; HWANG;
ABRAHAM, 2001; HARROD, 1999).

For the same reason, the proposed model might have higher latency from the test
pins to the CUT. We say “might” because a network design can be optimized, for
example, for latency. For instance, packet switching networks have typically more
latency than circuit switching networks once the circuit has been established. The
latency for a circuit switching network can be one clock cycle per hop. However,
even if a network with more latency is used, latency is still not important for a test
model.

Consider the general formula of data transportation time is t = l + v
b
, where t, l,

v, and b denote, respectively, time for transportation, latency of the medium, data
volume, and bandwidth (MCCABE, 2003). The latency of dedicated TAMs consists
of few buffers and typically results in few units of clock cycles. However, as stated
in the introduction, the functional interconnects are evolving to segmented wiring
to handle DSM effects on long wires, thus, the latency of functional interconnect is
increasing. For example, a path in a NoC consists of several modules (two network
interfaces and several routers). Therefore, on one hand, it can be concluded that
the latency of dedicated TAMs is typically smaller than the latency of functional
interconnects. On the other hand, the impact of the latency on the core test length
is minimal since l � v

b
. The typical test data volume of a core can be around hun-

dreds of thousands or millions of bits. Thus, latency can be neglected no matter if
the latency is 3 clock cycles for dedicated TAMs or 30 for NoCs. In addition, inter-
connects support pipelining to partially hide this latency, thus, only the very first
word of data feels the latency effect since the proposed approach is based on non-
preemptive test. For these reasons we concentrate in the minimization of v

b
to reduce

the core test length. However, the latency is still important for the test application
because the tester needs to know the exact time data is inserted and evaluated into
the chip. The exact latency for a given interconnect can be measured, for example,
by using logic simulation and counting the number of clock cycles required for the
first word to go from the ATE to the CUT 3. Realizing that latency can be taken
off the calculation helps the interconnect abstraction (i.e. the pipeline abstraction
mentioned before).

3Recall that this simulation of test patterns is not an additional burden in the design, but it is
a required step to validate the generated test patterns. This is the reason why most ATPG tools
automatically generate a test bench to ease this step. What we propose is just to take this latency
information from the simulation, not from the test model.

82

The wrapper of the proposed model does not need bypass mode in most cases.
The bypass mode is required when a core a is not connected directly in the NoC,
but is connected to another core b that is connected to the network (see case three
in Figure 2.12 in page 45 for an illustrative example). So, the wrapper of core b
must have bypass mode to indirectly connect core a to the NoC.

The optimization problem of dedicated TAM and the proposed model also seem
to be similar. Figure 4.6 compares both test architectures: (i) the conventional
approach distributes the total number of test wires into independent TAMs. The
proposed approach distribute the test pins among the test partitions, where the ATE
interface connects the pins to the network. (ii) all cores of a dedicated TAM are
tested using the same constant test bandwidth (i.e. number of test wires), likewise
a NoC partition. Pipelines of different partitions have different width. (iii) since
dedicated TAMs are designed only for test, they naturally support continuous and
constant data flow with zero-jitter. The DfT modules (wrappers and ATE inter-
face) of the proposed approach also provide the same communication pattern in an
end-to-end manner (i.e. from the test pins to the CUT). (iv) TAMs of the conven-
tional approach are independent from other TAMs and the cores within a TAM are
tested sequentially. The NoC partitions of the proposed approach are independent
from the other partitions and the cores are also tested sequentially. The use of
algorithms previously proposed for test architecture with dedicated TAMs (GOEL;
MARINISSEN, 2003a; MARINISSEN; GOEL; LOUSBERG, 2000) for NoC reuse
also demonstrates that both problems can be similar.

Despite of all these similarities there are also some differences. The conventional
approach typically has no constraint regarding the order the cores are tested within
a TAM like in the proposed model. In addition, the proposed approach requires
neighborhood and TAM width constraints, presented in Chapter 8.

4.10 Summary

This chapter presented an overview of the proposed system test model for BE
NoC-based chips. The model divides the network in partitions, where each partition
is tested independently from each other, avoiding interference and packet collisions
that delay a message. Thus, complex, cycle-accurate, and dynamic network models
that model packet collision and congestion are not required for test scheduling. For
this reason, the proposed model is simpler and more general than previous NoC-reuse
schemes based on packet scheduling. The proposed model is built on top of the DfT
modules (wrappers and ATE interface), designed to reinforce the compatibility with
dedicated TAMs and the external tester timing features. In addition, the proposed
DfT abstracts the NoC internals as simple pipelines with scalable width.

As result, the combination of the proposed DfT modules and the NoC partition
test model gives the support to the six features described in the beginning of this
chapter: (1) general test approach that works for a wide range of networks since
few functional features are required; (2) compatibility with conventional test since
the tester timing features are respected; (3) it enables the trade-off of test costs
as dedicated TAMs since the pipeline width is scalable; (4) the DfT modules are
based on well-defined interfaces, then the DfT modules are easily inserted in the
chip design; (5) the proposed method does not modify the network, minimizing the

83

AA BB

CC DD EE

FF

W1=3

W2=4

W3=2

A B

C D E

F
SoC

AA BB

CC DD EE

FF

W1=3

W2=4

W3=2

A B

C D E

F

(a) test architecture (b) scheduling

SoC

NoC Partition 1

NoC Partition 2

NoC Partition 3

conventionaltestarchitecture
based

on
dedicated

TA
M

s
proposed

testarchitecture
based

on
N

oC
partition

ATE
interface

Figure 4.6: Comparing conventional and proposed test architectures. The gray area
represents the DfT modules (test wrappers and ATE interfaces). The black rectangles in the cores
represent the ports.

84

influence on the functional domain; and finally, (6) the concurrent NoC partitions
test cores in parallel to reduce the core test.

85

5 TEST WRAPPERS FOR CORES

This chapter proposes a new core test wrapper design approach which transports
streaming test data into and out of an embedded core via its functional data ports.
These ports are typically based on standardized protocols such as AXI, DTL, and
OCP. Our new wrapper design allows functional interconnect, such as an on-chip
bus or NoC, to transport test data to embedded cores, and hence eliminates the need
for a conventional dedicated TAM, such as a TestRail or test bus. Our approach
leaves the tester, the embedded core, and its test unchanged, while the functional
interconnect can handle the test data transport as a regular data application. The
proposed wrapper requires guaranteed throughput and zero latency variation. We
show how to use the wrapper over functional interconnects with and also without
support to guaranteed services.

For 672 example cases based on the ITC’02 SoC Test Benchmarks, our new
approach in comparison to the conventional approach shows an average wrapper
area increase of 14.5%, which is negligible at SoC level, especially since the dedicated
TAM can be eliminated. Our new approach furthermore decreases the core test
length on average with 3.8%.

This chapter is organized as follows. Section 5.1 presents the problem statement.
Section 5.2 presents an overview of the wrapper design. Section 5.3 shows the wrap-
per design and optimization procedure in details. Section 5.4 shows experimental
results. Finally, Sections 5.5 and 5.6 presents an overall discussion and conclusion,
respectively.

5.1 Problem Statement

The core must use exactly one protocol port as test input and exactly one other
protocol port as test output. As not all bidirectional ports support full-duplex
communication, read-write ports are used in only one direction, in order to allow
scan-in and scan-out operations during test to overlap in time. Consequently, the
core need to have two protocol ports: one to serve as test input ip and one to serve
as test output port op. We assume that at least two suitable ports are available.
The terminals of these ports must be classified according to Section 5.3.1 and we
need the behavior of the protocol and the rule of each terminal in the protocol.

In addition, all the test information required for the conventional wrapper design
is also required, like

• number of test patterns pg;

• number of functional input terminals ig;

86

• number of functional output terminals og;

• number of functional bidirectional terminals bg;

• the number of scan chains sg for each scan chain k with scan length lg,k (for
hard cores only);

• the number of scan flip-flops fg (for soft cores only).

Finally, we need to determine the design of a core test wrapper, which enables
the CUT to be tested by the ATE via the NoC without modifying the ATE, the
interconnect, the CUT, or its test. The design of the wrapper is optimized such that
the CUT’s test length and wrapper silicon area are minimized.

5.2 Wrapper Design Overview

Figure 5.1 shows both the conventional (a) and the new (b) IEEE Std. 1500
(SILVA, 2005; SILVA; MCLAURIN; WAAYERS, 2006) compliant wrapper designs,
and illustrates their differences. In the InTest mode of the conventional wrapper,
access of all functional inputs and outputs to the core is intercepted by the Wrapper
Boundary Register (WBR), while ports to dedicated TAMs provide test access. In
the new wrapper design, there is no dedicated TAM. Test access to the core is
provided via a subset of the functional inputs and outputs, viz. via one selected
input port and one selected output port. Functional inputs and outputs that do not
belong to the selected ports are intercepted by the WBR.

The algorithm to design and optimize the test wrapper consists of the following
three steps.

1. Calculation of parallel-to-serial loading and serial-to-parallel unloading char-
acteristics.
Stimulus bits arrive strictly periodically in words of ci bits at the selected test
input port i. There, they are equally divided over the w wrapper chains and
serially shifted into the wrapper and core. This process is repeated every pi

clock cycles, with

pi =
⌊ci

w

⌋
(5.1)

Note that of the ci data bits in each parallel word, only
⌊

ci

w

⌋
× w are actually

used to carry stimulus bits; the remaining (ci mod w) bits carry unused data,
and consequently will be assigned special wrapper cells in Step 4. The response
side is handled likewise, where every po =

⌊
co

w

⌋
clock cycles, po response bits

are unloaded in parallel from the test output port o of each of the w wrapper
chains 1.

2. Core terminal classification.
Based on their role in the test operation, core terminals are classified accorting
to: (i) the type of wrapper cell for the terminal, (ii) the position of the wrapper

1we might use c when ci = co = c, i.e. when the port input data width, the port output data
width, and the channel width are equal.

87

92

WBY

WIR

test

func

WPI WPOtest

func

Core
W
B
R

W
B
R

dedicated
TAM

functional
data

dedicated
TAM

functional
data

WSI WSO

WIP
(a)

93

WBY

WIR

W
B
R

other
inputs

protocol
port

WSI WSO

WIP

test

func

test

func

Core
W
B
R

other
outputs
protocol
port

fu
nc

tio
na

l d
at

a

fu
nc

tio
na

l d
at

a

(b)

Figure 5.1: Overview of the (a) conventional and (b) new IEEE Std. 1500 compliant
wrapper design.

88

cell in a wrapper scan chain, and (iii) the control signals to the wrapper cell.
The core terminal classification is described in more detail in Section 5.3.1.

3. Actual wrapper design.
Based on the outcome of the core terminal classification, the wrapper is in-
stantiated, according to the following sub-steps.

(a) Assign wrapper cells to individual core terminals, as described in Sec-
tion 5.3.2.

(b) Partition and order the wrapper cells and core-internal scan chains over
the w wrapper chains, as described in Section 5.3.3.

(c) Connect the control logic to the various wrapper cells.

5.3 Wrapper Design and Optimization

5.3.1 Core Terminal Classification

Conventional wrapper design (MARINISSEN; GOEL; LOUSBERG, 2000) dis-
tinguishes four classes of core terminals: functional inputs (FI), functional outputs
(FO), scan inputs (SI), and scan outputs (SO). In the new approach, in which test
data reaches the core via reused functional ports, we add eight new classes, for the
terminals of the functional ports.

• SDI, SDO: Selected Data Inputs and Outputs, i.e., the data terminals of the
functional port that has been selected to serve as test input (output), and
carry actual stimulus (response) data.

• RSDI, RSDO: Remaining Selected Data Inputs and Outputs, i.e., those (ci mod
w) data bits of the selected test input port i and (co mod w) data bits of the
selected test output port o that carry unused data.

• DI, DO: Data Inputs and Outputs, i.e., the data terminals of the remaining
functional ports not selected to carry test data.

• CI, CO: Control Inputs and Outputs, i.e., the non-data terminals of all func-
tional ports.

• FI, FO: Functional Inputs and Outputs, i.e., all functional terminals that are
not part of the selected test ports.

• SI, SO: Scan Inputs and Outputs.

The twelve classes provide a complete partitioning for all digital data terminals of
the core, i.e., all classes are mutually exclusive and their union equals all terminals
2.

The classification of the functional port terminals of the example in Figure 5.2 is
shown in Table 5.1. For both ports, the dtl wr data[31:0] terminals are selected
as test input (output) ports and hence are classified as SDI and SDO respectively.
Assuming w = 3, both selected ports have (c mod w) = (32 mod 3) = 2 unused

2we might use DIin , DOin , CIin , and COin to refer, for example, to the DI terminals of the
input port. DIout , DOout , CIout , and COout refer to the sets of the output port

89

terminals, say dtl wr data[31:30], which are moved into the RSDI and RSDO
classes. The dtl rd data[31:0] terminals are not selected as test input and output
ports, and hence are left as DI and DO. The sets CI and CO include all control
terminals, i.e., all cmd signal group terminals and the valid and accept signals of
the write and read signal groups.

Table 5.1: Example classification of port terminals.
Class Test Input Port Test Output Port

SDI dtl wr data[29:0] -
RSDI dtl wr data[31:30] -
SDO - dtl wr data[29:0]

RSDO - dtl wr data[31:30]

DI - dtl rd data[31:0]

DO dtl rd data[31:0] -
CI dtl cmd valid, dtl cmd accept,

dtl cmd read, dtl rd valid, dtl wr accept

dtl wr valid, dtl rd accept,

dtl cmd blocksize[5:0],

dtl cmd addr[31:0]

CO dtl cmd accept, dtl cmd valid, dtl rd valid,

dtl wr accept dtl cmd addr[31:0],

dtl cmd blocksize[5:0],

dtl wr valid,

dtl rd accept,

dtl cmd read

5.3.2 Wrapper Cell Design and Assignment

In our wrapper, we use two types of IEEE Std. 1500 compliant wrapper cells.
All terminals use a ‘regular’ wrapper cell, except for the CO-type terminals, which
use a special variant of the ‘regular’ wrapper cell. Any IEEE Std. 1500 compliant
wrapper cell can serve as ‘regular’ wrapper cell. We prefer IEEE Std. 1500 wrapper
cell wc sd1 coi, as depicted in Figure 5.3(a). This wrapper cell is small (one flip-
flop only) and the activation of both InTest and ExTest modes guarantees full
test coverage of the wrapper cell itself, as the captured signal is tapped off after the
functional multiplexer.

The CO-type core terminals require a special variant of the ‘regular’ wrapper cell,
because they need to assure that, as far as the on-chip bus or NoC is concerned,
also in test mode the functional port protocol is handled as normal, such that
the transport of test data is not interrupted. For example: the valid/accept
handshakes of the command, write, and read groups of a DTL port need to be
completed as usual. The special wrapper cell for CO-type terminals consists of a
generic part and a terminal-specific part. The generic part is a guarded variant of
the ‘regular’ wrapper cell. For our preferred wrapper cell wc sd1 coi, the guarded
variant is IEEE Std. 1500 wrapper cell wc sd1 coi g as depicted in Figure 5.3(b).
Its functional output can be set to the value of signal prot value. The circuitry
that generates prot value is specific for each CO terminal.

90

dtl_cmd_valid

dtl_cmd_accept

dtl_cmd_addr[32]

dtl_cmd_read

dtl_cmd_blocksize[6]

dtl_wr_valid

dtl_wr_accept

dtl_wr_data[32]

dtl_rd_valid

dtl_rd_accept

dtl_rd_data[32]

dtl_cmd_valid

dtl_cmd_accept

dtl_cmd_addr[32]

dtl_cmd_read

dtl_cmd_blocksize[6]

dtl_wr_valid

dtl_wr_accept

dtl_wr_data[32]

dtl_rd_valid

dtl_rd_accept

dtl_rd_data[32]

DTL.MMBD.I.RWDTL.MMBD.T.RW

Core

command
group

write
group

read
group

command
group

write
group

read
group

Figure 2. Example core with two DTL MMBD read-write ports.

22

Figure 5.2: Example core with two DTL read-write ports.

93

scan_in
scan_out

func_in
func_out

shift normal_mode

clock

scan_in
scan_out

func_in

shift
normal_mode

clock

prot_mode
prot_value

func_out

93

scan_in
scan_out

func_in
func_out

shift normal_mode

clock

scan_in
scan_out

func_in

shift
normal_mode

clock

prot_mode
prot_value

func_out

(a) (b)

Figure 5.3: Implementation of wrapper cells (a) wc sd1 coi and (b)
wc sd1 coi g.

The generic version of the control generator has a periodic output behavior,
which is characterized by a binary-coded output value v and a period p. For p −
1 consecutive clock cycles, the output value is v, while for the next clock cycle,
the output is v. The hardware implementation uses a simple counter. Some CO
terminals require hard-coded ‘0’ or ‘1’ signals; this is captured by (v, p) = (0, 1) and
(v, p) = (1, 1) respectively. The control generator implementation for these signals
uses tie-off cells.

Table 5.2 describes for the selected test output port of our example in Figure 5.2
which output signals are required on its CO-type terminals in order to keep the
functional port protocol running. The port is used as test output via its dtl wr data

terminals, and hence dtl cmd read is kept at a hard-coded ‘0’. Every po clock
cycles a new word with test responses is available for parallel read-out from the
scan chains. To write this word to the interconnect dtl wr valid is ‘1’ every po

clock cycles. The specified bandwidth bout(o) is achieved for a given block size s(o).
Hence the binary six-bit equivalent of s(o) is output on dtl cmd blocksize[6].
Every (s(o) × po) cycles, a block of s(o) words has been output, and this initiator
port should issue a new command, in order to instruct the NoC to accept another

91

block. Terminals dtl cmd addr[31:0] and dtl rd accept are not used, and hence
kept at hard-coded ‘0’.

Table 5.2: Control generator parameters for test output DTL port.
Terminal Param.(v, p) Description

dtl cmd valid (1, s(o)× po) every s(o) words, a new command
is issued

dtl cmd addr[31:0] ‘0’ = (0, 1) the address is not used and hence
kept at ‘0’

dtl cmd read ‘0’ = (0, 1) only the write side of this port
is used and hence read=0

dtl cmd blocksize[6] (s(o), 1) the block size is s(o)
dtl wr valid (1, po) every po clock cycles, a new

word with test responses is available
dtl rd accept ‘0’ = (0, 1) the read side of this port is not

used and hence accept=0

5.3.3 Partitioning and Ordering of Wrapper Chain Items

Wrapper chains are made up from wrapper cells and core-internal scan chains.
We need to construct w wrapper chains, but typically there are many more wrapper
cells and core-internal scan chains than w wrapper chain items. Hence, we need
to partition the wrapper cells and core-internal scan chains over the w wrapper
chains, and subsequently determine the order of the items per wrapper chain. Our
approach to do this is a modification of the conventional wrapper design optimization
algorithm of (MARINISSEN; GOEL; LOUSBERG, 2000).

In conventional wrapper design, the test length Tconv for a wrapped core is defined
as

Tconv = (1 + max(si, so))× pg + min(si, so) (5.2)

where pg denotes the number of test patterns, and si and so denote the scan-in and
scan-out length for the wrapped core, respectively (MARINISSEN; GOEL; LOUS-
BERG, 2000). To minimize Tconv , both si and so must be minimized. All wrapper
input cells and all core-internal scan chains participate in a scan-in operation and
hence might contribute to si; likewise, all wrapper output cells and core-internal
scan chains participate in a scan-out operation and therefore might contribute to so.
The conventional partitioning algorithm in (MARINISSEN; GOEL; LOUSBERG,
2000) first addresses the NP-hard problem of partitioning the core-internal scan
chains over the available number of to-be-constructed wrapper chains, before parti-
tioning the wrapper input and output cells. This approach aims to minimize both
si and so. The subsequent step of ordering of wrapper items per wrapper chain is
done such that (1) the wrapper input cells are followed by (2) the core-internal scan
chains, which in turn are followed by (3) the wrapper output cells. A schematic
view of the resulting conventional wrapper chain is depicted in Figure 5.4(a).

A schematic view of the wrapper chains resulting from our new wrapper design
approach is shown in Figure 5.4(b). The main differences are formed by the category
of SDI wrapper input cells, through which stimuli are loaded into the wrapper chain

92

94

SDI RSDI, DI, FI, CI SDORSDO, DO, FO, COinternal scan chains

parallel load
from NoC

parallel unload
to NoC

scan-in
scan-out

internal scan chainsFI FO

scan-in

scan-out

serial unload
to the TAM

serial load
from the TAM

(a)

23

SDI DI, FI, CI SDODO, FO, COinternal scan chains

parallel load
from NoC

parallel unload
to NoC

scan-in
scan-out

internal scan chainsFI FO

scan-in

scan-out

serial unload
to the TAM

serial load
from the TAM

RSDI RSDO

(b)

Figure 5.4: Schematic view of conventional (a) and new (b) ordering of wrapper
items per wrapper chain.

in a parallel fashion, and the category of SDO wrapper output cells, through which
responses are unloaded from the wrapper chain in a parallel fashion.

• The test stimuli of a test pattern arrive at regular intervals of pi clock cycles
at the SDI wrapper input cells. All of them are shifted into the wrapper
chains, apart from the last word, that can be directly consumed in parallel for
testing. Similarly, for each test pattern the first word of responses is directly
transported away in parallel from the SDO wrapper output cells, after which
the subsequent words are shifted out of the wrapper chains at regular intervals
of po clock cycles. Hence, the test length Tnew is redefined as

Tnew = (1 + max(ti, to))× pg + min(ti, to) (5.3)

with

ti =

(⌈
si

pi

⌉
− 1

)
× pi + 1 (5.4)

to =

(⌈
so

po

⌉
− 1

)
× po + 1 (5.5)

• In order to minimize test length Tnew , the wrapper item should be partitioned
such that both all SDI cells and all SDO cells are evenly distributed over the
w to-be-constructed wrapper chains.

• For wrapper item ordering, it is important that all SDI cells are placed at
the start of the wrapper chain, as they are the entry point of stimuli into the
wrapper chain, and otherwise some wrapper chain items are unreachable for
scan access. Similarly, all SDO cells should be placed at the end of the wrapper
chain.

Algorithmically, the partitioning of wrapper items is done in a five-step approach,
which is clearly based on the three-step approach in (MARINISSEN; GOEL; LOUS-
BERG, 2000).

93

1. Assign the core-internal scan chains to the w wrapper chains, such that the
maximum sum of scan lengths assigned to a wrapper chain is minimized. Al-
gorithms like Lpt and Combine can be used (MARINISSEN; GOEL; LOUS-
BERG, 2000). The resulting partition is named Ps.

2. Assign the wrapper input cells in RSDI ∪ DI ∪ CI ∪ FI to the w wrapper
chains on top of Ps, such that the maximum scan-in length of all wrapper
chains is minimized. The resulting partition is named P in

w .

3. Assign the wrapper input cells in SDI to the w wrapper chains on top of P in
w .

The resulting partition is named P in .

4. Assign the wrapper output cells in RSDO ∪ DO ∪ CO ∪ FO to the w
wrapper chains on top of Ps, such that the maximum scan-out length of all
wrapper chains is minimized. The resulting partition is named Pout

w .

5. Assign the wrapper output cells in SDO to the w wrapper chains on top of
Pout

w . The resulting partition is named Pout .

5.3.4 NoCs With and Without Guaranteed Services

In fact, the main difference between NoC with and without guarantees is that
NoCs with guarantees already provide a FIFO at the core input that can be used
to eliminate load fluctuation. These FIFOs are inside the NI, hidden from the user
(RADULESCU et al., 2005). Another impact in the wrapper design is that, since
they are inside the NI, they cannot be modified according to the test needs. So, to
deal with a given maximal bandwidth, we have to add two more steps before the
step of the procedure presented in Section 5.2.

1. Selection of test input and output ports.
In case multiple ports are available that could serve as test input or test
output port, exactly one test input port and exactly one test output port are
selected. To minimize the resulting test length, we select two disjunct ports i
and o (with i 6= o) of the CUT connected to the ATE such that the resulting
test bandwidth btest is maximized, with

btest = min(bin
i , bout

o) . (5.6)

According to Equation (5.6), the test bandwidth is determined by the mini-
mum of the bandwidths of the selected input and output port, as the band-
widths of wrapper scan input and output needs to be equal.

2. Calculation of the number of wrapper chains.
At the core’s test frequency f , the functional interconnect can deliver at most⌊

btest
f

⌋
test stimuli bits per clock cycle via the selected test input port, and

receive an equal amount of test response bits via the selected test output port.
Hence, the wrapper should not contain more than wmax wrapper chains with

wmax =

⌊
btest

f

⌋
(5.7)

to use the given test bandwidth provided by the functional interconnect.

94

Some examples of NoCs that can give performance guarantees include Æthe-
real (GOOSSENS; DIELISSEN; RADULESCU, 2005), Mango (BJERREGAARD;
SPARSO, 2005a), Nostrum (MILLBERG et al., 2004), and Sonics (WEBER et al.,
2005).

The proposed wrapper design also works for NoCs without guarantees. These
NoCs do not have FIFOs at the core inputs, thus they might be required in the
wrapper. The advantage in this case is that the wrapper design is not constrained
to wmax , but to c. On the other hand, the FIFO might be required, increasing the
DfT silicon area. However, once the FIFOs will be used only for test, we can define
the best (the sufficient) FIFO depth for each wrapper.

Some examples of NoCs that do not provide performance guarantees include
RaSoC (ZEFERINO; SUSIN, 2003) and Hermes (MORAES et al., 2004).

5.4 Experimental Results

5.4.1 Simplified Illustrative Example

We have implemented our wrapper design for a simplified illustrative example
core and NoC. The NoC is an automatically generated, simple Æthereal network
(GOOSSENS; DIELISSEN; RADULESCU, 2005), consisting of one router and four
network interfaces, based on a 32-bits data DTL protocol (PHILIPS SEMICON-
DUCTORS, 2002). As depicted in Figure 5.5(a), two NoC ports connect to the
respestive ATE source and sink, while the two other ports connect to the CUT.

The CUT has two DTL ports, Port 1 and Port 2, with 133 terminals each and
functional data word width c = 32. Besides the two ports, the CUT has no other
functional terminals. The CUT has five internal scan chains of lengths 123, 123, 50,
50, and 23 flip-flops, and pg = 10. Port 1 is selected to receive stimuli and Port 2
is selected to send out responses. The test data flow for stimuli is from the source
through the NoC into the CUT via Port 1, while test responses flow from CUT’s
Port 2 via the NoC into the sink. bin

i = 1600 Mbits/s, bout
o = 2400 Mbits/s, and

f = 500 MHz, and, by Equation 5.7, we can afford a wrapper with w = 3 wrapper
chains. According to Equation 5.1, test data arrives with period pi = po = 10
clock cycles. For Port 1: |SDI|=30, |RSDI|=2, |DO|=32, |CI|=62, and |CO|=7.
For Port 2: |SDO|=30, |RSDO|=2, |DI|=32, |CI|=7, and |CO|=62. The wrapper
chain scan lengths are si = so = 168. The resulting wrapper design is shown in
Figure 5.5(b). Based on Equation 5.3, test length Tnew = 1781 clock cycles. Note
that this represents a 4.1% test length reduction compared to a conventional wrapper
design with three wrapper chains, which would have a test length Tconv = 1858 clock
cycles. This reduction occurs because the last stimulus word of each pattern is loaded
in parallel into the SDI wrapper cells and does not require any further shifting in,
and likewise the first response word of each pattern is loaded in parallel into the
SDO wrapper cells.

Our example was implemented in register-transfer-level VHDL and verified through
simulation. The experiment showed a modest area increase for the new wrapper in
comparison to a conventional wrapper. The number of equvalent gates required
to implement all wrapper cells went from 2910 to 3000 (an increase of +3.1%),
while 489 equivalent gates were required to implement the additional control logic
to complete correct protocol operation. The total relative wrapper area increase was
+19.9%. Note that wrappers are typically small compared to the overall SoC size,

95

95

CUTCUT

Æthereal
NoC RR

NI
002
NI
002

NI
003
NI
003

P2

sinksinkP1

NI
000
NI
000

NI
001
NI
001

sourcesource P1

P1

DTL

DTL

wrapper

(a) 96

CUT

0

10

0

19

port1

SI SO

test control
& protocol

11

21

20

39

22

31

61

0

10

4

6

11

21

2

3

22

31

0

1

0

10

0

1

port2

11

21

2

3

22

31

6

0

19

10

0

20

39

21

11

40

61

22

COout

test
wires

COin

DOin

31

40

4

123
123
50
50
23

CIout

CIin

DIout

RSDI

SDI

RSDO

SDO

(b)

Figure 5.5: Illustrative example consisting of NoC and CUT (a) and the detailed
wrapper design for the CUT (b).

and hence, this area impact is negligible at SoC level.

Figure 5.6 presents a waveform with some relevant signals of the system presented
in Figure 5.5(a). The waveform is divided into four signal groups: the source, the
cut target, the cut initiator, and sink signal groups.

The first signal group shows some relevant signals between the NoC and the
source module, which represents the initiator ATE interface. It can be observed
that data is sent at regular time intervals (every pi clock cycles). The second signal
group shows signals between the NI and the input port of the wrapper. More
specifically it shows signals right after the input FIFO (if this is required) since we
can see that data is as regular as the data sent by the initiator ATE interface. The
third and fourth signal groups represent the response path. The third signal group
represents the data sent by the wrapper output port to the NoC. The response is
received in the target ATE interface, the forth signal group.

5.4.2 Wrapper Area and Core Test Length Impact

In this section, we present wrapper area and core test length results for our new
wrapper design approach in comparison with conventional wrapper design, obtained
on a large subset of cores in the ITC’02 SoC Test Benchmarks (MARINISSEN;
IYENGAR; CHAKRABARTY, 2002). A wrapper design and optimization tool
as described in this chapter has been developed in C++; it uses the Combine
wrapper design routine (MARINISSEN; GOEL; LOUSBERG, 2000) as basis. The
tool calculates the required number of gate-equivalents to design the wrapper and the

96
Page 1 of 1

Printed by SimVision from Cadence Design Systems, Inc.Printed on Thu Jun 01 14:40:12 CEST 2006

Waveform 2 − SimVision

Cursor−Baseline = 4,492,354,458fs

Baseline = 1,972,375,832fs

Cursor = 6,464,730,290fs

dtl_clk

source

dtl_cmd_accept

dtl_cmd_valid

dtl_wr_accept

dtl_wr_data

dtl_wr_last

dtl_wr_valid

cut−target

dtl_cmd_valid_target

dtl_wr_data_target

dtl_wr_valid_target

dtl_wr_accept_target

scan−in

test_wire_in1

test_wire_in2

test_wire_in3

capture

apply_pattern

scan−out

test_wire_out1

test_wire_out2

test_wire_out3

cut−initiator−port

dtl_cmd_accept_initiator

dtl_cmd_valid_initiator

dtl_wr_data_initiator

dtl_wr_last_initiator

dtl_wr_valid_initiator

sink

dtl_cmd_valid

dtl_cmd_block_size

dtl_wr_accept

dtl_wr_data

dtl_wr_valid

F FFFFFFFF

0 FFFFFFFF

F FFFFFFFFFFF

F FFFFFFFFFFF

1 1FFFFFFFFFFF

FFFFFFFFFFF FFFFFFFFFFF

FFFFFFFFFFF FFFFFFFFFFF

1FFFFFFFFFFF 1FFFFFFFFFFF

00000000

00

00000000 F FF

2,000,000,000fs 3,000,000,000fs 4,000,000,000fs 5,000,000,000fs 6, 000, 000, 0

Baseline = 1,972,375,832fs

TimeA = 6,464,730,290fs

Page 1 of 1

Printed by SimVision from Cadence Design Systems, Inc.Printed on Thu Jun 01 14:40:12 CEST 2006

Waveform 2 − SimVision

Cursor−Baseline = 4,492,354,458fs

Baseline = 1,972,375,832fs

Cursor = 6,464,730,290fs

dtl_clk

source

dtl_cmd_accept

dtl_cmd_valid

dtl_wr_accept

dtl_wr_data

dtl_wr_last

dtl_wr_valid

cut−target

dtl_cmd_valid_target

dtl_wr_data_target

dtl_wr_valid_target

dtl_wr_accept_target

scan−in

test_wire_in1

test_wire_in2

test_wire_in3

capture

apply_pattern

scan−out

test_wire_out1

test_wire_out2

test_wire_out3

cut−initiator−port

dtl_cmd_accept_initiator

dtl_cmd_valid_initiator

dtl_wr_data_initiator

dtl_wr_last_initiator

dtl_wr_valid_initiator

sink

dtl_cmd_valid

dtl_cmd_block_size

dtl_wr_accept

dtl_wr_data

dtl_wr_valid

F FFFFFFFF

0 FFFFFFFF

F FFFFFFFFFFF

F FFFFFFFFFFF

1 1FFFFFFFFFFF

FFFFFFFFFFF FFFFFFFFFFF

FFFFFFFFFFF FFFFFFFFFFF

1FFFFFFFFFFF 1FFFFFFFFFFF

00000000

00

00000000 F FF

2,000,000,000fs 3,000,000,000fs 4,000,000,000fs 5,000,000,000fs 6, 000, 000, 0

Baseline = 1,972,375,832fs

TimeA = 6,464,730,290fs

Figure 5.6: Wrapper waveform.

Table 5.3: List of considered ITC’02 SoC Test Benchmarks (MARINISSEN; GOEL;
LOUSBERG, 2000) cores.

SoC Cores Considered

a586710 2, 3, 4, 7
d281 7
d695 2
f2126 1, 2
g1023 1, 2, 3, 4, 10, 11, 12, 14
h953 1
p22810 27
p34392 2, 10, 18
p93791 10, 32
q12710 1, 2, 3, 4
t512505 1, 2, 4, 8, 9, 14, 15, 16, 17, 23, 24, 25, 26, 29, 31

resulting test length in clock cycles. We do this for both the conventional wrapper
design approach, which relies on a dedicated TAM, as well as for our new wrapper
design approach, which reuses the functional protocol ports of the core.

The cores in the ITC’02 benchmarks do not have functional protocol ports (or, at
least, they are not specified), while our method critically depends on their presence.
Hence, we assume that every core has two DTL ports, of which one serves as test
input and the other as test output. The assumed DTL test input port has 32 SDI
terminals, 45 CI terminals, and 2 CO terminals. The assumed DTL test output
port has 32 SDO terminals, 2 CI terminals, and 45 CO terminals. For the two DTL
ports, each core needs 79 input terminals and 79 output terminals. Some of the
186 cores in the ITC’02 benchmarks do not have that many terminals, and hence
are not considered in our evaluation. This leaves still 42 cores for our experiments,
which are listed in Table 5.3.

We assume that bandwidths bin
i and bout

o and test frequency f are such that the
maximum affordable number of wrapper chains w = 16. As ci = co = 32, w = 16
implies that pi = po = 2. However, it is also possible to implement fewer, but longer

97

wrapper chains, which means that we are not using the bandwidth to its maximum,
and consequently accept a longer test length.

For all 42 cores considered and for a number of wrapper chains w ranging from 1
to 16, we have calculated the numbers of gate-equivalents required to implement a
wrapper and the corresponding test length in clock cycles, for both the conventional
wrapper design algorithm (MARINISSEN; GOEL; LOUSBERG, 2000) and our new
approach. In total, this involves 42×16×2 = 1344 wrapper calculations. Figure 5.7
shows the average relative gate-equivalent count increase and the relative test length
increase. The horizontal axes refer to cores with numbers in the same order they
are listed in Table 5.3.

Figure 5.7(a) shows the increase in the number of gate-equivalents required to
implement the new wrapper, relative to what was required for a conventional wrap-
per design. These numbers show only around 1% variation for varying values of w,
and hence we have decided to show the average increase for 1 ≤ w ≤ 16. The average
wrapper area increase over all 672 cases is 14.5%, which is negligible at SoC level.
Figure 5.7(b) shows that the test length impact of the new approach varies between
a −27.4% and +7.2%, with on average over all 672 cases a test length decrease of
3.8%.

5.4.3 Wrapper Area for NoCs Without Guaranteed Services

The only difference in the design of NoC with and without guaranteed services
is that later might require a FIFO in the wrapper. It affects the silicon area of the
wrapper, but not the test length. For this reason we show additional silicon area
results with emphasis on the size of the FIFO.

The FIFO depth of a wrapper depends on the number of test wires assigned for
the wrapper and it also depends on the physical channel width. Table 5.4 shows the
size of the FIFO for different number of test wires and channel width. The method
used to determine the minimal FIFO depth and packet size is presented in Chapter 9.
These results say that the size of the wrapper for NoCs without guaranteed services
can increase 0% to 44%.

5.5 Discussion

This section discusses the different results of core test length and silicon area
of the proposed wrapper compared to the conventional wrapper design (GOEL;
MARINISSEN, 2003a).

The extra silicon area required by our approach is due to the protocol logic and
the FIFO (in case of NoCs without guaranteed services).

The difference in core test length is not so obvious as silicon area. According
to Figure 5.7(b), there are some cases that the proposed approach is faster and
other cases that it is slower than the conventional wrapper. The rest of this section
explains why this variation might occur.

Let us give an example why the proposed approach is slower than the conven-
tional wrapper. Table 5.5 shows the core test length as function of the assigned
test wires for the illustrative example in Figure 5.5. The columns show the number
of test wires, the test length for the proposed wrapper, the test length for (GOEL;
MARINISSEN, 2003a), and the test length increase.

Different test length between our approach and (GOEL; MARINISSEN, 2003a)

98

Table 5.4: Size of the wrapper’s FIFO in NoCs without guaranteed services.

channel
width

test
wire

packet
length

FIFO
words

wrapper
area

(eq. gates)

relative
FIFO area

(%)

1 2 0 1023 0
2 5 2 1290 218
4 14 5 1566 37
1 1 0 1558 0
2 2 1 1696 5
3 4 2 2043 25
4 5 2 2033 25
5 7 3 2158 30

16

8 14 5 2512 40
1 1 0 2593 0
2 1 0 2542 0
3 2 0 2540 0
4 2 1 2846 5
5 3 1 2858 5
6 4 2 3523 27
8 5 2 3513 27

10 7 3 3726 32

32

16 14 5 4362 42
1 1 0 4615 0
2 1 0 4561 0
3 1 0 4548 0
4 1 0 4510 0
5 2 0 4509 0
6 2 0 4509 0
7 2 1 5148 6
8 2 1 5141 6
9 3 1 5144 6

10 3 1 5153 6
12 4 2 6491 29
16 5 2 6481 29
21 7 3 6893 34

64

32 14 5 8092 44

99

Table 5.5: The core test length as function of the number of test wires.

test our (GOEL; MARINISSEN, 2003a) additional
wires test test length test length

time (%)

1 5532 5532 0
2 2771 2771 0
3 1858 1858 0
4 1451 1396 3.9
5 1429 1363 4.8
6 1418 1363 4.0

Table 5.6: Test wires for our approach and (GOEL; MARINISSEN, 2003a). DIin =
SDI ∪RSDI and DOout = SDO ∪RSDO.

test CIin+ scan DOin+
wire DIin DIout+ chains COin+ DOout

CIout COout

tw[0] 8 0 {123} 0 8
tw[1] 8 0 {123} 0 8
tw[2] 8 43 {50,23} 43 8
tw[3] 8 66 {50} 66 8

tw[0] 2 0 {123} 0 2
tw[1] 2 0 {123} 0 2
tw[2] 3 50 {50,23} 50 3
tw[3] 25 51 {50} 51 25

were observed for wrappers with more than three test wires. Let us take the wrapper
with four test wires as an example. Using Equations 5.1, we derive pi = po =

⌊
32
4

⌋
=

8. The scan chains are presented in Table 5.6 for our approach and for (GOEL;
MARINISSEN, 2003a).

The conventional approach (GOEL; MARINISSEN, 2003a) does not require con-
straints when balancing the test wires. When there is the situation where a single
test wire is the bottleneck for the scan time (as the test wires tw[0] and tw[1] in
the example), the previous approach presents slight better test length since their
approach can distribute better the wrapper cells, resulting in smaller scan-in and
scan-out length. In conclusion, the constraint of equal number of SDI and SDO
elements per test wire might increase the scan-in and scan-out length compared to
the conventional approach.

On the other hand, our approach might be faster than the conventional approach.
It can be observed in Equation 5.5 that ti ≤ si, which means that the scan time ti
used in our approach is at most equal to the scan length si used in the conventional
approach. In conclusion, if both proposed and conventional approaches have the
same scan length, the proposed approach might have a smaller scan time, resulting
in a faster core test length.

100

5.6 Summary

We present the proposed core test wrapper design which allows test data to be
transported via functional protocol ports, such as AXI, DTL, and OCP ports. This
approach allows test data transport via an existing functional on-chip bus, NoC, or
other functional interconnect. We assume that the test sources and sinks are either
an external ATE, or an on-chip BIST engines. We require that the bus, NoC, or
other functional interconnect provide guaranteed bandwidth and constant latency,
necessary to operate streaming scan tests. We try to exploit the available functional
bandwidth as much as possible, in order to minimize the core’s test length.

Our new wrapper design no longer relies on a dedicated TAM, and hence has no
dedicated TAM ports. Instead, the test data is transported via selected functional
protocol ports. This requires careful wrapper design, such that (1) the number of
wrapper chains is tuned to the available test data bandwidth; (2) the functional
protocols are correctly executed while the test is running; and (3) and the protocol
port wrapper cells are positioned at the head and tail of the various wrapper chains.

Although other papers have described the reuse of functional buses and NoCs as
TAM, no previous papers have worked out the details of wrapper design for this sce-
nario. The benefits of our approach are that no dedicated TAM is required, that test
access to the embedded cores is guaranteed, and that the test (protocol) expansion
becomes simpler. By using guaranteed communication services, our approach hides
any internal details of the functional interconnect. For the functional interconnect,
the transport of test data is just another application, enabling unchanged re-use of
the functional interconnect design flow. We can also use the proposed approach on
NoCs without guaranteed services by adding a FIFO to the wrapper.

The implementation of the new wrapper design for 672 example cases based on
the ITC’02 SoC Test Benchmarks showed an average wrapper area increase of 14.5%,
compared to a conventional wrapper. Note that at SoC level, this area increase is
negligible. The same 672 example cases show an average reduction of test length of
3.8%. The wrapper silicon area might increase from 0% to 44% when BE NoCs are
used, thus, the area overhead for BE NoCs is around 20% .

101

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35 40 45

A
ve

ra
ge

 a
re

a
ov

er
he

ad
 (

%
)

Core ID Number

Area overhead of the proposed wrapper

(a)

-30

-25

-20

-15

-10

-5

 0

 5

 10

 0 5 10 15 20 25 30 35 40 45

R
el

at
iv

e
T

es
t L

en
gt

h
In

cr
ea

se
 (

%
)

Core ID Number

Comparison between Core Test Length of Both Reuse and Conventional Wrapper

(b)

Figure 5.7: Average relative wrapper’s gate-equivalent count increase (a) relative
core’s test length increase of the proposed wrapper with the conventional wrapper
design. Results for 42 cores from ITC’02 benchmark and w ∈ {1..16}.

102

103

6 DFT FOR SOURCES AND SINKS

This chapter presents two approaches to implement sources and sinks in NoC-
based SoCs: based on the reuse of embedded processors and the ATE interface.

6.1 Reuse of Embedded Processors

Current complex systems are using 10 to 15 processors and, according to
(HENKEL, 2003), there is an emerging trend pointing to a “sea of processors” with
hundreds of heterogeneous processors connected through a NoC. Considering this
trend and the increasing complexity for testing such state-of-the-art systems, the
reuse of both the processor and the on-chip network for test seems a promising
approach to reduce test costs.

Processor reuse is based on software-based test of cores, i.e. embedded processors
are loaded with test programs to test other cores. Some advantages are that the
processor is already connected to the NoC, so there is no need for additional hard-
ware (like the ATE interface), and a cheaper external test equipment can be used
since part of the test is embedded into the chip (KRSTIC et al., 2002). However,
there are two important drawbacks for the processor reuse during test. In all the
previous approaches (AMORY; OLIVEIRA; MORAES, 2003; HUANG et al., 2001a;
HWANG; ABRAHAM, 2001, 2003; KRSTIC et al., 2002) the cores are tested serially
because they assume a bus-based architecture, which leads to longer test lengths. In
addition, even if more than one processor is available within the chip, the possibility
of reuse and parallelism is limited by the bottleneck of bus-based communication
architectures.

NoC reuse can replace the test dedicated TAMs for test data transportation.
NoCs support parallel transactions, which is important to support test parallelism.
However, if few test pins are available, the NoC is sub utilized and the test length
increases. Combining processor reuse and NoC reuse can solve this problem since
part of the test is embedded into the chip and the interconnect support parallelism
to use multiple processors as sources and sinks. However, more parallelism can
increase the power consumption during test. Although the reuse of the embedded
processor avoids the addition of new blocks in the system, the power consumption
of the processor itself, while running the test program, may be quite high.

Amory et al. (2004; 2005) proposed a power-aware test scheduling tool that
combines the reuse of multiple embedded processors and the reuse of the NoC. Thus,
the main problems of processor reuse (test serialization and power consumption),
and NoC reuse (few test pins and slow tester) are addressed.

104

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

no proc 2 proc 4 proc 6 proc

te
st

 le
ng

th
50% power limit no power limit

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

no proc 2 proc 4 proc 6 proc 8 proc

te
st

 le
ng

th

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

no proc 2 proc 4 proc 6 proc 8 proc

te
st

 le
ng

th

d695

p22810

p93791

Figure 2 - Test times with Plasma processors.

In both systems, based on Leon and on Plasma
processors, we can observe that the power consumption
does not play an important role in small systems like the
d695, since there is no significant difference when
imposing the power constraint. Other common
observation is that the scheduling algorithm has to be
improved to avoid irregular results like those in the
p22810 systems.

7. FINAL REMARKS
This work evaluates the impact of reusing processors

to test a NoC-based system. The processors available in
the system are programmed with a test application to test
some cores of the system. The results presented
demonstrate the effectiveness of this approach to
increase the number of test sources/sinks to explore the
NoC parallelism, reducing the system test time without
additional area and test pins.

The tool developed to demonstrate the proposed test
methodology can play an important role in test planning,
since it helps the test integrator to search for a cost
effective test strategy for the whole chip.

8. REFERENCES
[1] Amory, A.M.; Cota, E.F.; Lubaszewski, M. and Moraes,

F.G. "Reducing Test Time With Processor Reuse in

Network-on-Chip Based Systems". In Symposium on
Integrated Circuits and Systems Design, 2004.

[2] Amory, A.M.; Oliveira, L.A. and Moraes, F.G. "Software-
Based Test for Non-Programmable Cores in Bus-Based
System-on-Chip Architectures". In VLSI-SOC, 2003, pp.
174-179.

[3] Bolotin, E.; Cidon, I.; Ginosar, R. and Kolodny, "A. Cost
Considerations in Network on Chip". Special issue on
Networks on Chip, Integration - the VLSI journal, 2003.

[4] Cota, E.F.; Carro, L.; Wagner, F. and Lubaszewski, M.
"Power-aware NoC Reuse on the Testing of Core-based
Systems". In International Test Conference, 2003, pp.
612-621.

[5] Cota, E.F.; Kreutz, M.E.; Zeferino, C.A.; Carro, L.;
Lubaszewski, M. and Susin, A.A. "The Impact of NoC
Reuse on the Testing of Core-based Systems". In VLSI
Test Symposium, 2003, pp. 128-133.

[6] Dally, W.J. and Towles, B. "Route Packets, not Wires: on-
Chip Interconnection Networks". In Design Automation
Conference, 2001, pp. 684-689.

[7] Gaisler Research. "Leon2 Core". http://www.gaisler.com/
[8] Guerrier, P. and Greiner, A. "A Generic Architecture for

on-Chip Packet-Switched Interconnections". In Design,
Automation and Test in Europe Conference, 2000, pp.
250-256.

[9] Henkel, J., "Closing the SoC Design Gap". IEEE
Computer, vol. 36-6, 2003, pp. 119-121.

[10] Huang, J.-R.; Iyer, M.K. and Cheng, K.-T. "A Self-Test
Methodology for IP Cores in Bus-Based Programmable
SoCs". In IEEE VLSI Test Symposium, 2001, pp. 198-203.

[11] Hwang, S. and Abraham, J.A. "Reuse of Addressable
System Bus for SOC Testing". In ASIC/SOC Conference,
2001, pp. 215-219.

[12] Hwang, S. and Abraham, J.A., "Test Data Compression
and Test Time Reduction Using an Embedded
Microprocessor". IEEE Transactions on Very Large Scale
Integration Systems, vol. 11-5, 2003, pp. 853-862.

[13] Krstic, A.; Lai, W.C.; Cheng, K.T.; Chen, L.; Dey, S.
"Embedded Software-Based Self-Test for Programmable
Core-Based Designs". IEEE Design and Test of
Computers, vol: 19-4, 2002, pp. 18-27.

[14] Lai, W. C.; Cheng, K. T. "Instruction-Level DFT for
Testing Processor and IP Cores in System-on-a-Chip". In
Design Automation Conference, 2001, pp. 59-64.

[15] Magarshack, P. and Paulin, P.G. "System-on-Chip
Beyond the Nanometer Wall". In Design Automation
Conference, 2003, pp. 419-424.

[16] Marinissen, E.J.; Iyengar, V. and Chakrabarty, K. "A Set
of Benchmarks for Modular Testing of SoCs". In
International Test Conference, 2002, pp. 519-528.

[17] Opencores."Plasma processor".http://www.opencores.org/
[18] Zeferino, C.A. and Susin, A.A. "SoCIN: A Parametric and

Scalable Network-on-Chip". In Symposium on Integrated
Circuits and Systems Design, 2003, pp. 121-126.

[19] Zeferino, C.A.; Kreutz, M.E.; Carro, L. and Susin, A.A.
"A Study on Communication Issues for Systems-on-
Chip". In Symposium on Integrated Circuits and Systems
Design, 2002, pp. 121-126.

(a)

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

no proc 2 proc 4 proc 6 proc

te
st

 le
ng

th

50% power limit no power limit

0
100000
200000
300000
400000
500000
600000
700000
800000
900000

1000000

no proc 2 proc 4 proc 6 proc 8 proc

te
st

 le
ng

th

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

no proc 2 proc 4 proc 6 proc 8 proc

te
st

 le
ng

th

d695

p22810

p93791

Figure 1 - Test times with Leon processors.

Table 2 – Maximum system test time reduction
percentage using Leon processors.

 d695_leon p22810_leon p93791_leon
power
constraint

28.4% 20.9% 37.2%

no power
constraint

28.9% 42.4% 44.7%

The results presented in Figure 1 demonstrate that
increasing the number of processors reused for test
reduces the test time compared to the test without
processor reuse. One can observe that even smaller
systems like d695_leon can take advantage of the extra
test interface. For this system, a test time reduction of up
to 28% is achieved.

For larger systems such, as p93791_leon, the gain in
the test time can be as high as 44%. Despite this, the test
reduction reaches up to 37% imposing power constraint,
since there is more parallelism and more processors
running the test programs.

For p22810_leon system, we get some test time
reduction but it is not regular because of the greedy
behavior of the scheduling algorithm. The greedy
behavior of the presented algorithm forces it to select the
first available test interface. This can increase the system
test time because we assume that the processor test
latency is always higher than for the external tester,
which we assume to be zero. Thus, if a processor is
available in a given instant and an external tester is
available few instants later, the resource used is
processor, since it is available earlier. However, it should
use the external tester, which is faster than the processor.

Another observation is that when a processor tests a

core with a large number of test patterns it can increase
the global test time since restriction 2, presented in
Section 5, says that a CUT can only be tested by a single
test interface to simplify the test controlling. However,
processors take longer time than the external tester to
apply the test patterns. One possible solution to this
problem could be the insertion of constraints limiting
which cores could be tested by processors, but this
feature is currently not implemented.

Table 3 presents the number of cores tested by the
Leon processors for the solutions presented in Figure 1
considering power constraints. The first column presents
the number of Leon processors available to be used
during testing, varying from two to eight. Half of the
processors are used as test source and the other half as
test sink. The remaining columns present the number of
cores tested by the Leon processors. Consider the
d695_Leon benchmark with two processors reused for
test. The number 5/6 means that 5 cores use the Leon as
test source and 6 cores use this block as test sink. The
other cores are tested by the external tester.

Table 3 – Number of cores tested by the Leon
processors considering power constraints.

processors
(in/out)

d695_leon
cores 16

p22810_leon
cores 36

p93791_leon
cores 40

1/1 5/6 6/5 6/12
2/2 6/8 2/4 11/10
3/3 8/8 19/17 8/10
4/4 - 8/12 11/11

Figure 2 presents the evaluation of test time versus

number of reused processors for systems d695_plasma,
p22810_plasma, and p93791_plasma, whereas Table 4
presents the percentage of test time reduction of Figure 2
when the reuse approach is compared to the purely
external test.

Table 4 – Maximum system test time reduction
percentage using Plasma processors.

 d695_plasma p22810_plasma p93791_plasma
power
constraint

30.1% 23.9% 42.0%

no power
constraint

30.1% 32.3% 45.4%

For Plasma-based systems we can observe similar
behavior to Leon-based systems. For the d695_plasma
system the test time reduction is regular and there is no
significant difference imposing power constraints. Like
in the d695_leon system, the most significant test time
reduction occurs adding two processors, since this
system is small and additional test source/sink does not
increase the NoC usage. For p393791_plasma we
observe that the power consumption limit results in a
significant difference in the test time. The
p22810_plasma has an irregular result when reusing two
processors because the number of processors reused
without power constraints is much larger than with
power constraints. However, we have the opposite
behavior when reusing six processors, i.e. the number of
processors reused with power constraints is larger than
without power constraints.

(b)

Figure 6.1: Test length with different number of reused processors; (a) Plasma
processor; (b) Leon processor.

6.1.1 Results

Experimental results are presented for three examples based on benchmarks of
the ITC’02 SoC Test Benchmarks (MARINISSEN; IYENGAR; CHAKRABARTY,
2002). The test scheduling tool proposed in (COTA et al., 2003) was modified to
support processors as source and sink. Two open processor cores and a NoC are
included to the ITC’02 benchmarks to evaluate the impact of the software-based test
in a NoC-based system. The first processor is a MIPS-like processor named Plasma
(OPENCORES, 2006b). The second one is a VHDL model of a 32-bit processor
compliant with the SPARC V8 architectures named Leon (GAISLER, 2006). The
NoC is based on the RaSoC model, with mesh topology and different number of
routers.

The used test programs are a LFSR with support to reseeding for the test sources
and a MISR for the test sinks. Both processors were characterized while running
these test programs. The features analyzed during characterization were memory
requirement for the test program and test data, test throughput (how fast is the
test program), and the power dissipated while running the test program.

Figure 6.1 shows that a significant test length reduction can be achieved when
embedded processors are reused to generate/analyze test data.

105

6.1.2 Discussion

Although the reuse of multiple processors has the previously mentioned advan-
tages, there are also some practical problems that must be taken into account for
the effective use of the approach:

• High and constant test throughput : The test program should generate patterns
or analyze responses as fast as possible. The faster the test program is, the
shorter is the core test length. Constant test throughput is required to main-
tain the test streaming. For example, if a test program generates a pattern in
100 clock cycles and the next pattern in 350, there may be a gap in the test
transfer, which may require the test of the CUT to stall until data is available.
Constant test throughput assures minimal core test length for the assumed
bandwidth;

• The test program should fit in the available memory : If this constraint is not
respected, there are two alternatives, both of them expensive. The first would
be to increase the processor memory size, but it may lead to excessive area
overhead. The other one is to access other unused memory blocks located in
a different NoC tile. The problem is that this additional traffic would need
to be modeled by the tool. For these reasons, the test memory requirements
should fit to the memory available for the reused processor;

• Test quality : the application of the test pattern generated by the test program
should lead to a high fault coverage. Thus, only pseudo-random test patterns,
as used in (AMORY et al., 2004), may not be enough to test real cores;

• The combination of the above mentioned challenges makes it hard to conceive a
test program with small size, fast, and high test quality. On one hand, pseudo-
random test is small in memory requirement, fast, but the fault coverage can
be low even if reseeding is considered. On the other hand, data compression
could be used to increase the test quality, but they would increase the memory
requirement and the test length.

Due to these problems, we started to investigate alternatives methods for source
and sink.

6.2 ATE Interface

An ATE interface is the DfT module that connects the test pins to the NoC.
As presented in the test model, Chapter 4, each partition has at least one ATE
interface. The ATE interface is the source and sink of the modules in the partition.

The main tasks of an ATE interface are to do width conversion between the
number of test pins and the network data width, protocol conversion to communicate
the ATE with the NoC, and traffic shaping, i.e. to correct the traffic deformation
caused by load fluctuation.

6.2.1 ATE Interface in the Proposed Design Flow

This section demonstrates how the ATE interfaces are defined according to the
proposed design flow presented in Section 4.8, page 80.

106

An ATE interface is defined as a tuple {w, d, V }, where w is the number of test
wires and d is the buffer depth. V is a set of tuples v = {nburst, header, nword}
with the information required by the ATE interface to test a core, where nburst is
the number of packets, word is the number of words in each packet, and header is
the packet header content where the most important information is the location of
the CUT. There is a v tuple for each module tested by an ATE interface.

According to the proposed flow, the parameters w and V are defined in the test
scheduling, while d is defined in the DfT optimization.

6.2.2 Functional Description of the ATE Interface

This section presents the functional behavior of the ATE interface.
The initiator ATE interface reads data from the test pins and sends it to the

CUT via the NoC. For all module in V , it sends b packets with the header h, where
each packet has size w. It starts sending the header to the NI with the CUT address,
then it sends the test stimuli read from the test pins (test pins variable). This
procedure repeats until all packet of all modules in V where sent.

Algorithm 6.1: Initiator ATE Interface

1 for a l l v ∈ V {
2 b := v . nbursts ;
3 h := v . header ;
4 do{
5 w := v . nwords ;
6 send (h) ;
7 do{
8 data := s e r i a l 2 p a r a l l e l (t e s t p i n s) ;
9 send (data) ;

10 }while (w−−);
11 }while (b−−);
12 }

The target ATE interface receives test responses from the NoC and sends it to
the test pins. For all module in V , it reads an expected number of words w from b
packets. It discards the header and reads the packet payload, which represents the
test responses. The procedure repeats until all words, of all packet of all modules
of V were received.

Algorithm 6.2: Target ATE Interface

1 for a l l v ∈ V {
2 b := v . nbursts ;
3 do{
4 w := v . nwords ;
5 d i s ca rd (h) ;
6 do{
7 read (data) ;
8 t e s t p i n s := p a r a l l e l 2 s e r i a l (data) ;
9 }while (w−−);

10 }while (b−−);
11 }

107

78

NoC

in
pu

t p
or

t
ou

tp
ut

 p
or

t

initiator

input
test pins

w c

target

output
test pins

w c

ATE interface

d

Figure 6.2: Block diagram of the ATE interface.

6.2.3 Block Diagram of the ATE Interface

The ATE interface illustrated in Figure 6.2 consists of an initiator ATE interface
block and a target ATE interface block. Both blocks do the width conversion from
c to w wires and vice-versa, implemented by means of a shift-register. The protocol
conversion must execute the NoC protocol and include packet header information
in the test stream, like packet destination and number of words in the packet. The
ATE interface also executes the protocol with the NI to enable sending test data
while the network is in functional mode. Both NoC protocol and packet format are
network dependent, thus, this part of the ATE interface also depends on the target
NoC. The traffic shaping is carried out by counters that determine the period d and
by the FIFO used to eliminate the gaps.

6.2.4 Timing Diagram of the ATE Interface

In order to abstract the NoC from the tester, the ATE interface should follow
the timing diagram illustrated in Figure 6.3. This figure illustrates the timing of
a test stimuli and a test responses path. The ATE sends data every clock cycle
in a constant and uninterrupted manner (line 1). One can see that data is sent at
constant time intervals of pi (or po) clock cycles (line 2) as defined in Equation 5.1,
page 86.

Test responses are addressed to the target ATE interface. The received data can
be bursty, presenting gaps which would interrupt test data delivery (line 3). The
FIFO at the target ATE interface is responsible for recreating the required periodic
data (line 4). Finally, data is serialized to the output test pins (line 5).

This proposed timing abstracts the network to a pipe where data flows in a
constant and continuous manner, the same way dedicated TAMs do. This pipe has
a certain width (i.e. the network bandwidth), determined by the number of pins in
the ATE interface, and a certain delay, which depends on the design and length of
the pipe (i.e. the number of hops in the test path).

6.2.5 Integrating the ATE Interface to the SoC

According to the functional system model, every access to the NoC is via a NI
and an on-chip protocol. In some extent, the ATE interface can be seen as a core to

108

79

par2ser
ATE int.

FIFO
ATE int.

NoC

input test pins
(line 1)

OCP interface
(line 2)

OCP interface
(line 3)

(line 4)

output test pins
(line 5)

test stream

header flit

data flit

…

ATE

initiator
ATE int.

gap

po

pi

…

(a) test stimuli

(b) test responses

pi pi pi

po po po

test stream

…

NoC

ATE

Figure 6.3: Timing diagram of the ATE interface.

the test model, thus, it also requires on-chip ports to be connected to a NI. Hence,
the best way to connect the ATE interface to the NI must be found. Let us analyze
some design alternatives for an ATE interface.

The first alternative, illustrated in Figure 6.4(a), core ports are added to the NI
to connect the test pins. The problem is that adding core ports to the NI requires
modifications in the NI kernel. For instance, modifying the number of core ports
should be avoided because if there are more cores competing for the router access,
the arbitration logic inside the NI changes. Since the NI implementation is not
standardized, modifications in the NI would not lead to a general test approach.

The second approach, illustrated in Figure 6.4(b), adds a NI just for test, then,
there is no core connected to this NI. This approach requires to find a router without
NI or, in case there is no “empty” router, to add a router just to add a NI for
test. This alternative modifies the router network and changes the performance
characteristics of the NoC, for example, some paths will have additional latency due
to a new router. Moreover, the area cost of a router, a NI, and the ports for the
test pins are very high.

The third approach, which is the chosen one, is illustrated in Figure 6.4(c). It
reuses an existing NI and it multiplexes an existing core port of the NI. The advan-
tages of this approach are the lower area overhead compared to previous alternatives,
and it is easier to generalize and automate because it does not require modification
in the NI kernel.

109

51

DfT standard ports

router 2router 2

router 3router 3

ATEATE

core
test
pins

NoC
Chip

router 1router 1network
interface
network
interface

A
TE

in
te

rfa
ce

A
TE

in
te

rfa
ce

(a)

52

DfT standard ports

router 2router 2

router 3router 3

ATEATE

NoCChip

router 1router 1network
interface
network
interfaceA

TE
in

te
rfa

ce
A

TE
in

te
rfa

ce

(b)

50

router 2router 2

router 3router 3

ATEATE

core

test_mode

DfT standard ports

NoC
Chip

router 1router 1network
interface
network
interface

A
TE

in
te

rfa
ce

A
TE

in
te

rfa
ce

(c)

Figure 6.4: Alternatives to the ATE interface design; (a) it requires modification in
the NI and router; (b) it requires an additional NI; (c) the proposed multiplexed
design.

110

OCP target

Mcmd[3]
Maddr[8]

MBurstLength[8]
Mdata[8]

MDataValid
MDataLast

SDataAccept
SCmdAccept

Mcmd[3]
Maddr[8]
MBurstLength[8]
Mdata[8]
MDataValid
MDataLast
SDataAccept
SCmdAccept

OCP initiator

CUT

Figure 6.5: Interface of the ATE interface.

6.2.6 Synthesis Results

We evaluate the proposed DfT changing network data width c and number of
test wires w. We show experiments with c equal to 8, 16, 32, and 64 bits. Figure 6.5
shows the OCP interfaces used to interface with the NoC, considering c = 8.

The first column of the Table 6.1 shows the network data width. The next
three columns show the number of test wires the DfT logic must give support, the
minimum packet length, and the minimal FIFO depth. We show these four data
because they are the main variables that affect the design, the silicon area of the
DfT.

The minimal FIFO depth and packet length required to sustain the test wires are
determined by the procedure described in Algorithm 9.1, Chapter 9. The number
of FIFO words and the packet length increase because, with more test wires, more
bandwidth from the network is required.

The following columns of the table are related to silicon area to implement the
DfT modules. All modules have been synthesized to 0.35µ technology library. They
show the area for the ATE interface (both initiator and target) and the test wrapper
for a CUT using the same interface shown in Figure 6.5. The silicon area for the
ATE interface initiator suffers a small variance due to different size of some internal
counters, like the packet length counter. The ATE interface target is initially smaller
than the initiator, but its area increases according to the number of FIFO words.
The wrapper area is usually close to the area of an ATE interface since the protocol
logic is very similar and the input part of the wrapper may also require a FIFO. The
systems with 16/32/64 bits have similar results to the system with 8 bits in terms
of silicon area.

These results are presented again in Chapter 9 to discuss the algorithm to find
the minimal FIFO size of the DfT logic.

6.2.7 Discussion

An ATE interface shapes the test paths. It shapes test paths not only in terms of
data width, but also in terms of timing (constant and continuous test data stream-
ing), and in terms of protocol, adapting test and on-chip protocols. For the test
point of view, an ATE interface abstracts the NoC such that the tester and the
CUTs see the NoC as a dedicated TAM.

The main drawback of the ATE interface design is the possibility of long wires
between the test pins and the ATE interface. These long test wires are illustrated

111

Table 6.1: Area of the ATE interface compared to a wrapper.

area (eq. gates) test time
network

data
width

test
wire

packet
length

FIFO
words

ATE
interface
(initiator)

ATE
interface
(target)

wrapper %
(prop/conv)

scan
length

scan
time
(clock
cycles)

conv.
time
(clock
cycles)

prop.
time
(clock
cycles)

%
(prop/conv)

1 2 0 713 271 1023 8.4 31 25 351 285 -23.2
2 5 2 724 538 1290 10.7 16 13 186 153 -21.68
4 14 5 799 836 1566 13.4 8 7 98 87 -12.6
1 1 0 968 438 1558 6.8 55 49 615 549 -12.0
2 2 1 974 584 1696 7.5 28 25 318 285 -11.6
3 4 2 979 926 2043 9.1 19 16 219 186 -17.7
4 5 2 976 926 2033 9.1 14 13 164 153 -7.2
5 7 3 977 1080 2158 9.7 11 10 131 120 -9.2

16

8 14 5 982 1440 2512 11.4 7 7 87 87 0.0
1 1 0 1476 767 2593 6.2 103 97 1143 1077 -6.1
2 1 0 1475 752 2542 6.1 52 49 582 549 -6.0
3 2 0 1472 708 2540 6.0 35 31 395 351 -12.5
4 2 1 1487 1041 2846 6.8 26 25 296 285 -3.9
5 3 1 1473 976 2858 6.8 21 19 241 219 -10.0
6 4 2 1476 1669 3523 8.5 18 16 208 186 -11.8
8 5 2 1493 1704 3513 8.6 13 13 153 153 0.0

10 7 3 1476 1894 3726 9.0 11 10 131 120 -9.2

32

16 14 5 1759 2559 4362 11.1 7 7 87 87 0.0
1 1 0 2535 1407 4615 5.8 199 193 2199 2133 -3.1
2 1 0 2535 1392 4561 5.7 100 97 1110 1077 -3.1
3 1 0 2524 1369 4548 5.7 67 64 747 714 -4.6
4 1 0 2532 1376 4510 5.7 50 49 560 549 -2.0
5 2 0 2510 1294 4509 5.6 40 37 450 417 -7.9
6 2 0 2503 1291 4509 5.6 34 31 384 351 -9.4
7 2 1 2522 2019 5148 6.5 29 28 329 318 -3.5
8 2 1 2537 1952 5141 6.5 25 25 285 285 0.0
9 3 1 2534 1920 5144 6.5 23 22 263 252 -4.4

10 3 1 2505 1834 5153 6.4 20 19 230 219 -5.0
12 4 2 2501 3195 6491 8.2 17 16 197 186 -5.9
16 5 2 2540 3259 6481 8.3 13 13 153 153 0.0
21 7 3 2501 3655 6893 8.8 10 10 120 120 0.0

64

32 14 5 3061 4847 8092 10.8 7 7 87 87 0.0

112

51

b
01

b
11

a
21

b
31

d
00

b
10

b
20

b
30

c
02

b
12

a
22

a
32

input test pin output test pin

Figure 6.6: Long wires required to connect the test pins to the ATE interface. The
fat lines represent the test wires. The circles with fat lines represent the ATE interface location.

in Figure 6.6. The length of the wire depends on the physical distance between
the pin and the ATE interface. However, recall that this problem is also present in
the dedicated TAM approach. Moreover, the advantage of the proposed approach
compared to dedicated TAMs is that it does not need extra wires among the cores.

The second possible drawback is extra mutiplexers required to connect the ATE
to the NI. It can increase the delay of the system. Moreover, since the proposed
approach supports multiple ATE interfaces per vTAM, the wires assigned to a vTAM
must be shared among the ATE interfaces. This is described in Figure 6.6 partition
b, where the output test pin is shared by two test wires. The solution to support
multiple ATE interfaces per vTAM has been chosen because, otherwise, the NoC
partition would have to have a shape such that the routing algorithm could reach all
nodes within the partition with a single ATE interface. It would impose more severe
restriction to the test length. For this reason we assume multiple ATE interfaces
per partition. Recall that although there might be multiple ATE interfaces per
partition, only one is activated per time to avoid packet collision.

6.3 Summary

This chapter presented two approaches to transport test data over a NoC. The
first one is based on the reuse of embedded processors as test sources and sinks.
The second one presented a module, called ATE interface, required to connect the
test pins to the NoC and to shape the path from the tester to the CUT according
to the test requirements, abstracting the NoC from the test domain. The results
demonstrated that the proposed design for ATE interface is simple, configurable,
and the required silicon area is equivalent to a test wrapper. The drawback of the
ATE interface is that long wires might be required to connect the test pin to the
ATE interface and it may increase the system delay. However, it does not need extra
wires among the cores as dedicated TAMs.

The approach that has been continued is the one based on ATE interface because
it is based on external testers, which is the most used test application approach,
and it is simpler to implement than the processor reuse approach. As presented
before, although the reuse approach is cheap in area and the connection to the NoC
is available, developing cost-effective test program is the main challenge. Further
developments on multiple processor reuse are future work.

113

7 DFT FOR NETWORKS-ON-CHIP

Network-on-Chip has recently emerged as an alternative communication archi-
tecture for complex system chip and different aspects regarding NoC design have
been studied in the literature. However, the test of the NoC itself for manufacturing
faults has been marginally tackled. This chapter proposes a scalable test strategy
for the routers in a NoC, based on partial scan and on an IEEE Std. 1500-compliant
test wrapper. The proposed test strategy takes advantage of the regular design of
the NoC to reduce both test area overhead and test length. Experimental results
show that a good tradeoff of area overhead, fault coverage, test data volume, and
test length is achieved by the proposed technique. Furthermore, the method can
be applied for large NoC sizes and it does not depend on the network routing and
control algorithms, which makes the method suitable to test a large class of network
models.

7.1 Introduction

Several authors have presented different aspects regarding the design and im-
plementation of on-chip networks (GUERRIER; GREINER, 2000; MORAES et al.,
2004; BJERREGAARD; MAHADEVAN, 2006). Recently, industrial NoCs have also
been proposed (VERMEULEN et al., 2003). Furthermore, the reuse of the NoC as
TAM has been presented as a cost-effective strategy for the test of embedded IP
cores, with reduced area, pin count, and test length costs (AMORY et al., 2004;
COTA; LIU, 2006). Although one may claim that the network operation is also
tested when it is transmitting test data, for diagnosis purposes and complete fault
coverage it is important to define a test scheme for the network before its reuse as
TAM. For this reason, most NoC reuse test strategies assume that it has been tested
previously.

Some test approaches for NoCs have been discussed in the literature (AKTOUF,
2002; UBAR; RAIK, 2003; VERMEULEN et al., 2003). Aktouf (2002) suggests the
use of a boundary scan wrapper. Other approaches (UBAR; RAIK, 2003; VER-
MEULEN et al., 2003) suggest that a wide variety of standard DfT solutions can
be used, from BIST for FIFOs, to functional testing of wrapped routers. However,
those proposals have not been applied, to the best knowledge of the authors, to
actual NoCs.

In this chapter, we firstly verify the efficiency of some of the previously sug-
gested NoC test approaches, as well as the applicability of standard DfT techniques
(ARABI, 2002; MARINISSEN et al., 2002; WU; MACDONALD, 2003) to NoC
testing. Experiments show that existing approaches may lead to considerable area

114

overhead and test length, making the NoC testing a major bottleneck for the system
design. Hence, we propose a scalable and cost-effective DfT strategy for the routers
of the NoC.

The proposed method is based on partial scan and on an IEEE Std. 1500-
compliant test wrapper, and it takes advantage of the NoC regularity. Moreover,
the test strategy is scalable and independent of the network functional operation,
which makes it suitable for a large class of network models and implementations.
The method is applied to three versions of a NoC model with different sizes to
demonstrate its effectiveness. The results are analyzed in terms of area overhead,
test length, test data volume, fault coverage, and power dissipation.

The contributions of this proposal are twofold: firstly, it shows that the applica-
tion of standard DfT techniques to the NoC testing is not straightforward, and may
lead to excessive costs if applied deliberately. Secondly, it presents a structured,
scalable, and cost-effective test scheme for NoC routers.

This chapter is organized as follows: Section 7.2 presents a brief overview of
NoC design and a description of the network used in the sequel of the chapter.
Section 7.3 presents the main challenges for testing NoCs. Section 7.4 presents the
results of the application of standard DfT methods in the test of a NoC. Section 7.5
describes the proposed test strategy, while Section 7.6 discusses the experimental
results. Sections 7.7 and 7.8 discuss limitation of the approach and present the
conclusion.

7.2 Case Study: the SoCIN Network

In order to evaluate the proposed test strategy, a packet-switched network named
SoCIN (System-on-Chip Inter-connection Network) (ZEFERINO; SUSIN, 2003) is
used. The router that implements the network protocol is called RASoC (Router
Architecture for System-on-Chip). This router uses input buffering, a round-robin
algorithm for arbitration, a handshake algorithm for flow control, and an oblivious
routing algorithm. Switching is based on the wormhole approach, where a packet is
broken up into flits (flow control units). The channel width used in the experiments
is 20 bit-wide (16 data bits and 4 control bits). RASoC has four ports to connect
to its neighbors and one port to connect to the embedded IP core. The network
implements a 2D torus topology, where each router is configured with 16-bit flit
width and FIFOs depth equal to 4.

7.3 Main Challenges

Table 7.1 presents some characteristics of the original RASoC router, without
test circuitry. The characteristics of a processor core called Plasma (OPENCORES,
2006b) are also presented in the table for comparison.

Plasma is a typical example of small-to-medium size IP core. The processor is
compatible to MIPSI instruction set, and has a 32-bit multiplier, a shifter, a 32x32
register bank, and 3-stage pipeline. Plasma has less IO pins, and consequently, a
smaller area for the test wrapper than the RASoC router. In addition, in spite of
the 32x32 register bank, Plasma has a lower density of flip-flops (36%) than RASoC
(45%).

The power consumption presented in Table 7.1 is characterized considering the

115

Table 7.1: Comparing the RASoC router and the Plasma processor.

gates # flip-flops flip-flop IO power
relative area pins (µw)

RaSoC 4605 425 45% 202 2.24
Plasma 20118 1444 36% 105 6.12

dynamic and static power consumption of the module. To evaluate the dynamic
consumption, the module is initially synthesized to an ASIC technology library for
which the power consumption of technology cells is available. The resulting netlist
description is simulated. During this simulation, the switching activity of each cell
of the technology library is captured. Then, the power consumption per clock cy-
cle is computed by multiplying the number of toggles and the power consumption
per cell. The total power consumption for the whole simulation is given by the
average power consumption of the module in each clock cycle. Plasma power con-
sumption was characterized for an arbitrary application. For RASoC, the power
was characterized considering four packets being routed in parallel, which maxi-
mizes the switching activity. All packets have the same number of flits and random
payload data. One can observe that Plasma presents higher power consumption
than RASoC, since Plasma has more flip-flops, which are the main source of power
consumption. However, considering the power per gate measure, RASoC has a ratio
(2.24/4605) of 0.5nw/gate against (6.12/20118) 0.3nw/gate of the Plasma processor.
Thus, although a single router is smaller than most functional IP cores, it may have
a higher switching activity. Therefore, the total power consumed by the NoC may
easily be higher than the consumption of other IP cores in the system.

This comparison between RASoC and Plasma highlights the challenge to find
a cost-effective test strategy for NoCs. The router has fewer gates per I/O port,
higher density of flip-flops, and higher power consumption per gate. Those features
indicate, for instance, that test wrapper and full-scan implementations may be too
costly if applied to each router independently. On the other hand, NoCs usually have
very regular designs. Although different implementations of routers exist, most of
them follow the conceptual model presented in Figure 2.6, page 39. The combination
of the regularity of a NoC and the predictable router structure is explored in this
work to reduce test costs.

7.4 Evaluating Standard Test Strategies in NoCs

Some authors argue that the NoC is another IP core (flat or hierarchical) in
the system. In this case, its test can be defined using traditional core-based testing
strategies (UBAR; RAIK, 2003; VERMEULEN et al., 2003). This means the use
of an IEEE Std. 1500-compliant test wrapper (MARINISSEN et al., 2002) and the
use of scan-based approaches to test the routers. Considering the NoC as a flat
core, a single test wrapper is inserted in the NoC interface. Otherwise, if the NoC
is considered as a hierarchical core, one test wrapper for each router is necessary.

Considering the regular design and the presence of identical IP cores in the
NoC structure (routers), test strategies previously proposed for similar systems may

116

Table 7.2: Standard test strategies applied to a 3x3 NoC.

flat core boundary hier. core - hier. core -
full scan scan full scan full scan with comparator

Total area 49437 79290 62037 62994
(eq. gates)

area 19% 91% 50% 52%
overhead

be applied to the on-chip network. Wu and MacDonald (2003), and Arabi (2002)
propose test strategies for identical IP cores in a single chip. Both approaches require
full-scan and IEEE Std. 1500 wrapped cores with registered I/O pins. The test
consists on applying test patterns to all identical IP cores in parallel and comparing
the responses within the chip. Whenever a fault is detected, a special circuit at
the output of each IP core allows to individually test each block for diagnosis.
Those approaches result in a considerable reduction in test length (due to the test
parallelism), in test volume (do not require storage of the test response in the tester),
and in ATPG CPU time (ATPG runs for a single IP core).

Another approach, proposed by Aktouf (AKTOUF, 2002), is a boundary-scan
based strategy for testing massively parallel machines. The method takes advan-
tage of the regularity of the communication architecture to reduce the test length.
Boundary scan cells involve each router in the architecture. Full scan routers are
assumed.

We evaluate these four test configurations with respect to the area overhead
and results are presented in Table 7.2. The reference design is a 3x3 SoCIN network
with nine RASoC routers implementing a torus topology as described in Section 7.2.
The size of this NoC without test circuitry is 41,445 gates. The second column in
Table 7.2 (Flat core full scan) shows the results when the network is considered
as a single IP core, i.e., a single test wrapper and a full-scan strategy are imple-
mented for the network as a whole. Column 3 (Boundary scan) shows the results
for the boundary-scan approach. In this configuration, all routers have full-scan
and a boundary scan test wrapper, as proposed in (AKTOUF, 2002). The last
two configurations assume the network is a hierarchical IP core, i.e., each router is
treated independently. In the third configuration, shown in Column 4 of Table 7.2
(Hierarchical core-Full scan) each router has a test wrapper and implements a full
scan testing. The fourth test model (column Hierarchical core-Full scan with com-
parator) repeats the third one, but includes internal comparators, as proposed in
(ARABI, 2002; WU; MACDONALD, 2003), to reduce the test volume. The fault
coverage for all configurations is above 98%.

One can observe in Table 7.2 that the area overhead for three out of four ap-
proaches is prohibitive. The only exception is the first configuration, which considers
the NoC as a flat core with full scan. Although this configuration presents an af-
fordable area overhead, the flat approach typically ignores the internal organization
of the IP core. Indeed, we show further in this chapter that less area overhead can
be achieved when the internal structure of the NoC is considered. Therefore, new
methods must be developed to meet the specificities of this new communication

117

platform. Such a method is proposed in the next section and applied to the same
3x3 SoCIN network for comparison.

7.5 Proposed Test Strategy for NoCs Based on Identical
Routers

We propose a NoC testing approach that combines the best features of the “Flat
core full scan” approach (reduced area overhead) and the “Hierarchical core Full scan
with comparator” (reduced test volume) configurations explained in Section 7.4. The
proposed strategy considers the NoC as a flat core (a single test wrapper for the
whole network is required) but it does not require a full scan implementation, which
further reduces the area overhead. Moreover, different from the flatten approach,
we explore the regular design of the NoC to reduce test length and data volume.
The proposed strategy is presented in three parts:

a) The router testing, which shows how to configure the router internal scan
chains to reduce area,

b) The NoC testing, which explains how the scan chains of the routers are con-
nected together at NoC level, and

c) The NoC test wrapper, which details the definition of the IEEE Std. 1500
compliant test wrapper for the NoC exploring the network regular structure
to reduce area.

7.5.1 Router Testing

A router is composed by control logic (routing, arbitration, and flow control
modules) and input FIFOs. Control logic is considerably simpler to be tested,
because it contains a small number of flip-flops and gates. The input FIFO poses the
main problems for the router testability. Figure 7.1(a) illustrates the architecture of
the primary inputs of a router, i.e., the FIFO implementation. If full scan is directly
implemented in this structure, all flip-flops of the FIFO will become scan flip-flops
and will be chained together. In the proposed approach, we split the FIFO and
define a single scan chain using only the first position of the queue, as illustrated in
Figure 7.1(b). This single scan chain provides the controllability and observability
required to test the whole structure, since the FIFO is usually not very deep and
there is no feedback logic in this block. Thus, any sequential ATPG tool can generate
test patterns for the whole FIFO with an affordable effort.

To complete the router testing, a second scan chain is defined with the remaining
flip-flops of the control logic, which are the flip-flops used to implement the routing
algorithm, for example. This approach avoids expensive solutions like full-scan and
BIST (UBAR; RAIK, 2003; VERMEULEN et al., 2003), while the ATPG tool can
still generate high fault coverage at reasonable CPU time.

7.5.2 NoC Testing

After defining the test structure for each router, one must define an access mech-
anism to transmit test data from the network interface to each router and vice-versa.
We propose a general test communication protocol, which can be applied to regular

118

Paper 25.1 INTERNATIONAL TEST CONFERENCE

4

Another approach, proposed by Aktouf [1], is a boundary-
scan based strategy for testing massively parallel ma-
chines. The method takes advantage of the regularity of
the communication architecture to reduce the test time.
Boundary scan cells involve each router in the architec-
ture. Full scan routers are assumed.

We evaluate these four test configurations with respect to
the area overhead and results are presented in Table 2.
The reference design is a 3x3 SoCIN network with nine
RASoC routers implementing a torus topology as de-
scribed in Section 2.1. The size of this NoC without test
circuitry is 41,445 gates. The second column in Table 2
(Flat core full scan) shows the results when the network is
considered as a single IP core, i.e., a single test wrapper
and a full-scan strategy are implemented for the network
as a whole. Column 3 (Boundary scan) shows the results
for the boundary-scan approach. In this configuration, all
routers have full-scan and a boundary scan test wrapper,
as proposed in [1]. The last two configurations assume the
network is a hierarchical IP core, i.e., each router is
treated independently. In the third configuration, shown in
Column 4 of Table 2 (Hierarchical core-Full scan) each
router has a test wrapper and implements a full scan test-
ing. The fourth test model (column Hierarchical core-Full
scan with comparator) repeats the third one, but includes
internal comparators, as proposed in [3][12], to reduce the
test volume. The fault coverage for all configurations is
above 98%.

Table 2 – Standard test strategies
applied to a 3x3 NoC.

 Hierarchical core
 Flat core

full
Scan

Boundary
scan

Full
scan

Full scan
with

comparator
Total
area

(gates)
49437 79290 62037 62994

Area
overhead 19% 91% 50% 52%

One can observe in Table 2 that the area overhead for
three out of four approaches is prohibitive. The only ex-
ception is the first configuration, which considers the NoC
as a flat core with full scan. Although this configuration
presents an affordable area overhead, the flat approach
typically ignores the internal organization of the IP core.
Indeed, we show further in the paper that less area over-
head can be achieved when the internal structure of the
NoC is considered.

Therefore, new methods must be developed to meet the
specificities of this new communication platform. Such a
method is proposed in the next section and applied to the
same 3x3 SoCIN network for comparison.

4. Proposed Test Strategy
We propose a NoC testing approach that combines the
best features of the "Flat core full scan" approach (re-
duced area overhead) and the "Hierarchical core Full
scan with comparator" (reduced test volume) configura-
tions explained in Section 3. The proposed strategy con-
siders the NoC as a flat core (a single test wrapper for the
whole network is required) but it does not require a full
scan implementation, which further reduces the area over-
head. Moreover, different from the flatten approach, we
explore the regular design of the NoC to reduce test time
and data volume.

The proposed strategy is presented in three parts:
a) the router testing, which shows how to configure

the router internal scan chains to reduce area,
b) the NoC testing, which explains how the scan

chains of the routers are connected together at
NoC level, and

c) the NoC test wrapper, which details the definition
of the IEEE 1500 compliant test wrapper for the
NoC exploring the network regular structure to
reduce area.

4.1. Router Testing
As detailed in Section 2, a router is composed by control
logic (routing, arbitration, and flow control modules) and
input FIFOs. Control logic is considerably simpler to be
tested, because it contains a small number of flip-flops
and gates. The input FIFO poses the main problems for
the router testability. Figure 3.a illustrates the architecture
of the primary inputs of a router, i.e., the FIFO implemen-
tation. If full scan is directly implemented in this struc-
ture, all flip-flops of the FIFO will become scan flip-flops
and will be chained together.

In the proposed approach, we split the FIFO and define a
single scan chain using only the first position of the
queue, as illustrated in Figure 3.b. This single scan chain
provides the controllability and observability required to
test the whole structure, since the FIFO is usually not very
deep and there is no feedback logic in this block. Thus,
any sequential ATPG tool can generate test patterns for
the whole FIFO with an affordable effort.

Input
port

si

so

(a) (b)

Input
port

FIFO
FIFO

FIFO
entity

Figure 3 – Splitting the input FIFOs: (a) original and (b)

modified for testing.
Figure 7.1: Splitting the input FIFOs: (a) original and (b) modified for testing.

Paper 25.1 INTERNATIONAL TEST CONFERENCE

5

To complete the router testing, a second scan chain is de-
fined with the remaining flip-flops of the control logic,
which are the flip-flops used to implement the routing
algorithm, for example.

This approach avoids expensive solutions like full-scan
and BIST [10][11], while the ATPG tool can still generate
high fault coverage at reasonable CPU time.

4.2 NoC Testing
After defining the test structure for each router, one must
define an access mechanism to transmit test data from the
network interface to each router and vice-versa. We pro-
pose a generic test communication protocol, which can be
applied to regular NoC topologies, such as mesh and to-
rus. In this protocol, test patterns, coming from the exter-
nal tester, are simultaneously applied to all identical
routers. Test responses of the routers, on the other hand,
are internally compared, as proposed in [3][12]. If test
responses are different, a mechanism for diagnosis can be
activated. Otherwise, the test continues.

Test vectors are broadcasted to routers by a single pin in
the network interface, as shown in Figure 4. Note that
different from Figure 2, only test related ports and wires
are shown in Figure 4. The block denoted by the equal
signal indicates a comparator that checks test responses
against each other. The number of comparators required
in the NoC depends on the number of scan chains in the
routers. For each scan chain in the routers there must be a
comparator. In Figure 4, for instance, a single scan chain
per router is assumed, and the four chains feed the single
comparator. Ideally, all routers are tested in parallel and a
single comparator is used. However, there may be limita-
tions in the maximum fan-out of the scan input pin (SI in
Figure 4) and in the test time achieved by a single scan
chain in the routers. The NoC designer can define, then,
an alternative solution by increasing the number of scan
chains per router (area overhead does not change) to re-
duce test time and increasing the number of comparators,
whose area can be easily estimated.

NoC

SI0 = SO0

router 0

router 2 Se0..4

router 1

router 3

Figure 4 – Testing multiple identical routers.

4.2.2 The Comparator
Figure 5 presents a circuit for output comparison, which is
similar to the modules proposed by Wu and MacDonald
[12], and Arabi [3]. When running in test mode, ports
compEnable (compEnbx) and enable detection (en_det)
are assigned to ‘1’, while the diagnostic port diag is set to
‘0’. Signals compInput (compInx) receive one scan chain
output of each router being tested. All corresponding bits
unloaded from each router scan chain are compared
against each other, as depicted in Figure 4. If there is any
difference, the xor gate generates an error signal ‘1’ in the
so pin.

en_det

compEnb0

...

diag

so

compEnbn

compIn0

compInn

FF 1

Figure 5 – Comparator block.

The comparison logic also supports diagnosis. In diagno-
sis mode, signal diag is initially set to ‘1’. Then, signal
compEnbx corresponding to a single router is set to ‘1’,
while signals compEnbx of the remaining routers are set to
‘0’. Test vectors are applied again to all routers, but the
output of only one router will be captured. This procedure
is repeated until the defective router is found.

Notice that other testing approaches that consider the NoC
as a non-hierarchical core are not able to identify the
router with defect since they abstract the internal structure
of the network. On the other hand, the hierarchical ap-
proach has a large area overhead. However, our approach
is based on the flat design but structured in such way that
the defective router can be identified.

4.3 Test Wrapper for NoCs
To complete the definition of the test strategy, we briefly
describe an IEEE 1500-compliant wrapper implementa-
tion for the network.

In order to support on-chip test response comparison, one
must provide the same test stimuli for all the routers.
Thus, functional pins and scan chains of the routers must
receive the same test stimuli. Identical stimuli for scan
chains are provided by the strategy presented in Section
4.2. However, since there is a single test wrapper for the
whole NoC, the test wrapper design must also ensure that
the functional ports of the routers receive the same test
stimuli.

Figure 7.2: Testing multiple identical routers.

NoC topologies, such as mesh and torus. In this protocol, test patterns, coming
from the external tester, are simultaneously applied to all identical routers. Test
responses of the routers, on the other hand, are internally compared, as proposed
in (ARABI, 2002; WU; MACDONALD, 2003). If test responses are different, a
mechanism for diagnosis can be activated. Otherwise, the test continues.

Test vectors are broadcasted to routers by a single pin in the network interface,
as shown in Figure 7.2. Note that only test related ports and wires are shown in
Figure 7.2. The block denoted by the equal signal indicates a comparator that checks
test responses against each other. The number of comparators required in the NoC
depends on the number of scan chains in the routers. For each scan chain in the
routers there must be a comparator. In Figure 7.2, for instance, a single scan chain
per router is assumed, and the four chains feed the single comparator. Ideally, all
routers are tested in parallel and a single comparator is used. However, there may
be limitations in the maximum fanout of the scan input pin (SI in Figure 7.2) and
in the test length achieved by a single scan chain in the routers. The NoC designer
can define, then, an alternative solution by increasing the number of scan chains
per router (area overhead does not change) to reduce test length and increasing the
number of comparators, whose area can be easily estimated.

7.5.2.1 The Comparator

Figure 7.3 presents a circuit for output comparison, similar to the modules pro-
posed by Wu and MacDonald (2003), and Arabi (2002). When running in test

119

Paper 25.1 INTERNATIONAL TEST CONFERENCE

5

To complete the router testing, a second scan chain is de-
fined with the remaining flip-flops of the control logic,
which are the flip-flops used to implement the routing
algorithm, for example.

This approach avoids expensive solutions like full-scan
and BIST [10][11], while the ATPG tool can still generate
high fault coverage at reasonable CPU time.

4.2 NoC Testing
After defining the test structure for each router, one must
define an access mechanism to transmit test data from the
network interface to each router and vice-versa. We pro-
pose a generic test communication protocol, which can be
applied to regular NoC topologies, such as mesh and to-
rus. In this protocol, test patterns, coming from the exter-
nal tester, are simultaneously applied to all identical
routers. Test responses of the routers, on the other hand,
are internally compared, as proposed in [3][12]. If test
responses are different, a mechanism for diagnosis can be
activated. Otherwise, the test continues.

Test vectors are broadcasted to routers by a single pin in
the network interface, as shown in Figure 4. Note that
different from Figure 2, only test related ports and wires
are shown in Figure 4. The block denoted by the equal
signal indicates a comparator that checks test responses
against each other. The number of comparators required
in the NoC depends on the number of scan chains in the
routers. For each scan chain in the routers there must be a
comparator. In Figure 4, for instance, a single scan chain
per router is assumed, and the four chains feed the single
comparator. Ideally, all routers are tested in parallel and a
single comparator is used. However, there may be limita-
tions in the maximum fan-out of the scan input pin (SI in
Figure 4) and in the test time achieved by a single scan
chain in the routers. The NoC designer can define, then,
an alternative solution by increasing the number of scan
chains per router (area overhead does not change) to re-
duce test time and increasing the number of comparators,
whose area can be easily estimated.

NoC

SI0 = SO0

router 0

router 2 Se0..4

router 1

router 3

Figure 4 – Testing multiple identical routers.

4.2.2 The Comparator
Figure 5 presents a circuit for output comparison, which is
similar to the modules proposed by Wu and MacDonald
[12], and Arabi [3]. When running in test mode, ports
compEnable (compEnbx) and enable detection (en_det)
are assigned to ‘1’, while the diagnostic port diag is set to
‘0’. Signals compInput (compInx) receive one scan chain
output of each router being tested. All corresponding bits
unloaded from each router scan chain are compared
against each other, as depicted in Figure 4. If there is any
difference, the xor gate generates an error signal ‘1’ in the
so pin.

en_det

compEnb0

...

diag

so

compEnbn

compIn0

compInn

FF 1

Figure 5 – Comparator block.

The comparison logic also supports diagnosis. In diagno-
sis mode, signal diag is initially set to ‘1’. Then, signal
compEnbx corresponding to a single router is set to ‘1’,
while signals compEnbx of the remaining routers are set to
‘0’. Test vectors are applied again to all routers, but the
output of only one router will be captured. This procedure
is repeated until the defective router is found.

Notice that other testing approaches that consider the NoC
as a non-hierarchical core are not able to identify the
router with defect since they abstract the internal structure
of the network. On the other hand, the hierarchical ap-
proach has a large area overhead. However, our approach
is based on the flat design but structured in such way that
the defective router can be identified.

4.3 Test Wrapper for NoCs
To complete the definition of the test strategy, we briefly
describe an IEEE 1500-compliant wrapper implementa-
tion for the network.

In order to support on-chip test response comparison, one
must provide the same test stimuli for all the routers.
Thus, functional pins and scan chains of the routers must
receive the same test stimuli. Identical stimuli for scan
chains are provided by the strategy presented in Section
4.2. However, since there is a single test wrapper for the
whole NoC, the test wrapper design must also ensure that
the functional ports of the routers receive the same test
stimuli.

Figure 7.3: Comparator block.

mode, ports compEnable (compEnbx) and enable detection (en det) are assigned to
‘1’, while the diagnostic port diag is set to ‘0’. Signals compInput (compInx) receive
one scan chain output of each router. All corresponding bits unloaded from each
router scan chain are compared against each other, as depicted in Figure 7.2. If
there is any difference, the xor gate generates an error signal ‘1’ in the so pin.

The comparison logic also supports diagnosis. In diagnosis mode, signal diag is
initially set to ‘1’. Then, signal compEnbx corresponding to a single router is set to
‘1’, while signals compEnbx of the remaining routers are set to ‘0’. Test vectors are
applied again to all routers, but the output of only one router will be captured. This
procedure is repeated until the defective router is found. Notice that other testing
approaches that consider the NoC as a non-hierarchical core are not able to identify
the router with defect since they abstract the internal structure of the network. On
the other hand, the hierarchical approach has a large area overhead. However, our
approach is based on the flat design but structured in such way that the defective
router can be identified.

7.5.3 Test Wrapper for NoCs

To complete the definition of the test strategy, we briefly describe an IEEE Std.
1500-compliant wrapper implementation for the network.

In order to support on-chip test response comparison, one must provide the same
test stimuli for all the routers. Thus, functional pins and scan chains of the routers
must receive the same test stimuli. Identical stimuli for scan chains are provided by
the strategy presented in Section 7.5.2. However, since there is a single test wrapper
for the whole NoC, the test wrapper design must also ensure that the functional
ports of the routers receive the same test stimuli.

Figure 7.4 presents the proposed IEEE Std. 1500-compliant test wrapper for the
NoC. In test mode, functional inputs receive test patterns through the cix cells, as
in the original test wrapper. However, the difference from the original IEEE Std.
1500 test wrapper design is that the number of ci cells is not equal to the total
number of functional inputs of the NoC. Instead, there are as many ci cells as the
network channel bitwidth, i.e., the number of input pins necessary to connect the
NoC to one IP core. In Figure 7.4, we are assuming 20 bits (see ci0 to ci19). Within
the wrapper, these input pins feed the functional inputs of each router.

Similarly, the number of wrapper test output cells is smaller than the number of
network functional outputs. Each functional output pin of the NoC is connected to
a comparator, similar to what is done with the routers scan chains. Comparators
results are chained together (co1 to co19 in Figure 7.4) and assigned to a single
wrapper scan output pin. For the wrapper shown in Figure 7.4, for instance, there
are 20 comparators, since we are assuming routers outputs of 20 bits (bitwidth of

120

Paper 25.1 INTERNATIONAL TEST CONFERENCE

6

NoC

Din_R0
[0:19]

control ports

special_in test wrapper

sc1 [0:n]

sc0 [0:m]

sc1 [0:n]

sc0 [0:m]

=

=

router 0

router n

Si[0:2]

Din_Rn
[0:19]

Dout_R0
[0:19]

Dout_Rn
[0:19]

So[0:2]

ci0

ci19

co0

co19

......
Fu

nc
tio

na
l i

np
ut

s

Fu
nc

tio
na

l o
ut

pu
ts

se[0..r]
diagnosis

control block

=

=

20

[0]

functional ports router n

functional ports router 0

[19]

[0]

[19]

[0]

[19]

[0]

[19]

modifications required for the test wrapper

Figure 6 – Proposed test wrapper for NoCs.

Figure 6 presents the proposed IEEE 1500-compliant test
wrapper for the NoC. In test mode, functional inputs re-
ceive test patterns through the cix cells, as in the original
test wrapper. However, the difference from the original
1500 test wrapper design is that the number of ci cells is
not equal to the total number of functional inputs of the
NoC. Instead, there are as many ci cells as the network
channel bitwidth, i.e., the number of input pins necessary
to connect the NoC to one IP core. In Figure 6, we are
assuming 20 bits (see ci0 to ci19). Within the wrapper,
these input pins feed the functional inputs of each router.

Similarly, the number of wrapper test output cells is
smaller than the number of network functional outputs.
Each functional output pin of the NoC is connected to a
comparator, similar to what is done with the routers scan
chains. Comparators results are chained together (co1 to
co19 in Figure 6) and assigned to a single wrapper scan
output pin. For the wrapper shown in Figure 6, for in-
stance, there are 20 comparators, since we are assuming
routers outputs of 20 bits (bitwidth of the channel con-
necting the NoC to the IP core). Such a structure reduces
not only the area overhead of the wrapper (by reducing
the number of wrapper scan cells), but also the NoC test
time (by reducing the number of shift operations during
test). The wrapper cell definitions are compliant with the
IEEE 1500 standard.

It can be observed in Figure 6 that, for example, func-
tional inputs Din_R0[0] to Din_Rn[0] receive the same
value through ci wrapper cells during test and the com-
parator presented in Figure 5 is attached to the functional
outputs. The result from the comparison can be loaded in
the co wrapper cells for scan out. During the diagnosis
mode, the diagnosis control block is responsible to set the
diag and sex ports, presented in Figure 5, to the appropri-
ate router.

We note that the test access mechanism that connects the
network to the system interface and the external tester is
defined by the SoC designer, since the network is consid-
ered as another IP core in the system.

5. Experimental Results
We evaluated the proposed test strategy for three different
network sizes, to show the scalability of the method.

All the experiments were carried out using DFTAdvisor™
(scan insertion tool) and Fastscan™ (ATPG tool) [7] from
Mentor Graphics, using the ADK (TSMC 0.35) technol-
ogy library. For the evaluation of the fault coverage,
stuck-at model is assumed and all faults classified by the
tools as possibly detectable are considered undetected
faults. The ATPG was executed on a Pentium 4 2.6GHz
with 1G RAM running Linux OS.

Figure 7.4: Proposed test wrapper for NoCs.

the channel connecting the NoC to the IP core). Such a structure reduces not only
the area overhead of the wrapper (by reducing the number of wrapper scan cells),
but also the NoC test length (by reducing the number of shift operations during
test). The wrapper cell definitions are compliant with the IEEE Std. 1500.

It can be observed in Figure 7.4 that, for example, functional inputs Din R0[0]

to Din Rn[0] receive the same value through ci wrapper cells during test and the
comparator presented in Figure 7.3 is attached to the functional outputs. The result
from the comparison can be loaded in the co wrapper cells for scan out. During the
diagnosis mode, the diagnosis control block is responsible to set the diag and sex

ports, presented in Figure 7.3, to the appropriate router.

We note that the test access mechanism that connects the network to the system
interface and the external tester is defined by the SoC designer, since the network
is considered as another IP core in the system.

7.6 Experimental Results

We evaluated the proposed test strategy for three different network sizes, to show
the scalability of the method.

All the experiments were carried out using DFTAdvisor (scan insertion tool) and
Fastscan (ATPG tool) (MENTOR GRAPHICS, 2007) from Mentor Graphics, using
the ADK (TSMC 0.35) technology library. For the evaluation of the fault coverage,
stuck-at model is assumed and all faults classified by the tools as possibly detectable
are considered undetected faults. The ATPG was executed on a Pentium 4 2.6GHz
with 1G RAM running Linux OS.

Table 7.3 presents the testing results using the proposed approach for each net-

121

Table 7.3: Results for the proposed test strategy.

Area costs Test efficiency Test time (cycles)

N
oC

 si
ze

Original
area

(#gates)

Area with
proposed DfT

(#gates)

fault
coverage

(%)

patterns

test
volume
 (bits)

collapsed

faults

3
unbalanced

chains

3
balanced

chains

8
balanced

chains

CPU
time
(s)

3x3 41445 45107
(+8.8%) 98.82 383 254465 105024 32187 21407 9087 2876

4x4 73680 79923
(+8.4%) 98.93 395 273845 186702 33271 22155 9451 11350

5x5 115125 124616
(+8.2%) 98.93 466 315065 291712 39286 26182 11206 33916

work size. Columns 2 and 3 show, respectively, the area of the original NoC and
of the NoC with the proposed test structures. The area is measured in number of
gates and does not include wiring length. Column 3 also presents the percentage of
the increase in the area due to the DfT hardware. The fault coverage, the number
of test patterns, the test volume, and the number of collapsed faults are presented
in Column 4 through 7, respectively. Different test lengths are presented for each
network in Columns 8, 9, and 10, to demonstrate that the designer can use different
scan configurations for the routers. Finally, the CPU time spent by the ATPG is
shown in Column 11.

The proposed approach has three sources of area overhead: the partial scan chain
in the router, the comparators in the NoC, and the test wrapper of the NoC.

Although not shown in Table 7.3, the area of the router with the proposed partial
scan is 4,859 gates, which represents an overhead of 5.5% over the original router. A
full-scan implementation in this structure results in 14.7% of area overhead. Notice
in Table 7.3 that the area overhead of the proposed method for the 3x3 NoC (+8.8%)
is smaller than the one achieved by the pure application of full-scan, presented earlier
in Table 7.2 (19%).

For the sake of a fair comparison of wrapper approaches, let us assume a config-
uration where the proposed partial scan approach for the routers is combined with
the traditional IEEE Std. 1500 wrapper. In this case, the area of the resulting NoC
is still smaller (46,756 gates compared to the 49,437 gates presented in Table 7.2).
This same configuration (traditional test wrapper) implemented in the 5x5 NoC
results in 14.2% of area overhead against 8.2% if the optimized wrapper is used.

It is important to notice that the area overhead of the router test structures
decreases as the FIFO depth increases (scan chains are inserted only in the first
FIFOs word). Hence, using the proposed approach, more complex network imple-
mentations will present a better tradeoff of test costs. Moreover, the area of the test
wrapper increases linearly with the number of routers (one wrapper scan pin per
router scan cell), and, most importantly, it increases sub linearly with the channel
width, since the number of wrapper scan cells for the routers functional inputs may
be kept constant.

We did not find in the literature the size of a complete system using NoCs.
Therefore, we cannot estimate accurately the overall increase in the chip size. Nev-
ertheless, according to the size of the systems evaluated in (RAJSKI et al., 2003),
the current system sizes range from 0.5 to 10 million gates. We estimate, however,
the overall contribution of the NoC testing circuitry to be about 0.7-1.9% for a 0.5
million-gate design, and 0.04-0.095% considering a 10 millions-gate design.

The test data volume presented in Table 7.3 does not consider the expected

122

responses, since they are evaluated on-chip. Considering the same test patterns and
their corresponding test responses, the total test volume would be 382,004, 405,380,
and 470,243 bits, for the 3x3, 4x4, and 5x5 NoCs, respectively. Thus, the test volume
saving of the circuit presented in Figure 7.2 is of 32%. Nevertheless, one can observe
that high fault coverage is still achieved independent of the number of routers in the
NoC and for the same relative cost in area.

The NoC designer can define different scan chains configurations to connect
the routers functional inputs in the wrapper, thus generating different test lengths.
Some possible configurations are presented in Table 7.3 (Columns 8, 9, and 10).
Considering the 5x5 NoC with eight balanced scans, for instance, the test length
using a standard test wrapper would be 80,002 clock cycles, while the proposed
wrapper achieves 11,206 clock cycles.

Finally, power consumption may be an important limitation to the test paral-
lelization within the NoC. Hence, we have characterized the power consumption per
router during test. The power consumption is characterized considering the dynamic
and static power consumption during the test execution and the actual test patterns.
To evaluate the dynamic consumption, the router is initially synthesized to an ASIC
technology library for which the power consumption of technology cells is available.
The resulting netlist description is simulated with the actual test patterns calcu-
lated by the ATPG tool. During this simulation, the switching activity of each cell
of the technology library is captured. Then, the power consumption per clock cycle
is computed by multiplying the number of toggles and the power consumption per
cell. The total power consumption for the whole simulation is given by the average
power consumption of a router in each clock cycle of the test procedure. For the
network configurations presented in Table 7.3, the power consumption per router is
4.34w. Since all routers receive exactly the same test patterns, the power of the NoC
depends only on the number of routers. Thus, considering a 10 million gate design
(RAJSKI et al., 2003), the total area of a NoC is small (less than 1% considering
3x3 NoC), and then the contribution to the system power consumption is expected
to be small too. However, if the test power of the NoC becomes an issue, one can
test groups of routers at a time instead of all of them in parallel.

Routing the comparators may cause routing congestion, timing and power prob-
lems because of the long wire length. In these situations, one can use comparators
between neighbor routers, thus reducing the wiring length. We are considering man-
ufacturing faults, which are usually randomly distributed in the design. Thus, the
probability of multiple errors that produce exactly the same output is low.

Figure 7.5 shows the scalability of the proposed method. As the size of the NoC
increases (see number of gates curve) the test data volume and test length increase
in a much lower rate, while the fault coverage is kept constant and the area overhead
is reduced. This graph demonstrates that the approach can scale to test very large
NoCs that support connecting several IP cores.

7.7 Limitations

The main limitation of the proposed approach is that it is applied only to NoCs
with large number of identical routers. Other approach must be proposed for NoCs
based on non-identical routers.

The second limitation of the proposed approach is that it does not test the NoC

123

Paper 25.1 INTERNATIONAL TEST CONFERENCE

8

nology cells is available. The resulting netlist description
is simulated with the actual test patterns calculated by the
ATPG tool. During this simulation, the switching activity
of each cell of the technology library is captured. Then,
the power consumption per clock cycle is computed by
multiplying the number of toggles and the power con-
sumption per cell. The total power consumption for the
whole simulation is given by the average power consump-
tion of a router in each clock cycle of the test procedure.
For the network configurations presented in Table 3, the
power consumption per router is 4.34 µW. Since all
routers receive exactly the same test patterns, the power of
the NoC depends only on the number of routers. Thus,
considering a 10 million gate design [9], the total area of a
NoC is small (less than 1% considering 3x3 NoC), and
then the contribution to the system power consumption is
expected to be small too. However, if the test power of the
NoC becomes an issue, one can test groups of routers at a

time instead of all of them in parallel.

Routing the comparators may cause routing congestion,
timing and power problems because of the long wire
length. In these situations, one can use comparators be-
tween neighbor routers, thus reducing the wiring length.
We are considering manufacturing faults, which are usu-
ally randomly distributed in the design. Thus, the prob-
ability of multiple errors that produce exactly the same
output is low.

Figure 7 shows the scalability of the proposed method. As
the size of the NoC increases (see number of gates curve)
the test data volume and test time increase in a much
lower rate, while the fault coverage is kept constant and
the area overhead is reduced. This graph demonstrates
that the approach can scale to test very large NoCs that
support connecting several IP cores.

gates

area overhead
fault coverage
test volume
test time

-50

0

50

100

150

200

3x3 4x4 5x5

systems

in
cr

ea
se

d
pe

rc
en

ta
ge

Figure 7 – Scalable test approach.

6. Final Remarks
In this paper, we have shown that routers of on-chip net-
works pose additional challenges to find a cost-effective
test strategy when compared to functional cores. The large
number of I/O pins, small area, and high density of flip-
flops make the application of standard DfT techniques a
more complex task for those structures. However, the test
cost of a NoC can be significantly reduced if its regular
design is considered.

We have proposed a scalable test strategy for NoCs based
on partial scan and an IEEE 1500-compliant test wrapper,
which reduces the test time and area overhead by exploit-
ing the NoC regular design. An academic network has
been used to demonstrate the feasibility of our approach.
Observing the obtained results one can conclude that the
proposed test strategy is indeed a cost-effective solution
for the test of routers that compose an on-chip network.
We reduced the ability to isolate the routers for test for the
sake of area overhead reduction, while keeping a high

fault coverage, low test time, and low test data volume.
The proposed test strategy can be implemented using only
a scan insertion tool and an ATPG tool.

Current work include evaluation of delay faults, evalua-
tion of area overhead considering wiring length, the test of
the network interfaces, the impact in test of using buffers
of different depths, and the test of the router-to-router
channels of the NoC.

Acknowledgments
The authors thank Mike R. Jones from Mentor Graph-

ics Corporation for his valuable support on the DfT tools.

7. References

Figure 7.5: Test costs versus NoC silicon area.

channels. However, a complementary approch for NoC channel testing has been
accepted for publication (KASTENSMIDT et al., 2007).

The main limitation of the experimental results is that it does not evaluate the
wiring area to implement the comparison modules. Since the routers of a NoC are
spread in the chip, the wires from the routers to the comparator block might be
long.

The proposed test model suggests that routers and cores might be tested in
parallel, where each router is considered a core and is tested individually. However,
the proposed approach tests the entire NoC at a time. In conclusion, the proposed
test approach is not totally compatible with the overall test approach for two reasons:
it has limited scope and a router cannot be individually tested.

Compatible test solutions for testing NoCs were investigated, however, they lead
to a high area overhead (about 30%) because when a router is considered a core, it
requries a test wrapper, which increases the area overhead. Approaches based on
fewer and less expensive wrappers for routers must be proposed.

7.8 Summary

We have shown that routers of on-chip networks pose additional challenges to
find a cost-effective test strategy when compared to functional cores. The large
number of I/O pins, small area, and high density of flip-flops make the application
of standard DfT techniques a more complex task for those structures. However, the
test cost of a NoC can be significantly reduced if its regular design is considered.

We have proposed a test strategy for NoCs based on partial scan and an IEEE
Std. 1500-compliant test wrapper, which reduces the test length and area overhead
by exploiting the NoC regular design. An academic network has been used to
demonstrate the feasibility of our approach. Observing the obtained results one
can conclude that the proposed test strategy is indeed a cost-effective solution for
the test of routers that compose an on-chip network. We reduced the ability to
isolate the routers for test for the sake of area overhead reduction, while keeping a
high fault coverage, low test length, and low test data volume. The proposed test
strategy can be implemented using only a scan insertion tool and an ATPG tool.

The main limitations of the proposed approach are that: it cannot be used to
test NoCs without large number of identical routers, it does not test NoC channels,

124

the results do not evaluate the area overhead to implement the wiring from the
router to the comparison block, and it is not totally compatible with the overall test
approach. Other approaches must be found to fill these gaps.

125

8 TEST SCHEDULING

This chapter presents a new scheduling algorithm based on a previous algorithm
(GOEL; MARINISSEN, 2003a) used for dedicated TAMs. The proposed algorithm
allows co-optimization of wrappers and scheduling, generating test architectures
optimized for both SoC test length and silicon area for DfT logic. This algorithm
is a first step toward a general NoC-reuse method since it does not require a cycle-
accurate NoC model as previous papers (COTA; LIU, 2006). Finally, we compare
the proposed algorithm with another algorithm (GOEL; MARINISSEN, 2003a) used
for dedicated TAMs.

8.1 Problem Statement

The wrapper optimization step generates all information to build a wrapper,
however, the test scheduling only needs the test length for each wrapper. Figure 8.1
illustrates the process where a set of wrappers (for instance, this set of wrappers
for core g1 is represented by w1g1 to wc/2g1) is used to build a Pareto graph like
the one illustrated in right part of Figure 8.1. This graph represents the wrapper
information loaded by the test scheduling tool.

117

wc/2 g1wc/2 g1

w2 g1w2 g1

w1 g1w1 g1

t(w1 g1)

t(w2 g1)

t(wc/2 g1)

test wires

te
st

 le
ng

th

Pareto curve
for core g1

Optimized wrappers
for core g1

Information used
by test scheduling

Information generated
by wrapper optimization

Figure 8.1: Building Pareto curve for the test scheduling. t() represents the test length
of a wrapper.

126

The following problem statement represents the proposed test scheduling algo-
rithm.

Problem 2 [Test Scheduling for NoC-Based Chips]
Given:

• a graph G which defines the SoC where for each g ∈ G there is a Pareto curve
Pg;

• the maximal number of test wires wmax;

• the physical channel width c, in bits;

• the routing algorithm r() used by the NoC.

Determine:

1. the sets of vTAMs;

2. the SoC test length, in clock cycles.

Such that:

i. the SoC test length and the silicon area for DfT are minimized while wmax is
not exceeded and the width of each vTAM is ≤ c/2.

�
Figure 8.2 graphically presents this problem.

116

wmax

r()

SchedulingScheduling

testscheduling

testw
rapper

optim
ization

b
01

b
11

a
21

b
31

b
00

b
10

b
20

b
30

c
02

b
12

a
22

a
32

vTAMn =
{--, w,Ratei, Rpart}

vTAMn =
{--, w,Ratei, Rpart}vTAM1 =

{--,--, w,Ratei, Rpart}
vTAM1 =

{--,--, w,Ratei, Rpart}

D
fT

generation

G

C

w2 B

w1

A tw3

Pareto curve
for core g1

Pareto curve
for core g|G|

Figure 8.2: Scheduling design flow.

127

8.2 Proposed Test Strategy

8.2.1 Previous Test Scheduling Algorithm

Choosing the algorithm for comparison was our first step. The usual SoC test
benchmark cannot be used in this comparison due to the lack of some important
information like NoC topology, routing algorithm, router test lenght, and stan-
dard ports for cores. The comparison can only be accomplished if the original test
scheduling algorithm for dedicated TAM is re-implemented and run under an ade-
quate input system, i.e. a system with NoC information. Thus, we have established
the follow criteria to choose the test scheduling algorithm:

• Based on a simple test architecture:
The algorithm should be based on fixed-width TAMs and with no preemption
support. It is know that these features complicates the hardware design. We
want to avoid these complications in first instance;

• Based on well-defined DfT modules :
The algorithm should be compatible with a well defined and established test
wrapper design and optimization;

• Easy to implement algorithm and clear documentation:
We need an algorithm simple to be designed since we would need to re-
implement it due to the lack of standard benchmarks for NoC-based systems.

The selected algorithm for the comparison and to be adapted to NoC reuse is the one
presented in (GOEL; MARINISSEN, 2003a). We initially use only one algorithm
due to the need to re-implement the original test scheduling, once there is no subtle
benchmark.

We adopted the same terminology used in (GOEL; MARINISSEN, 2003a) to
ease the comparison and readability. The main procedure executes the following sub-
procedures in sequence: CreateStartSolution, OptimizeBottomUp, OptimizeTopDown,
and Reshuffle. Figure 8.3 illustrates these optimization algorithms.

The procedure CreateStartSolution creates the initial test architecture such
that it sorts the modules of the SoC in decreasing order of test data volume, then it
assigns the ordered modules to one-bit TAMs. If there are more modules than TAM
wires, then, it assigns the remaining modules to the TAM with shortest test length,
otherwise, if there are more TAM wires than modules, then, it assigns test wires to
the TAM with longest test length. The procedure OptimizeBottomUp tries to merge
the TAM with shortest test length to another TAM such that the freed test wires
are allocated to the longest TAM to reduce the SoC test length. The procedure
OptimizeTopDown tries to merge the TAM with longest test length to another TAM
such that the resulting TAM receives the test wires of both original TAMs. If the
resulting TAM has shorter test length than the current SoC test length, then the
merge is approved. The procedure Reshuffle tries to reduce the current SoC test
by moving one module of the TAM with longest test length to another TAM.

8.2.2 Employed Data Structure

This section shows how the input system G is transformed into the tile-based
graph, which is the graph actually partitioned by the test scheduling.

Figure 8.4, left part, represents the input system. This example system has a set
of nine routers (r00 to r22) and a set of ten cores (c0 to c9). This graph is reduced

128

126

C

B

A D

w1

w2

w3
idle time

gain

C

w
1+

w
3

w2 B A D

C

B

A D

w1

w2

w3
idle time

gainC AD

w
1+

w
3

w2 B

C

B

ADw1

w2

gain
C

B

A

D

w1

w2

OptimizeBottomUp

OptimizeTopDown

Reshuffle

Figure 8.3: Illustrative example of the original optimization algorithms.

to the tile-based graph (depicted in the right part of the figure) by merging the test
length of the modules connected to a router. For instance, tile 1 is represented by
the test length of the router r02; tile 2 is presented by the sum of test lengths of
router r12 and core c0.

The main property of this approach is that all modules within a tile must be
tested by the same TAM. Otherwise, if more than one TAM could test the modules
within a tile, there would be packet collision inside the tile once multiple test streams
could be activate at the same time. Thus, the tile-based graph is used to avoid packet
collision.

8.2.3 The Proposed Algorithm

Algorithm 8.1 presents the main procedure for the proposed test scheduling. The
procedures in lines 1, 3, 4, 5, and 6 are the ones based on (GOEL; MARINISSEN,
2003a) (we split the original OptimizeTopDown algorithm in two parts). There are
two constraints that we added to the original algorithms: the vTAM width constraint
and the neighborhood constraint. Since test data is transported through the NoC
channels, the vTAM width (w in page 77) cannot be higher than the physical channel
bandwidth of the NoC. As explained before, the maximal vTAM width used is half
of the physical channel bandwidth (w ≤ c/2). The neighborhood constraint is set
to avoid packet collision, i.e. a vTAM consists of neighbor routers to avoid packet
collision during test application.

8.2.3.1 Notation

We use lower case symbols (x) to represent a router, upper case symbols (X) to
represent a set of routers, and slanted upper case symbols (X) to represent a set
of sets of routers. t(R) and w(R) are, respectively, the test and width of a set of
routers R. The term partition is used to refer to the set Rpart of a vTAM.

129

118

tile3tile2tile1 t(w1r02)

r01 r11 r21

r00 r10 r20

r02 r12 r22

c0

c1 c2

c3

c4

c5

c6

c7

c8 c9

(a) the graph G
circles are routers squares are cores

(b) employed tile-based
data structure

tile4 tile5 tile6

tile7 tile8 tile9

tile1 tile2 tile3

t(w1c0)+t(w1r12)
t(w1c3)+t(w1r22)

Figure 8.4: Transforming the input system in to the employed data structure.

Algorithm 8.1: Main Scheduling Algorithm

1 ModifiedCreateStartSolution ;
2 FixStartSolution ;
3 ModifiedOptimizeBottomUp ;
4 ModifiedOptimizeTopDown1 ;
5 ModifiedReshuffle ;
6 ModifiedOptimizeTopDown2 ;
7 OptimizeTestWires ;
8 FindATEInterfaces ;

8.2.3.2 Neighborhood Procedures

Let us first introduce the sub-procedures unconnectedRouters(R, r),
neighborRouters(r), neighborTAMs(R), bridgeRouters(R1, R2), and
TestTime(R,w) used in the procedures presented in Section 8.2.3.3.

The procedure unconnectedRouters(R, r) has an optional parameter r which
is a reference router. When r is not informed, then the first router1 in the set R
is used as reference. The procedure returns the subset of routers in R which the
router r cannot have access according to the routing algorithm r(). For instance,
let us use the system in Figure 8.5(a) and assume XY routing algorithm, then
unconnectedRouters(b, 11) = {20} because the routers 21 and 10 belong to another
vTAM, then the router 11 does not have access to the router 20.
unconnectedRouters(e) = ∅ because the first router in e has access to the other
routers of vTAM e.

The procedure neighborRouters(r) returns the set of routers directly connected
to the router r. For example, according to Figure 8.5(a),
neighborRouters(12) = {02, 11, 22}.

1The routers are ordered in increasing order of test data volume.

130

The procedure neighborTAMs(R) returns the set of partitions directly connected
to the partition R. For example, according to Figure 8.5(b), neighborTAMs(d) =
{a, b} and neighborTAMs(c) = {b, a}. neighborTAMs(r) returns the set of partitions
directly connected to the partition R such that r ∈ R. For instance, assuming
Figure 8.5(b), neighborTAMs(32) = neighborTAMs(d) = {a, b}.

The procedure bridgeRouters(R1, R2) returns the set of routers in partition
R1 in the border with the partition R2. Taking Figure 8.5(b) as an example,
bridgeRouters(b, a) = {11} and bridgeRouters(a, b) = {10, 21}.

The procedure TestTime(R,w) calculates the test length according to Equa-
tion 5.3, in page 92, of the vTAM R assuming w test wires.

8.2.3.3 Main Procedures

The procedure ModifiedCreateStartSolution has the same logic as the original
one, but the vTAM width constraint is checked whenever test wires are added to
the longest TAM. If the constraint is met, it means that the maximal number of
test wires for this vTAM has been reached and it is not possible to have further
optimization. Then the procedure stops and the remaining test wires are not used.

The procedure FixStartSolution connects the routers to form vTAMs such
that all routers belong to only one vTAM. The Algorithm 8.2 complements the
ModifiedCreateStartSolution since it implements the neighborhood constraint.
Figure 8.5 illustrates the transformation realized by FixStartSolution. Note in
Figure 8.5(a) that partitions a, b,c, and d have unconnected routers. On the other
hand, Figure 8.5(b) has no unconnected router.

Algorithm 8.2: FixStartSolution

1 for a l l R ∈ R{
2 for a l l runc ∈ unconnectedRouters(R){
3 find Rmin for which t(Rmin) = minJ∈neighborTAMs(runc) t(J);
4 Rmin := Rmin ∪ {runc} ;R := R− {runc} ;
5 t(Rmin) := TestTime(Rmin , w(Rmin));
6 t(R) := TestTime(R,w(R));
7 }
8 }

The variable R in the Algorithm 8.2 represents all sets of vTAMs of the sys-
tem. For all vTAMs defined in ModifiedCreateStartSolution, the procedure
unconnectedRouters returns the set of routers in R which is not connected. The
next step it finds the vTAM Rmin among the set of neighbor TAMs of the un-
connected router runc with the minimal test length (line 3). Then, the uncon-
nected router runc is moved from the vTAM R to the Rmin (line 4) and the test
lengths of R and Rmin are updated (lines 5 and 6). This algorithm ensures that
all routers are connected to a vTAM and that there is no unconnected vTAM. Let
us assume the system illustrated in Figure 8.5(a). Let us say that R = b, then,
unconnectedRouters(b) = runc = {20}. neighborTAMs(runc) = {a, c}, however,
Rmin = {a}. Finally, the router 20 is moved from the vTAM b to a since this vTAM
is the neighbor vTAM with the shortest test length.

The procedures ModifiedOptimizeBottomUp, ModifiedOptimizeTopDown1, and
ModifiedOptimizeTopDown2 have similar modifications. They check the vTAM
width constraint whenever test wires are added to a vTAM, but they also check

131

b
01

b
11

a
21

d
31

d
00

a
10

b
20

c
30

c
02

b
12

e
22

e
32

b
01

b
11

a
21

d
31

c
00

a
10

a
20

d
30

b
02

b
12

d
22

d
32

ModifiedCreateStartSolution FixStartSolution

(a) (b)

Figure 8.5: Example of the FixStartSolution.

the neighborhood constraint by allowing merge candidate vTAMs connected to the
focused vTAM.

The procedure ModifiedReshuffle tries to move one router in the vTAM with
the longest test length to another vTAM to improve the SoC test length. Con-
versely to the original algorithm, the one presented in Algorithm 8.3 has additional
constraints.

Algorithm 8.3: ModifiedReshuffle

1 improve := true;
2 while (improve){
3 find Rmax for which t(Rmax) = maxJ∈R t(J);
4 TAMFound := false;
5 if (|Rmax | = 1) then { improve := false; }
6 else{
7 while (Rcand ∈ neighborTAMs(Rmax) ∧ ¬ TAMFound) {
8 R∗ := bridgeRouters(Rmax , Rcand);
9 while (r∗ ∈ R∗ ∧ ¬ TAMFound){

10 Rmax2 := Rmax − {r∗} ;w(Rmax2) := w(Rmax);
11 t(Rmax2) := TestTime(Rmax2 , w(Rmax2));
12 Rcand2 := Rcand ∪ {r∗} ;w(Rcand2) := w(Rcand);
13 t(Rcand2) := TestTime(Rcand2 , w(Rcand2));
14 if (t(Rcand2) < TestTime(Rmax)) then {
15 if (unconnectedRouters(Rmax2) = ∅) then {
16 TAMFound := true;
17 Rmax := Rmax2 ; Rcand := Rcand2 ;
18 t(Rmax) := TestTime(Rmax , w(Rmax));
19 t(Rcand) := TestTime(Rcand , w(Rcand));
20 }
21 }
22 }
23 }
24 improve := TAMFound;
25 }
26 }

The algorithm finds the vTAM Rmax with the longest test length (line 3). If
Rmax has only one router, then it is impossible to move one item (line 5) and the

132

procedure is finished. Otherwise, for all vTAMs Rcand , neighbor of Rmax , it finds the
set of routers of Rmax connected to the vTAM Rcand (line 8). These routers in the
border of Rmax and Rcand are the ones that can be moved, however, some constraints
must be checked first. It checks if moving a router r∗ ∈ R∗ does not increase the
SoC test length (lines 10 to 14). If the move is accepted in terms of test length, then
it checks if moving the router r∗ will not unconnect the vTAM Rmax (line 15). If
not, the move is accepted and the new SoC test length is updated (lines 16 to 19).

For example, considering the system in Figure 8.5(b) and assuming that partition
d correspond to Rmax . Then, Rcand might assume a and b. When Rcand = a,
bridgeRouters(Rmax , a) = {22, 30, 31} while when Rcand = b,
bridgeRouters(Rmax , b) = {22}. Let us assume that when it moves the router 31
and 22 the test length reduces. However, when the router 31 is moved the router
30 will be unconnected, which is not allowed. Finally, the router 22 is moved to the
partition b because it passes in all constraints and it reduces the SoC test length.

The procedure OptimizeTestWires described in Algorithm 8.4 tries to optimize
the number of test wires. Once there is no additional improvement in test length to
be done, it iteratively tries to reduce the number of test wires of all vTAMs (line 6)
under the condition that the current SoC test length is not exceeded (lines 8 and
9). By reducing the number of test wires, it also reduces the number of test pins,
the memory requirement in the tester, and the silicon area to implement the DfT
presented in Section 4.8, page 80. Figure 8.6 illustrates the optimization. One can
realize that even the vTAM with the longest test length can be optimized because
increasing the number of test wires of a core not necessarily decrease its test length
due to the Pareto behavior (GOEL; MARINISSEN, 2003a).

Algorithm 8.4: OptimizeTestWires

1 T := maxJ∈R t(J);
2 for all R ∈ R{
3 improve := true;
4 while (improve){
5 if (w(R) > 1) then {
6 R∗ := R;w(R∗) := w(R)− 1;
7 t(R∗) := TestTime(R∗, w(R∗));
8 if (t(R∗) > T) then {improve := false;}
9 else{ w(R) := w(R∗); t(R) := t(R∗); }

10 }else{ improve := false; }
11 }
12 }

The procedure FindATEInterfaces finds the minimal number of ATE inter-
faces (Ratei in page 77) such that all modules in a vTAM can be reached from an
ATE interface. For example, ATE interfaces of the partition b in Figure 8.7 are
{11, 30}, while for partition a is only {22}. Algorithm 8.5 presents the pseudocode
of FindATEInterfaces.

Let us initially define the variable v as a set of the tuple {r, U}, where r is a
router and U is a set of routers that cannot be accessed by r. For instance, the value
of v to the vTAM b in Figure 8.7 (assuming r() = XY) is

v = {{12, {01, 20, 30, 31}} , {11, {20, 30, 31}} , {01, {12, 10, 20, 30, 31}}, {10, {01, 31}}, . . .}

133

C

B

w1

w2
idle time

C

w2 BA D

OptimizeTestWires

w1

A D
t t

Figure 8.6: Example of optimization caused by OptimizeTestWires. Note that the
test length is the same but the number of test wires has been reduced in w1 and w2.

Algorithm 8.5: FindATEInterfaces

1 for all R ∈ R{
2 minSolution := ∞;
3 for all r∗ ∈ R{
4 v∗.r := r∗;
5 v∗.U := unconnectedRouters(R, r∗);
6 v := v ∪ {v∗};
7 }
8 for all v1 ∈ v{
9 Runc := v1.U ;Rate := {v1.r} ;

10 do {
11 minSize := ∞; minRouter := −1;
12 for all vcand ∈ v{
13 if (vcand .r 3 Rate) then {
14 U∗ := Runc − vcand .U ;
15 if (|U∗| < minSize) then {
16 minSize := |U∗| ; minRouter := vcand .r;
17 }
18 }
19 }
20 if (minRouter 6= −1) then {
21 find vmin for which ∀j ∈ v, j.r = minRouter;
22 Runc := Runc − vmin .U ;Rate := Rate ∪ {vmin .r} ;
23 }
24 }while (Runc 6= ∅);
25 if (|Rate | < minSolution) then {
26 Rmin := Rate ; minSolution := |Rate | ;
27 }
28 }
29 Rsol := Rsol ∪ {Rmin};
30 }

For all vTAMs R of the system it defines v (lines 3 to 6) and finds the minimal
number of ATE interfaces for the vTAM R (loop begins at line 8). Rate is the
current set of ATE interfaces of the vTAM R, while Runc is the set of unconnected
routers (line 9), i.e. the routers in R that are not accessible by the ATE interfaces
in Rate . The loop beginning at line 12 iterates over v again to find the other ATE
interfaces of R. If the element vcand is not yet included in the set of ATE interfaces
(line 13), it evaluates if the number of not reachable routers is the minimal found
so far (minSize in line 15). If the current set of unconnected routers is the minimal,

134

b
01

b
11

a
21

b
31

d
00

b
10

b
20

b
30

c
02

b
12

a
22

a
32

Figure 8.7: Example of a partitioned NoC. The letters identify the partitions, the numbers
refer to the routers, and the circles with fat lines indicated where the ATE interfaces are located.

then the minSize is updated and the current best router candidate to ATE interfaces
is also update (minRouter in line 16). In line 21 it finds the v element corresponding
to the minRouter, it includes its router to the set of ATE interfaces Rate and excludes
the routers that can be reached from vmin .r from the set of unreachable routers Runc

(line 22). This procedures repeats until all routers are reachable, i.e. Runc = ∅
(line 24). However, the solution found in the do loop might be different depending
on the order of the elements in v. For this reason, the outer loop beginning at line 6
executes the whole do loop again, but having a new v element as a starting element
(line 9). For the same reason, it tests in line 25 if the solution just found by the
do loop is the absolute minimal found so far for the vTAM R (minSolution). At
line 26, Rmin has the absolute minimal number of ATE interfaces for the vTAM R.
Rsol stores the sets of ATE interfaces for all R ∈ R (line 29).

8.2.4 Minimizing Test Length and Silicon Area

The main optimization criterion of the proposed algorithm is test length. Once
test length cannot be reduced, silicon area for DfT is optimized. The algorithm
OptimizeTestWires reduces the number of test wires in each partition because the
number of test wires has influence on the DfT silicon area (AMORY et al., 2007).
Moreover, the algorithm FindATEInterfaces finds the minimal number of ATE in-
terfaces, which also cost silicon area.

8.3 Results

8.3.1 Experimental Setup

We need systems with NoC information to proceed with the comparison between
conventional scheduling and the proposed method, which are not available in the
literature. For instance, the cores in the ITC’02 benchmarks do not have func-
tional protocol ports required by our method. The ITC’02 benchmarks have neither
NoC topology nor NoC placement. The ITC’02 benchmarks also do not have test
information for routers.

We could not find in the literature the test length results based on conventional
scheduling for these kind of systems (or any similar NoC-based system). Thus,
we re-implemented the scheduling algorithm presented in (GOEL; MARINISSEN,

135

2003a) and its wrapper optimization algorithm described in (MARINISSEN; GOEL;
LOUSBERG, 2000) to do the comparison (this implementation was validated with
the results presented in (GOEL; MARINISSEN, 2003a)).

8.3.2 Introduction to Relevant Variables

The size of the channel width determines the maximal width of the ‘virtual TAM’.
The channel width also determines the kind of port used by the modules (cores and
routers). The data width of the port must match the channel width, i.e. channel
width of 32 bits requires ports with 32-bit data terminals. The same also applies
for routers.

The router weight (number of test patterns of the routers) determines the amount
of the SoC test length spent to test routers. For instance, lower router weight means
that the routers are tested faster and a small portion of the SoC test time is spent
on testing the NoC.

Recall that these variables are given in actual designs, but we investigate if these
two variables have any influence on the comparison between the conventional and
the proposed approach.

8.3.3 Experiment Model

Let S, C, R, W , P , and D be, respectively, the set of SoCs, channel widths,
router weights, TAM widths, NoC placements, and NoC dimensions (a pair XY)
used in this paper. All experiments assume the XY routing algorithm (r()). Except
by P , the other sets are defined below.

S = {d695, f2126, g1023, h953, p22810, p34392, p93791, q12710, t512505, u226}
C = {32, 64, 128}
R = {low, medium, high}
W = {16, 24, 32, 40, 48, 56, 64}
D = {(3, 3), (2, 2), (4, 4), (3, 3), (5, 5), (4, 4), (6, 6), (2, 2), (6, 6), (3, 3)}

An experiment is defined as a tuple {s, c, r, w, ps, ds} such that s ∈ S, c ∈ C,
r ∈ R, w ∈ W , ps ∈ P , and ds ∈ D. The sets P and D are associated to the set S.
For instance, d695 uses the first placement (3, 3), f2126 uses the second one (2, 2),
and so on.

The set P has a set of ten placements randomly generated for each system such
that a placement can have more than one core per router and it is also possible to
have a router without core. This set of placements is used in all experiments.

Figure 8.8 shows how an experiment is set up for each system. This flow en-
sures that both conventional and proposed scheduling tools use the same core and
router configuration. Once the modules were generated, they are optimized by their
respective wrapper optimization algorithm for finally execute the test scheduling.
The NoC reuse problem also needs NoC information like placement and dimension.

The procedure CoreGen(c) sets the correct terminal count for the set of cores
of a SoC. The number of terminals of a core is determined by itc02 +2× (39 + c),
where itc02 is the original terminal count for the core as defined in the ITC02 SoC
benchmark. The rest of the expression (2 × (39 + c)) represents the number of
terminals of the core related to the input and output ports illustrated in Figure 8.9.

136

120

CoreGen(c)

RouterGen(c,r,ds)

ReuseWrapperOpt(c/2)

SoCGen(ds,ps)

ReuseSched(w) ConvSched(w)

ConvWrapperOpt(w)

Figure 8.8: Flow of an experiment for each SoC.

120

OCP target

Mcmd[3]
Maddr[16]

MBurstLength[16]
Mdata[32/64/128]

MDataValid
MDataLast

SDataAccept
SCmdAccept

Mcmd[3]
Maddr[16]
MBurstLength[16]
Mdata[32/64/128]
MDataValid
MDataLast
SDataAccept
SCmdAccept

OCP initiator

CUT

Figure 8.9: OCP port used in the experiments.

Each port has 39 control terminals and c data terminals. For instance, assuming
that the original terminal count of a core is 100, c = 128, then the total number of
terminals of the core is 100 + 2× (128 + 39) = 434 terminals.

The procedure RouterGen(c, r, ds) sets the number of routers, the number of test
patterns, and the terminal count of a router. For sake of simplicity we assumed that
all routers in a system are the same, i.e. they have five bi-directional ports and the
same number of test patterns. We assume a router port can have 32, 64, or 128
data terminal, and two control terminals (e.g. request and acknowledge terminals).
Thus, the number of terminals of a router is 5× (2× (2+c)). For instance, if c = 32,
then the router has 5 × 2 × (2 + 32) = 340 terminals. Moreover, the router has 50
scannable flip-flops related to internal control logic.

The procedure ReuseWrapperGen(c/2) optimizes the wrapper for both cores and
routers based on the algorithm presented in (AMORY et al., 2007) for NoC reuse
wrappers, while the procedure ConvWrapperGen(w) also optimizes wrappers for
both cores and routers, but using the algorithm (MARINISSEN; GOEL; LOUS-
BERG, 2000) used for conventional wrappers. Both the conventional and the pro-
posed wrapper optimization tools were implemented to support both soft and hard
cores because we assume that all cores are hard-cores, while the routers are soft-cores.
We believe that NoCs are implemented as soft-core because, on the other hand, if

137

the NoC is implemented as a hard-core, it would loose configurability, which are one
of the main benefits of NoCs.

The procedure SoCGen(ds, ps) generates ten NoC-based SoCs for the system s,
where each SoC has dimension ds and placement psi

, where i = {1, . . . , 10}.
The procedure ReuseSched(w) executes the proposed and the conventional test

scheduling algorithm, respectively.

8.3.4 Definitions

Let tc(s, w) be defined as the conventional test length of the SoC s with w test
wires, where s ∈ S and w ∈ W . Likewise, let us define trmean(s, w) as the mean
reuse test length for ten different placements of the SoC s with w test wires.

Let us define gs,w = trmean (s,w)∗100
tc(s,w)

as the gain of the mean reuse test length

trmean() compared to the conventional test length tc() of the system s with w test
wires . When gs,w < 100 it means that the mean reuse test length is lower than the
conventional test length.

8.3.5 Pruning Search Space

The test scheduling problem based on NoC reuse involves more variables than
conventional TAMs like channel width, router weight, and placement. Combining
these additional variables with the common ones used in conventional scheduling
(wmax and the SoC) generates a huge search space. For instance, all combinations of
the tuple {s, c, r, w, ps, ds} would require |S|× |C|× |R|× |W | = 10×3×3×7 = 630
executions of the conventional and 630 × 10 = 6300 executions of the proposed
scheduling (10 different placements).

The goal of this section is to study the impact of channel width, router weight,
and placement on the proposed test scheduling. Based on this study we can prune
the search space by concluding which are the most significant variables.

8.3.5.1 Evaluating the Impact of the Channel Width

Figure 8.10(a) illustrates the result of the channel width (C) evaluation. This
experiment is set up with r =medium and w = 16. The free variables are S and C
such that the x axis in Figure 8.10(a) represents the pairs of S × C.

The problem of this experimental setup is that, for example, the first core of
h953-32 has 406 terminals while the same core of h953-128 has 598 terminals since
c is different for each case. The last set up would obviously require more test length
than the first one. To overcome this problem we have set the experiment such that,
for example, the first core of the SoCs h953-32, h953-64, and h953-128 have 598
terminals.

The data in Figure 8.10(a) is calculated such that each point in the graph is gs,16

where s ∈ S ×C, i.e. the gain of the reuse over the conventional considering 16 test
wires.

Two patterns can be identified in this figure. First, for some systems, identified
by the dashed circles, there are an upward pattern, which means that the reuse
approach gets worse as the channel width is reduced. The second case, identified
by the circle with continuous line, has a constant pattern, which means that the
channel width has no influence on the relative test length.

This evaluation says that channel width has no influence on test length when the

138

(a)

Evaluating channel width

75
80
85
90
95

100
105
110
115
120
125
130
135
140
145

d6
95

-12
8

d6
95

-64

d6
95

-32

f21
26

-12
8

f21
26

-64

f21
26

-32

g1
02

3-1
28

g1
02

3-6
4

g1
02

3-3
2

h9
53

-12
8

h9
53

-64

h9
53

-32

p2
28

10
-12

8

p2
28

10
-64

p2
28

10
-32

p3
43

92
-12

8

p3
43

92
-64

p3
43

92
-32

p9
37

91
-12

8

p9
37

91
-64

p9
37

91
-32

q1
27

10
-12

8

q1
27

10
-64

q1
27

10
-32

t51
25

05
-12

8

t51
25

05
-64

t51
25

05
-32

u2
26

-12
8

u2
26

-64

u2
26

-32

SoCs-channel width

%
 o

f t
he

 c
on

ve
nt

io
na

l s
ch

ed
ul

in
g

(b)

Evaluating router weight

75
80
85
90
95

100
105
110
115
120
125
130
135
140
145

d6
95

-h

d6
95

-m
d6

95
-l

f21
26

-h

f21
26

-m
f21

26
-l

g1
02

3-h

g1
02

3-m

g1
02

3-l

h9
53

-h

h9
53

-m
h9

53
-l

p2
28

10
-h

p2
28

10
-m

p2
28

10
-l

p3
43

92
-h

p3
43

92
-m

p3
43

92
-l

p9
37

91
-h

p9
37

91
-m

p9
37

91
-l

q1
27

10
-h

q1
27

10
-m

q1
27

10
-l

t51
25

05
-h

t51
25

05
-m

t51
25

05
-l

u2
26

-h

u2
26

-m
u2

26
-l

SoCs-router weight

%
 o

f t
he

 c
on

ve
nt

io
na

l s
ch

ed
ul

in
g

Figure 8.10: Evaluating the impact of the channel width (a) and the router weight
(b) on the SoC test length. The circles help to identify the values for the same SoC. The
dashed circle identifies the systems with upward pattern while the other circles identify the constant
pattern. The values in the shadow area mean that the proposed approach is faster on average.
SoC set up for (a) is r =medium and w = 16 and for (b) is c = 128 and w = 16.

139

Impact of placement on reuse scheduling

80

85

90

95

100

105

110

115

120

16 24 32 40 48 56 64
test wires

%
 o

f t
he

 c
on

ve
nt

io
na

l s
ch

ed
ul

in
g

Figure 8.11: Impact of the placement on SoC test length. The std. dev. bar over the
mean gains shows the possible test length variation caused by ten different placements. SoC set
up: c = 128 and r =medium.

SoC have bottleneck cores, otherwise, the reuse approach performs better with wider
channels. It can be explained by the Equation 5.5, page 92, for core test length.
For instance, let us assume that the scan-in length si = 100, channel width c = 32,
w = 3 test wires, which resulted in ti = 91 clock cycles. However, if we change the
channel width to c = 64, then pi =

⌊
64
3

⌋
= 21 and ti =

(⌈
100
21

⌉
− 1

)
× 21 + 1 = 85

clock cycles. This result indicates that the wider is the channel, the shorter will be
the core test length. The combination of shorter core test lengths result in a shorter
SoC test length.

8.3.5.2 Evaluating the impact of the Router Weight

We set up the router weight experiment, shown in Figure 8.10(b), to c = 128,
and w = 16. The free variables are S and R such that the x axis in Figure 8.10(b)
represents the pairs of S × R. Similar results were also observed for other SoC set
ups. The data in Figure 8.10(b) was calculated likewise Figure 8.10(a).

8.3.5.3 Evaluating the Impact of the Placement

This experiment is set up as c = 128 and r =medium. c = 128 has been chosen
because it allows more test wires (up to 64) for the scheduling tool. Since router
weight has no relevant impact on test length, r =medium has been used. S and W
are the free variables.

The curve in Figure 8.11 is calculated according the mean gain for all SoCs. For
instance, point related to 16 test wires is calculated as

gd695,16+...+gu226,16

10
.

Figure 8.11 presents the impact of placement on the test length. It includes
standard deviation bars to show the possible variation of the overall mean gain with
the placement. This figure also tells that the standard deviation is bigger when more
test wires are used (compare the size of the error bar for 64 and for 16 test wires).

8.3.6 Main Results

The main experiment is set up as in Section 8.3.5.3. Figure 8.12 illustrates
the same mean gain presented in Figure 8.11, but we removed the error bars and
included the median.

We observed that the overall mean gain shown in Figure 8.12 and 8.11 is nega-
tively affected by some systems like q1271 with high gain deviation, increasing the

140

Comparing conventional and reuse scheduling

94

96

98

100

102

104

106

16 24 32 40 48 56 64
test wires

%
 o

f t
he

 c
on

ve
nt

io
na

l s
ch

ed
ul

in
g

mean median

Figure 8.12: Comparison of test length between conventional and NoC reuse schedul-
ing (expressed both in mean and median gains). The values in the shadow area means
that the proposed approach is faster on average. SoC set up: c = 128 and r =medium.

overall mean gain. For this reason, the median of gains is also plotted in the graph,
which is a better representative number.

Observing the median gain in Figure 8.12 it can be observed that the reuse test
scheduling can be faster than the conventional approach. This graph also tells that
the reuse approach usually performs better with less number of test wires.

On the other hand, the values presented in Figure 8.12 are just mean and median
values over different placements. In an actual SoC, the placement is given. Thus,
this result tells at least that the reuse approach has competitive test length compared
to the conventional approach.

Table 8.1 is an extended version of data presented in Figure 8.12. The table
presents the SoC evaluated, the number of test wires (w), the test length of the
conventional scheduling tool (tc), the mean test length of the proposed scheduling
for NoC reuse (tr,mean), and the reuse/conv represents the mean gain (gs,w) which
compares both scheduling approaches.

8.3.7 Illustrative Example

Figure 8.13 illustrates the scheduling for both approaches considering the SoC
d695 set up to c = 128, r =medium, and w = 32. In the conventional scheduling,
the total number of TAMs is 13. Nine of them are used to the routers, while the rest
is used for the cores. The resulting SoC test length for the conventional approach
is 36859 clock cycles. Figure 8.13 also shows the placement (small numbers refer to
routers and big numbers refer to the cores attached to each router), the partitions,
and the scheduling used for the proposed approach. The final SoC test length for
the proposed approach is 34770 clock cycles.

8.3.8 Estimating Wire Length Savings

The main benefit of NoC reuse compared to dedicated TAMs is the reduction of
long global wires to implement the dedicated TAMs. An exact measure of the wire
length savings is complicated because it would required SoC area and floorplaning
information not available in the ITC02 benchmarks. For this reason we propose an
approximate method to estimate the wire length saving.

141

SOC w conv reuse-mean reuse/conv SOC w conv reuse-mean reuse/conv

16 71254 68475 96.10 16 1773610 1475641 83.20
24 47872 46191 96.49 24 1155070 1004815 86.99
32 36859 35598 96.58 32 883601 782077 88.51
40 29974 28943 96.56 40 696556 652163 93.63
48 25131 24000 95.50 48 598417 609949 101.93
56 21135 21125 99.95 56 551119 606232 110.00

d695

64 18173 18778 103.33

p34392

64 544579 601359 110.43
16 382275 439093 114.86 16 2130063 2044513 95.98
24 335334 384416 114.64 24 1401929 1380268 98.45
32 335334 383305 114.31 32 1056006 1044235 98.89
40 335334 383162 114.26 40 851859 849902 99.77
48 335334 383275 114.30 48 735157 690205 93.89
56 335334 382580 114.09 56 605215 601469 99.38

f2126

64 335334 382488 114.06

p93791

64 529719 525372 99.18
16 94942 84317 88.81 16 2222349 3082996 138.73
24 62913 58655 93.23 24 2222349 3084733 138.81
32 47277 43228 91.44 32 2222349 3080736 138.63
40 38318 35611 92.94 40 2222349 3078188 138.51
48 32543 30453 93.58 48 2222349 3076399 138.43
56 28576 27635 96.71 56 2222349 3076168 138.42

g1023

64 23998 25049 104.38

q12710

64 2222349 3076066 138.42
16 124135 129417 104.26 16 10604336 10788891 101.74
24 119357 125079 104.79 24 10453470 10604673 101.45
32 119357 123349 103.34 32 5289094 5641771 106.67
40 119357 122781 102.87 40 5228420 5377666 102.85
48 119357 122523 102.65 48 5228420 5373960 102.78
56 119357 122299 102.46 56 5228420 5373817 102.78

h953

64 119357 122196 102.38

t512505

64 5228420 5373715 102.78
16 759188 652088 85.89 16 60014634 46338535 77.21
24 508022 441846 86.97 24 40919068 31522271 77.04
32 382783 339004 88.56 32 31371285 24554574 78.27
40 314216 271910 86.54 40 24608398 19328372 78.54
48 257179 230688 89.70 48 21823502 16843936 77.18
56 225100 204796 90.98 56 19095564 14433285 75.58

p22810

64 197198 179308 90.93

u226

64 16367627 13251262 80.96

 Table 8.1: Extended results with the SoCs set up to c = 128 and r =medium.

reuse/conv < 100 means that the proposed approach is faster.

119

Exemplo d695 (128-medium-3_3-2 32
fios)

vTAM1 = { {{0,2}}, {{0,2}}, 7}
vTAM2 = { {{0,0}, {2,1}}, {{0,0}, {0,1}, {1,0}, {2,0}, {2,1}, {2,2}}, 20}
vTAM3 = { {{1,1}}, {{1,1}, {1,2}}, 5}

4
01
4
01

2,3
11

2,3
11

0,8
21

0,8
21

6
00
6
00

1,9
10

1,9
10

-
20
-

20

5
02
5
02

7
12
7
12

-
22
-

22

35750

0,1,40,1,4
6,86,8

7,97,9
2,3,52,3,5

34597
36859
34248
36759

w
1.

.9
=1

w10 = 7
w11 = 3
w12 = 5
w13 = 8

routers

55
7,2,37,2,3

4,6,1,9,0,84,6,1,9,0,8

34770
32609
34394

w1 = 7
w2 = 5

w3 = 20

pr
op

os
ed

ap
pr

oa
ch

sc
he

du
lin

g
of

 th
e

co
nv

en
tio

na
l

ap
pr

oa
ch

final partition resulting scheduling

Figure 8.13: Example of both resulting schedulings for the d695 SoC. SoC set up to
c = 128, r =medium, and w = 32.

142

127

tile2

01 11 21

00 10 20

02 12 22

0

1

2

3

4

5

6

7

8 9

TAM 1 (w=5)
TAM 2 (w=5)
TAM 3 (w=9)

(a) placement for d695
circles are routers squares are cores

(b) resulting dedicated TAMs

tile4 tile5 tile6

tile7 tile8 tile9

tile1 tile2 tile3tile1

R
tile2 tile3

R

tile4 tile5 tile6

tile7

R
tile8 tile9

R

R

R

R

R R

Figure 8.14: NoC-based system modeled as regular tiles are assumed for wire saving
estimation.

8.3.8.1 Proposed Wire Length Estimation Method

Let us assume that the SoC is organized in tiles such that there is one tile for each
router of the NoC. Figure 8.15 illustrates the proposed tile-based NoC model. The
tiles are evenly distributed in the entire SoC area such that the distance between
any two neighbor tiles are the same. Each tile can have zero or more cores. The
wire length between cores within the same tile is supposed to be zero, while the wire
length between cores in different tiles is equivalent to the number of hops between
these two tiles.

This simplified NoC model can be used to estimate the amount of wires required
to implement a dedicated TAM. The method counts the minimal number of hops
required to reach all modules within a dedicated TAM. The number of hops is
multiplied by the TAM width and by two to represent the wires for test stimuli and
responses. The result represents the number wires, where each wire has length of
a hop, required to create a dedicated TAM. Summing up the number of wires for
all TAMs of a system gives the total number of wires for the system. Equation 8.1
represents the proposed wiring estimation method, where n is the number of TAMs,
hi is the number of hops to implement TAMi, and wi is the width of the TAMi.

wsys =
n∑

i=1

hi × wi × 2 (8.1)

Figure 8.15 shows an example of the proposed wire length estimation method.
Let us assume the system presented in Figure 8.15(a) and the following result-
ing core assignment TAM1 = {1, 5, 6, 8, 9}, TAM2 = {4, 01, 11, 12, 02}, TAM3 =
{0, 2, 3, 7, 00, 01, 02, 12, 22} calculated by the conventional scheduling tool assuming
16 test pins. The minimal wire length for this test architecture is presented in Fig-
ure 8.15(b). For instance, TAM1 has five cores where two of them are located in the
tile 4 and the remaining cores are located in tiles 5, 8, and 9. The minimal distance
between these four tiles is three hops (see TAM1 in Figure 8.15(b)). Since the width
of TAM1 is five, then it results in 2 × 3 × 5 = 30 wires required to implement the
dedicated TAM1. The total wire count for the entire test architecture is 150 wires
(30 for TAM1, 30 for TAM2, and 90 for TAM3) where each wire has length of one
hop.

143

127

tile2

01 11 21

00 10 20

02 12 22

0

1

2

3

4

5

6

7

8 9

TAM 1 (w=5)
TAM 2 (w=5)
TAM 3 (w=9)

(a) placement for d695
circles are routers squares are cores

(b) resulting dedicated TAMs

tile4 tile5 tile6

tile7 tile8 tile9

tile1 tile2 tile3tile1

R
tile2 tile3

R

tile4 tile5 tile6

tile7

R
tile8 tile9

R

R

R

R

R R

Figure 8.15: Example of estimated wire length required to create the dedicated
TAMs.

8.3.8.2 Wire Length Estimation Model

The proposed wire length estimation method is equivalent to the minimum recti-
linear Steiner tree problem which is NP-complete (PREAS; LORENZETTI, 1988).
The problem can be modeled as follows: given N points in the plane, find a mini-
mum length tree of rectilinear edges which connects the points (KAHNG; ROBINS,
1992).

8.3.8.3 Wire Length Estimation Algorithm

The Algorithm 8.7 estimates the wire length required to implement dedicated
TAMs.

The Algorithm 8.6 calculates the half perimeter among a set of points V , i.e.
the minimal distance between the set of points. The problem is that the distance
depends on the path used between two points. For this reason, the Algorithm 8.7
inserts Steiner points, i.e. points that are included in the set V such that it forces
the Algorithm 8.6 to follow the path with the actual minimal distance between these
points.

A point is a pair {x, y}. In Algorithm 8.6, tmin, s, and t represent points; V, S,
and T are sets of points; hp, dmin, and d are integer variables.

In Algorithm 8.7, V, Vmin, S, V2, and Vcur are sets of points. bl and tr are points.
costmin, cost , cost cur, and npts are integer variables. The functions bottomLeft(V)
and topRight(V) return, respectively, the bottom-left and the top-right coordinates
of the set V . These values are used to set the boundary of the search space for Steiner
points.

144

Algorithm 8.6: HalfPerimeter(V)

1 S := {V [1]};T := V − {V [1]};hp := 0;
2 while (|T | > 0){
3 dmin := ∞; tmin := ∅;
4 for all s ∈ S{
5 for all t ∈ T{
6 d := abs(t.x− s.x) + abs(t.y − s.y);
7 if (d < dmin) then{
8 dmin := d; tmin := t;
9 }

10 }
11 }
12 hp := hp + dmin;
13 S := S ∪ {tmin};
14 T := T − {tmin};
15 }
16 return hp;

Algorithm 8.7: Minimum Rectilinear Steiner Tree(V)

1 Vmin := V ; costmin := HalfPerimeter(V);
2 bl := bottomLeft(V); tr := topRight(V);npts := 1;
3 while (true){
4 S := ∅;V2 := ∅;
5 for 1 to npts{
6 S := S ∪ {bl};
7 costcur := costmin;Vcur := Vmin;
8 while (true){
9 V2 := V2 ∪ S;

10 cost := HalfPerimeter(V2);
11 if (cost < costcur) then{
12 costcur := cost ;
13 Vcur := V2;
14 }
15 finish := 0;
16 //increment the points in S
17 if (finish) then break;
18 }
19 if (costcur ≥ costmin) then break;
20 costmin := costcur;
21 Vmin := Vcur;
22 npts := npts + 1;
23 }
24 return costmin;

For example, let us say that we want to determine the minimal distance of the
TAM a illustrated in Figure 8.16. First, it sets the search space boundary by setting
bl = 10 and tr = 32. The elements of TAM a are represented by V = {10, 22, 31}.
The Algorithm 8.6 finds the minimal distance between the pair of points in V . Thus,
in this example the half perimeter between 10 and 31 is 3 either via point 20 or via
point 11. Let us assume that the path 10, 20, 30, 31 has been selected. The distance
between 31 and 22 is 2 either via point 21 or via point 32. Let us assume that the

145

128

b
01

b
11

c
21

a
31

d
00

a
10

d
20

b
30

c
02

b
12

a
22

c
32 bl = 10

tr = 32
V = {10,22,31}
Vmin = {10,21,22,31}

search space

Figure 8.16: Minimum rectilinear steiner tree algorithm. The Steiner point 21 has been
included to force the proposed algorithm to find the minimal tree.

path 31, 32, 22 has been selected. In this case, the overall half perimeter is 5 (10, 20,
30, 31, 32, 22). However, if we include the point 21 into the set V , the Algorithm 8.6
will be forced to find the optimal path (illustrated in Figure 8.16) with overall half
perimeter equal to 4.

8.3.8.4 Results

Table 8.2 shows the average2 wire length required to implement the TAMs. It
shows the evaluated SoCs versus different number of available test pins. These wires
are not required when NoC reuse is employed.

Table 8.2: Average wire length for dedicated TAMs. SoC set up to c = 128, r =medium,
and w = 32.

w d695 f2126 g1023 h953 p22810 p34392 p93791 q12710 t512505 u226
16 140 72 281 29 326 241 855 12 523 128
24 200 6 308 20 523 384 960 12 70 192
32 109 6 405 20 478 336 1106 12 119 256
40 233 6 226 20 508 341 838 12 95 254
48 275 6 399 20 708 113 564 12 95 176
56 314 6 509 20 386 376 1077 12 95 240
64 203 6 724 20 472 389 1960 12 96 240

Some systems like f2126, h953, and q12710 have bottleneck cores, i.e. cores that
require a large percentage of the SoC test length to be tested. In these cases, a TAM
usually has only one core (the bottleneck core). According to our estimation model,
when there is only one core in a TAM, the required wire length is zero since we do
not take into account the wires from the test pins to the CUT. For this reason these
systems require fewer wires.

Table 8.3 shows the number of wires to implement a NoC with 32-bit width
channels. The number of wires is presented for each system. For instance, system
d695 has nine routers and 24 channels. Since each channel has 32 bits, then the
NoC requires 24× 32 = 768 wires3.

2Considering ten different placements for each pair system-w.
3This wire count does not consider control wires used to implement protocol.

146

Table 8.3: Number of wires of a NoC with 32-bit width channels. Product of the
number of channels of the NoC and the channel width.

d695 f2126 g1023 h953 p22810 p34392 p93791 q12710 t512505 u226

routers 9 4 16 9 25 16 36 4 36 9
channels 24 8 48 24 80 48 120 8 120 24

32-NoC 768 256 1536 768 2560 1536 3840 256 3840 768

Table 8.4 represents the relative number of wires to implement dedicated TAMs
compared to the number of wires of the 32-bit NoC. For instance, the 140 wires
required to implement dedicated TAMs for the d695 system considering 16 test
wires (see Table 8.2 column d695 row 16) correspond to 18.23% (140/768), of wires
of a 3x3 NoC considering channels of 32-bit width.

Table 8.4: Percentage of the wires of a NoC with 32-bit width channels.
w d695 f2126 g1023 h953 p22810 p34392 p93791 q12710 t512505 u226
16 18.23 28.13 18.29 3.78 12.73 15.69 22.27 4.69 13.62 16.67
24 26.04 2.34 20.05 2.60 20.43 25.00 25.00 4.69 1.82 25.00
32 14.19 2.34 26.37 2.60 18.67 21.88 28.80 4.69 3.10 33.33
40 30.34 2.34 14.71 2.60 19.84 22.20 21.82 4.69 2.47 33.07
48 35.81 2.34 25.98 2.60 27.66 7.36 14.69 4.69 2.47 22.92
56 40.89 2.34 33.14 2.60 15.08 24.48 28.05 4.69 2.47 31.25
64 26.43 2.34 47.14 2.60 18.44 25.33 51.04 4.69 2.50 31.25

8.3.8.5 Discussion

The proposed measure does not count the wires required to connect the test
pins and the wires for SoC-level test control logic because we assume that both test
architectures based on dedicated TAMs and NoC reuse require these global wires.

The wire length required to implement a given TAM might also depend the order
the cores are placed in the TAM. Let us assume a TAM involving the tiles 1, 2, and
3 of the system represented in Figure 8.15(b). If the test scheduling tool defines a
TAM in the following order: { 1, 2, 3 }, then the number of hops is two. However, if
the TAM is { 1, 3, 2 }, then the number of hops is three (two hops from 1 to 3 and
one hop from 3 to 2). In this evaluation we assumed a core assignment order such
that the number of hops is minimal. In the previous example we would assume { 1,
2, 3 } or { 3, 2, 1 }.

Our estimation algorithm gives the minimal Steiner tree for a given set of points.
Thus, it returns the minimal number of wires to implement the TAM. On the other
hand, in a actual chip, routing congestion might increase the actual wire length of
the TAMs.

For these reasons, the results presented in Section 8.3.8.4 represent the minimal
wire length to implement dedicated TAMs. More expensive wiring to implement
dedicated TAMs is expected in actual designs.

8.4 Discussion

8.5 Limitations

Although the proposed test model is general, the implemented tool has some
limitations such as:

147

1. topology.
The current topology representation is based on matrix instead of on graph.
It has been chosen to ease the implementation, but it imposes limitations
on the supported topologies. For instance, just mesh topology is currently
supported. Irregular topologies could be supported by changing the topology
representation from matrix to graphs.

2. routing algorithm.
The current results are based only on XY routing algorithm. A library of
routing algorithms could be implemented such that the user could use one of
the options in the library. The impact of routing algorithm shall be evaluated
in the future.

8.6 Summary

This chapter presented a scheduling optimization tool for BE NoC-based sys-
tems that use the NoC to transport test data. The algorithm minimizes both test
length and silicon area of the DfT logic. We compared the test length of the pro-
posed approach with an algorithm used for test architectures based on conventional
dedicated TAMs. The results show similar test length for both approaches. We
think that the results presented in this chapter are a first step to actually define the
advantages and drawbacks of NoC-reuse compared to dedicated TAMs. The second
problem addressed in this chapter is the need for general NoC-reuse approaches.
We have demonstrated that the proposed approach is more general than the previ-
ous one since it does not require a full cycle-accurate NoC model to determine the
test scheduling. We have also proposed a model to evaluate the amount of wires
required to implement dedicated TAMs. This model estimates the amount of wire
length saving by using NoC to transport test data.

On the other hand, we reinforce that it is still required to test the proposed
method with different NoCs features (different topologies, services, costs). In addi-
tion, we plan to compare the proposed approach with the packet-based and dedicated-
path algorithms (COTA; LIU, 2006).

148

149

9 DFT OPTIMIZATION AND GENERATION

This chapter presents the procedure to determine the FIFO size for each vTAM.

After test scheduling most information required to build an optimized test ar-
chitecture is available except by the size of the FIFOs d and the packet size k
(Figure 9.1). The procedure presented in Section 9.1 determines these information.

9.1 Proposed Algorithm for Buffer Sizing

The proposed optimization procedure presented in Algorithm 9.1 finds the min-
imal FIFO depth d and packet size k for each vTAM of the system such that w test
wires are sustained, reducing the DfT silicon area.

For a given vTAM with w test wires and a given environment, like the one
illustrated in Figure 9.2, the algorithm finds the minimal d and k. The function
simul env(d, k, w) runs a cycle-accurate simulation model of a partition, where this
model can be configured in terms of d, k, and w. The simulation model consists
of an ATE interface, the NoC, a dummy core with test wrapper, and a testbench
emulating the ATE.

The model checks, during simulation, if w test wires is supported without gaps.
The algorithm initially sets the packet length to the maximal size supported by the
network (line 1 in Algorithm 9.1). Next, the simulation model runs to test for gaps
(line 3). In case gaps are found, the FIFO depth d is incremented (line 5). Once
the minimal d is found, the next step iteratively finds the packet length in a linear
search (line 8). The actual test data is not required for this simulation. Dummy
data is used instead.

128

DfTGenerationDfTGeneration

vTAMn =
{--, w,Ratei, Rpart}

vTAMn =
{--, w,Ratei, Rpart}vTAM1 =

{--,--,w,Ratei, Rpart}
vTAM1 =

{--,--,w,Ratei, Rpart}

vTAMn =
{d, w,Ratei, Rpart}

vTAMn =
{d, w,Ratei, Rpart}vTAM1 =

{d,k,w,Ratei, Rpart}
vTAM1 =

{d,k,w,Ratei, Rpart}

Figure 9.1: DfT generation step.

150

62

interconnect
network

port

network-on-chip wrapper

CUTCUT

ATE
interface

chip

port

port
port

DfT module

fifo
fifo

test stimuli path

test responses path

w

w
d

payload h

k

d

Figure 9.2: Conceptual simulation environment including the NoC, the partially
generated DfT modules, and the parameters d, k, and w.

Algorithm 9.1: Minimize Buffer Size(w)

1 gap := true ; d := 0 ; k := ∞ ;
2 // search the FIFO depth
3 while (gap){
4 gap := s imul env (d , k , w) ;
5 i f (gap) then
6 d := d + 1 ;
7 }
8 k := 1 ; gap := true ;
9 // search the packe t l e n g t h

10 while (gap){
11 gap := s imul env (d , k , w) ;
12 i f (gap) then
13 k := k + 1 ;
14 }

9.2 Results

Figure 9.3 illustrates two simulations runs of the simulation environment. They
represent a simulation with and without gaps from the ATE to the wrapper. The
NoC is a Hermes NoC (MORAES et al., 2004) with c = 16. The signal fifo words

represents the FIFO depth, test wires represents w, inputtestpins represents
the data sent from the ATE. The next two signals of the waveform represent data
from the ATE interface to the first router. One can see that mdatavalid has periods
of 4 clock cycles since

⌊
c
w

⌋
=

⌊
16
4

⌋
. The next four signals represent data from the

router 00 to the 10 and from the router 10 to 11. One can see in signal tx that
the periodicity is lost. The signal sdataaccept represents the data arriving at the
wrapper input without periodicity. The last two signals represent the data after the
FIFO. Figure 9.3(a) has gaps since the signal read en is not periodic because the
fifo words is only one. On the other hand, Figure 9.3(a) has no gaps because the
fifo words is two, which in this case is sufficient to sustain four test wires. The

151

simulation for finding the packet size k is similar to this one for finding the FIFO
depth d.

More results related to the proposed buffer sizing algorithm were presented in
Section 5.4.3, page 97. The maximal FIFO depth found is five FIFO words, but it
is required only when the maximal test bandwidth is required (i.e. w = c/2, the
test bandwidth is half the physical bandwidth). In most cases smaller FIFOs are
required.

9.3 Discussion

This algorithm relies on a cycle-accurate HDL model for sake of accuracy. For
this reason the simulation of several parameters can be time consuming. On the
other hand, it is executed only once per partition since all modules within a partition
use the same k, d, and w configuration.

9.4 Summary

This chapter proposed a simulation model to find the minimal FIFO depth and
packet size for the NoC reuse approach. The proposed separation between test
scheduling and the simulation model is crucial to define a general NoC reuse ap-
proach. On one hand, the test scheduling has no timing description of the NoC, in
fact the NoC is seen as a set of pipelines driving constant and continuous data to
the CUTs. On the other hand, all timing-dependent features of the proposed test
approach are defined with the simulation environment presented in this chapter.

One can realize that the SoC test length is totally defined by the test scheduling
without the need for this simulation step. The simulation is just used to define the
minimal DfT silicon area. In addition, the proposed simulation environment can be
easily created for a given NoC once the ATE interface and wrapper are configurable
in terms of k, d, and w. It also relies on standard protocols to ease integration.

An analytical buffer sizing approaches shall be investigated in the future to enable
faster DfT design.

152

1

4

0000 1010 0101 1010

MasterAte=>Noc(R00)

0000 0000

R00=>R10

0000 0011 0000 0000 5555 0000 0011 0000 5555 0000 0011 0004 5555 0000 0011 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011

R10=>R11

0000 0011 5555 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 5555 0000 0011 5555 0000 0011 5555 0000 0011 5555 0000 0011 5555

NoC(R11)=>Wrapper

0000 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555

FIFO

FFFF AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

0 2 us 4 us 6 us 8 us 10 us 12 us 14 us

clock

fifo_words 1

test_wires 4

inputtestpins 0000 1010 0101 1010

MasterAte=>Noc(R00)

mdata 0000

mdatavalid

R00=>R10

data_out(0) 0000 0011 0000 0000 5555 0000 0011 0000 5555 0000 0011 0004 5555 0000 0011 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011

tx(0)

R10=>R11

data_out(2) 0000 0011 5555 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 5555 0000 0011 5555 0000 0011 5555 0000 0011 5555 0000 0011 5555

tx(2)

NoC(R11)=>Wrapper

mdata 0000 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555 5555 AAAA 5555

mdatavalid

sdataaccept

FIFO

read_en

data_out FFFF AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

Entity:tb_vhd Architecture:behavior Date: Tue Apr 24 18:30:59 E. South America Standard Time 2007 Row: 1 Page: 1

(a)

2

4

0000 1010 0101 1010

MasterAte=>Noc(R00)

0000 0000

R00=>R10

0000 0011 0000 0000 5555 0000 0011 0000 5555 0000 0011 0004 5555 0000 0011 0000 0011 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011

R10=>R11

0000 0011 5555 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000

NoC(R11)=>Wrapper

0000 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

FIFO

0000 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

0 2 us 4 us 6 us 8 us 10 us 12 us 14 us

clock

fifo_words 2

test_wires 4

inputtestpins 0000 1010 0101 1010

MasterAte=>Noc(R00)

mdata 0000

mdatavalid

R00=>R10

data_out(0) 0000 0011 0000 0000 5555 0000 0011 0000 5555 0000 0011 0004 5555 0000 0011 0000 0011 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011 0004 5555 0000 0011

tx(0)

R10=>R11

data_out(2) 0000 0011 5555 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000 0011 0000

tx(2)

NoC(R11)=>Wrapper

mdata 0000 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

mdatavalid

sdataaccept

FIFO

read_en

data_out 0000 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555 AAAA 5555

Entity:tb_vhd Architecture:behavior Date: Tue Apr 24 18:32:54 E. South America Standard Time 2007 Row: 1 Page: 1

(b)

Figure 9.3: Waveform of the simulation environment. Presence of gaps due to
insufficient FIFO and packet sizes (a) and simulation without gaps (b). One can
observe that there are no gaps in (b) because the signal read en is periodic, i.e. it ticks every 4
clock cycles. This periodicity is sustained thanks to the FIFO of size two (see fifo words in (b).
The second signal top-down). On the other hand, if number of FIFO words is decrease to one,
then it can be observed that the signal read en in (a) (second signal bottom-up) is not periodic,
causing gaps. Thus, this NoC requires FIFO of size two to sustain four test wires (see test wires.
The third signal.).

153

10 CONCLUSION

Currently, global interconnect solutions based on long wires, like buses, are being
replaced by solutions based on shared and segmented wires, like NoCs, to reduce
the cost of global interconnect. It has been demonstrated that conventional test-
dedicated TAMs can also be considered long global wires, thus, TAMs are also
subject to the same interconnect problems. For this reason, we have investigated
the use of the NoC to transport test data during test application to avoid test-
dedicated TAMs.

However, most of the research on NoC reuse has focused on high level test models
for an specific case study. On one hand, this approach is important to introduce the
NoC reuse problem and to demonstrate the viability of the approach. On the other
hand, (i) accurate DfT models and (ii) generic test tools are required to enable the
actual use of NoC reuse on existing NoC-based designs. Another important gap was
(iii) the lack of quantitative comparisons between test architectures based on NoC
reuse and on dedicated TAMs to actually define the advantage and drawbacks of
both approaches. These three points are the main contributions of this thesis.

The rest of this chapter details the main contributions, the limitations, and
future work.

10.1 Qualitative Analysis

10.1.1 Toward a General NoC-Reuse Approach

We believe that NoC reuse will be actually used if and only if general approaches
that work for most NoC exist. We proposed a test model that can work for a large
number of NoC instances. As far as we know this work is the first one to create
awareness about the need for general NoC reuse approaches.

10.1.2 Compatibility with Conventional SoC Modular Testing

The advantage of similar and compatible solutions are numerous. For instance,
a wrapper design considering hierarchical cores was proposed for conventional TAM.
If a NoC reuse can work exactly like a dedicated TAM, then the chances that the
same wrapper can be used for NoC reuse are high. The same conclusion can also be
applied for algorithms, design tools, test equipments, etc. In conclusion, assuming
similar assumptions reduce the required adaptation effort. It also makes a possible
transition from the conventional to the proposed approach smoother.

Scheduling for NoC reuse had been seen as something completely different from
scheduling with conventional TAM since the former involves NoCs which are much

154

more complex and not standardized than conventional TAMs. Most authors advo-
cate that new solutions are required. This thesis demonstrates the opposite. It just
depends on how he problem is modeled.

For example, in terms of DfT, we show that a proper core terminal classification,
adding protocol information and FIFO to the wrapper design is enough to adapt
the conventional wrapper design to the NoC reuse environment.

Moreover, in terms of reused algorithms, we adapted the conventional algorithms
for wrapper optimization with a very simple modification on the algorithm; by
including the constraints of equal number of SDI and SDO terminals per test wire.
In addition, we adapted a conventional algorithm for test scheduling by adding
neighborhood and maximal TAM width constraints.

These examples show that the research done in the past based on conventional
TAMs can be easily adapted for the NoC-reuse problem by using an appropriate
underlying test model and compatible assumptions. We believe that our focus on
compatibility might be fruitful in the near future because it will enable people to
easily adapt previous methods for NoC reuse. Moreover it will ease a possible
transition from dedicated TAMs to NoC as TAM.

10.1.3 Detailed DfT Design

As far as we know there were no papers focusing on DfT design for NoC reuse.
The modification required in the test logic to enable NoC reuse were not known.
Simplistic (i.e. do not consider important design issues) and unoptimized wrapper
models were usually assumed in the test scheduling (see Section 5.5).

The results presented in (AMORY et al., 2006) were probably the first address-
ing the problem of DfT to enable NoC reuse, followed by (AMORY et al., 2007) and
(AMORY et al., 2007). Actual HDL designs and DfT optimization tools were gen-
erated along this thesis. The HDL description of the DfT modules were simulated
and, when it was possible, prototyped on FPGA for verification purposes.

For instance, we were the first to address the need for protocol conversion logic
inside the wrapper to enable NoC reuse. This obligation has a significant impact on
the increase of DfT silicon area. In addition, we have addressed the need for a new
core test length expression. We have shown that the core test length for NoC reuse
might be different compared to conventional wrapper.

In conclusion, by addressing practical problems in NoC-reuse we helped to define
the required changes in the DfT logic to give support to NoC reuse.

10.1.4 Comparison with Conventional Test Architecture

As far as we know, we were the first to compare test length and silicon area
between a NoC reuse approach and a conventional test approach based on dedicated
TAM. This comparison demonstrates the actual advantages and drawbacks of both
approaches.

10.2 Quantitative Analysis

Our quantitative analysis is based on test length and silicon area for the DfT
logic.

155

10.2.1 SoC Test Length

Our results on test length show that the proposed test architecture is statistically
as fast as the conventional architecture. On one hand, the neighborhood constraints
increase the SoC test length. On the other hand, the core test length of the proposed
approach is usually faster than the one for conventional wrapper. The combination
of these two facts results in similar SoC test length. This result is surprising since we
imagined that the proposed test approach would be slower due to the neighborhood
and TAM width constraints.

10.2.2 Silicon Area for DfT Modules

We helped to define the actual advantages of NoC reuse compared to conventional
TAMs in terms of required silicon area. For instance, most of prior work assumed
very low or even no area overhead for DfT. We have shown that in fact the silicon
area for DfT for NoC reuse is around 20% more expensive compared to DfT for
dedicated TAMs. Most of prior work assumed that there would be no global long
wires added into the chip just for test purposes. We have shown that most long
wires were actually eliminated, however, some as the wires for test control logic and
wires connecting the test pins are still required.

We proposed a new method to evaluate the wire length saving using NoC reuse.
The results reported an average wire length saving from 2% to 51% compared to a
NoC whose channel width has 32-bit.

10.3 Prospected Impact

We demonstrated the need for first establish actual DfT designs before defining
high level test models and test scheduling tools. It is important to evaluate ‘low-
level’ design issues like integration of DfT logic to the rest of the system, evaluate
silicon area of the DfT, configurability of the DfT model, how easy it is to integrate
the proposed logic to different NoCs, and characterize the DfT model in terms of
test length. For instance, without working on wrapper design for NoC reuse we
would not found the need for a different core test length formulation. We hope that
this work motivates other researches on DfT for NoC reuse.

We created awareness of the need for compatible and general NoC reuse ap-
proach. Although we have focused on BE networks, we hope to motivate more
research on general NoC reuse for other NoC domains (GT, BE, async).

10.4 Accomplished Goals and Contribution

These are the goals established in the Section 1.2 page 31 and how they were
accomplished:

• Make the requirements for NoC reuse explicit.
The problem statement presented in Section 4.7 defines all required variables
for the test architecture optimization problem.

• Determine the design of the required DfT modules.
Chapters 5.5, 6, and 7 presented the proposed DfT design and optimization
procedures.

156

• Determine the optimization algorithms for the DfT modules.
See last item.

• Propose a test schedule tool for overall test architecture optimization.
The proposed design flow integrates the DfT optimization procedures with the
test scheduling tool to generate an optimized test architecture.

• Integrated framework for DfT modules, vTAMs, and SoC test length co-optimization.
The design flow and developed tools presented in Section 4.8, page 80, enables
an overall reduction of silicon area for the DfT modules and SoC test length.

• Implement a tool to evaluate wire length savings using NoC reuse.
This tool has been presented in Section 8.3.8, page 140.

• Compare the proposed test architecture with the conventional test architecture
based on dedicated TAM to establish the actual advantages and drawbacks of
NoC reuse.
The results presented in Sections 8.3 and 5.4 support our comparison between
both test approaches.

Some additional contributions include:

• Tools for wrapper optimization for both NoC reuse and dedicated TAMs;

• Tools for test scheduling for both NoC reuse and dedicated TAMs;

• Several small tools and scripts used to generate and gather data;

• HDL models for DfT modules.

10.5 Limitations and Issues Not Addressed

Although the following issues were not addressed in this thesis for lack of time,
they should be investigated in the future:

• Test scheduling tool
The test scheduling tool is not as general as the proposed test model. However,
it is still more general than the approaches found so far; the reduced number
of NoC information required demonstrates this fact. The test scheduling tool
works for mesh and XY based NoCs without guaranteed services. With a little
more programming effort the test scheduling tool will become as general as the
proposed test model by supporting irregular topologies and multiple routing
algorithms;

• Wiring length from test pins to ATE interface
No procedure is proposed to minimize the wires required to connect the test
pins to the DfT logic;

• Wiring length of test control signals like scan enable, reset, and IEEE Std.
1500
No procedure is proposed to minimize the wires required for top-level test
control logic;

157

• Support other scheduling constraints like power consumption during test, prece-
dence constraints, among others
It was out of the scope of this thesis to investigate other constraints rather
than test length and silicon area for DfT since these features were not well
established yet. However, these are relevant topics for future work;

• Extend the model for NoCs with multiple frequencies and asynchronous NoCs
It was out of the scope of this thesis to investigate this kind of NoCs. However,
these are also relevant topics for future work;

• Comparison with other NoC reuse approach
It was out of the scope of this thesis to compare with other NoC reuse approach
because there was no work comparing NoC reuse and conventional approach.
Thus, the advantages and drawbacks of NoC reuse were not clear so far. More-
over, it is hard to accomplish such comparison due to the lack of benchmarks
to evaluate NoC reuse approaches.

10.6 Future Work

This thesis has explored a wide range of problems related to NoC reuse as TAM.
However, some of the proposed approaches can be improved (item 1 to 4) and more
complete test models can be created (5 to 11) to support other design issues.

1. Graph-based test scheduling tool to support topology independent NoCs ;

2. Generate cost-effective wrapper for routers ;

3. DfT for NoCs without identical routers ;

4. Allow user to specify wrapper protocol
Currently only a subset of OCP is supported;

5. Benchmarks for NoC reuse are required
Currently a fair comparison between the existent approaches is complex or not
possible;

6. Test scheduling for NoCs with guaranteed services ;

7. Reusing asynchronous NoCs as TAM ;

8. Interconnect test for NoC channels ;

9. Testing systems with different test frequencies ;

10. Support of hierarchical cores ;

11. Testing Mixed-signal SoCs ;

12. Evaluate other test constraints like power dissipation, thermal, and precedence.

158

159

REFERENCES

AITKEN, R. C. A Modular Wrapper Enabling High Speed BIST and Repair for
Small Wide Memories. In: ITC, 2004. Proceedings. . . Washington: IEEE Com-
puter Society, 2004. p.997–1005.

AKTOUF, C. A Complete Strategy for Testing an on-chip Multiprocessor Architec-
ture. IEEE Design & Test of Computers, [S.l.], v.19, n.1, p.18–28, 2002.

ALLIANCE, V. Virtual Component Interface Standard. Available at:
<http://www.vsi.org/>. Visited on: Oct. 2006.

AMORY, A. M.; BRIÃO, E. W.; COTA, E. F.; LUBASZEWSKI, M. S.; MORAES,
F. G. A Scalable Test Strategy for Network-on-Chip Routers. In: ITC, 2005, Austin,
Texas, USA. Proceedings. . . Los Alamitos: IEEE Computer Society, 2005. p.591–
599.

AMORY, A. M.; COTA, E. F.; LUBASZEWSKI, M. S.; MORAES, F. G. Reducing
Test Time with Processor Reuse in Network-on-Chip Based Systems. In: SBCCI,
2004, Porto de Galinhas, PE, Brazil. Proceedings. . . New York: ACM, 2004.
p.111–116.

AMORY, A. M.; FERLINI, F.; LUBASZEWSKI, M. S.; MORAES, F. G. DfT for
the Reuse of Networks-on-Chip as Test Access Mechanism. In: VTS, 2007, Berkeley,
CA, USA. Proceedings. . . Los Alamitos: IEEE Computer Society, 2007. p.435–
440.

AMORY, A. M.; GOOSSENS, K.; MARINISSEN, E. J.; LUBASZEWSKI, M. S.;
MORAES, F. G. Wrapper Design for the Reuse of Networks-on-Chip as Test Access
Mechanism. In: ETS, 2006, Southampton, UK. Proceedings. . . Los Alamitos:
IEEE Computer Society, 2006. p.213–218.

AMORY, A. M.; GOOSSENS, K.; MARINISSEN, E. J.; LUBASZEWSKI, M. S.;
MORAES, F. G. Wrapper Design for the Reuse of a Network on Chip or Other
Functional Interconnect as Test Access Mechanism. IET Computers & Digital
Techniques, [S.l.], v.1, n.3, p.197–206, 2007.

AMORY, A. M.; LUBASZEWSKI, M. S.; MORAES, F. G. A Programmable Logic
BIST Controller for IP Cores. In: LATW, 2004, Cartagena de Indias, Colombia.
Proceedings. . . [S.l.: s.n.], 2004. p.104–109.

160

AMORY, A. M.; LUBASZEWSKI, M. S.; MORAES, F. G.; MORENO, E. I.
Test Time Reduction Reusing Multiple Processors in a Network-on-Chip Based
Architecture. In: DATE, 2005, Munich, Germany. Proceedings. . . Washington:
IEEE Computer Society, 2005. v.1, p.62–63.

AMORY, A. M.; OLIVEIRA, L. A.; MORAES, F. G. Software-Based Test for Non-
Programmable Cores in Bus-Based System-on-Chip Architectures. In: VLSI-SOC,
2003, Darmstadt, Germany. Proceedings. . . [S.l.: s.n.], 2003. p.174–179.

APPELLO, D. et al. Exploiting Programmable BIST for the Diagnosis of Embedded
Memory Cores. In: ITC, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.379–385.

ARABI, K. Logic BIST and Scan Test Techniques for Multiple Identical Blocks.
In: VTS, 2002, Monterey, CA, USA. Proceedings. . . Los Alamitos: IEEE Com-
puter Society, 2002. p.60–68.

ARM. AMBA AXI Protocol Specification. Version 1.0. Available
at: <http://www.arm.com/products/solutions/AMBA3AXI.html>. Visited on:
Oct. 2006.

ARM. AMBA 3 APB Protocol Specification. Version 1.0. Available
at: <http://www.arm.com/products/solutions/AMBAAPB.html>. Visited on:
Oct. 2006.

ARTERIS. Arteris Introduces Industry’s First Products for Build-
ing Networks on Chip (NoC). Available at: <http://www.us.design-
reuse.com/news/news9888.html>. Visited on: Mar. 2006.

ARTERIS. Arteris Web Site. Available at: <http://www.arteris.net/>. Visited
on: Mar. 2006.

BAINBRIDGE, J.; FURBER, S. CHAIN: A Delay Insensitive CHip Area INtercon-
nect. IEEE Micro, [S.l.], v.22, n.5, p.16–23, 2002.

BARDELL, P. H. Built-In Test for VLSI, Pseudorandom Techniques. [S.l.]:
John Wiley & Sons, 1987.

BEEST, F. T. et al. Automatic Scan Insertion and Test Generation for Ssynchronous
Circuits. In: ITC, 2002. Proceedings. . . [S.l.: s.n.], 2002. p.804–813.

BENINI, L.; DE MICHELI, G. Networks on Chips: A New SoC Paradigm. IEEE
Computer, [S.l.], v.35, n.1, p.70–80, 2002.

BENINI, L.; DE MICHELI, G. Networks on Chips, Technology and Tools.
[S.l.]: Morgan Kaufmann Publishers, 2006.

BHUNIA, S. et al. A Novel Low-Overhead Delay Testing Technique for Arbitrary
Two-Pattern Test Application. In: DATE, 2005. Proceedings. . . Washington:
IEEE Computer Society, 2005. p.1136–1141.

BJERREGAARD, T. The MANGO Clockless Network-on-Chip: Concepts
and Implementation. 2005. Tese (Doutorado em Ciência da Computação) — Tech-
nical University of Denmark.

161

BJERREGAARD, T.; MAHADEVAN, S. A Survey of Research and Practices on
Network-on-Chip. ACM Computing Surveys, [S.l.], v.38, n.1, 2006.

BJERREGAARD, T.; SPARSO, J. A Router Architecture for Connection-Oriented
Service Guarantees in the MANGO Clockless Network-on-Chip. In: DATE, 2005.
Proceedings. . . Washington: IEEE Computer Society, 2005. p.1226–1231.

BJERREGAARD, T.; SPARSO, J. Scheduling Discipline for Latency and Band-
width Guarantees in Asynchronous Network-on-Chip. In: ASYNC, 2005. Proceed-
ings. . . [S.l.: s.n.], 2005. p.34–43.

BURDASS, A. et al. Embedded Test and Debug of Full Custom and Synthesisable
Microprocessor Cores. In: ETW, 2000. Proceedings. . . [S.l.: s.n.], 2000. p.17–22.

BUSHNELL, M. L.; AGRAWAL, V. D. Essentials of Electronic Testing for
Digital, Memory, and Mixed-Signal VLSI Circuits. [S.l.]: Kluwer Academic
Publishers, 2000.

CAST. C1394A IEEE-1394a Link Layer Controller Core. Available at:
<http://www.cast-inc.com/cores/c1394a/index.shtml>. Visited on: Oct. 2006.

CAST. PCIe-EP PCI Express Endpoint Controller Core. Available at:
<http://www.cast-inc.com/cores/pcie-ep/index.shtml>. Visited on: Oct. 2006.

CAST. GPIO8 General Purpose Input/Output Unit Core. Available at:
<http://www.cast-inc.com/cores/gpio8/index.shtml>. Visited on: Oct. 2006.

CHAKRABARTY, K. Design of System-on-a-Chip Test Access Architectures Us-
ing Integer Linear Programming. In: VTS, 2000. Proceedings. . . Los Alamitos:
IEEE Computer Society, 2000. p.127–134.

CIORDA, C. et al. NoC Monitoring: Impact on the Design Flow. In: ISCAS, 2006.
Proceedings. . . [S.l.: s.n.], 2006. p.1981–1984.

CLERMIDY, F.; VARREAU, D.; LATTARD, D. A NoC-Based Communica-
tion Framework for Seamless IP Integration in Complex Systems. Avail-
able at: <http://www.us.design-reuse.com/articles/article12226.html>. Visited on:
Mar. 2006.

COTA, E. F.; BRISOLARA, L.; CARRO, L.; SUSIN, A.; LUBASZEWSKI, M. S.
MET: A Microprocessor for Embedded Test. In: IEEE TEST OF CORE-BARED
SYSTEMS, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.100–107.

COTA, E. F.; CARRO, L.; LUBASZEWSKI, M. S. Reusing an On-Chip Network
for the Test of Core-based Systems. ACM TODAES, New York, NY, USA, v.9,
n.4, p.471–499, 2004.

COTA, E. F.; CARRO, L.; LUBASZEWSKI, M. S.; ORAILOGLU, A. Test Planning
and Design Space Exploration in a Core-Based Environment. In: DATE, 2002, Paris,
France. Proceedings. . . Washington: IEEE Computer Society, 2002. p.478–485.

162

COTA, E. F.; KREUTZ, M.; ZEFERINO, C. A.; CARRO, L.; LUBASZEWSKI,
M. S.; SUSIN, A. The Impact of NoC Reuse on the Testing of Core-based Systems.
In: VTS, 2003, Napa Valley, CA, USA. Proceedings. . . Washington: IEEE Com-
puter Society, 2003. p.128–133.

COTA, E. F.; LIU, C. Constraint-Driven Test Scheduling for NoC-Based System.
IEEE Trans. on CAD of Integrated Circuits and Systems, Sonoma, CA,
USA, v.25, n.11, p.2465–2478, 2006.

DALLY, W. J.; TOWLES, B. Route Packets, not Wires: on-Chip Interconnection
Networks. In: DAC, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.684–689.

DUATO, J.; YALAMANCHILI, S.; NI, L. Interconnection Networks: An Engi-
neering Approach. [S.l.]: Morgan Kaufmann Publishers, 2003.

EFTHYMIOU, A.; BAINBRIDGE, J.; EDWARDS, D. Adding Testability to
an Asynchronous Interconnect for GALS SoC. In: ATS, 2004. Proceedings. . .
[S.l.: s.n.], 2004. p.20–23.

EFTHYMIOU, A.; BAINBRIDGE, J.; EDWARDS, D. Test Pattern Generation and
Partial-Scan Methodology for an Asynchronous SoC Interconnect. IEEE Trans. on
VLSI Systems, [S.l.], v.13, n.12, p.1384–1393, 2005.

FAGOT, C. et al. On Calculating Efficient LFSR Seeds for Built-In Self-Test. In:
ETW, 1999. Proceedings. . . [S.l.: s.n.], 1999. p.7–14.

FEIGE, C. et al. Integration of the Scan-Test Method into an Architecture Specific
Core-Test Approach. In: ETW, 1998. Proceedings. . . [S.l.: s.n.], 1998. p.241–245.

FELICIJAN, T.; FURBER, S. An Asynchronous On-Chip Network Router with
Quality-of-Service (QoS) Support. In: INTERNATIONAL SOC CONFERENCE,
2004. Proceedings. . . [S.l.: s.n.], 2004. p.274–277.

GAISLER. Leon2 Core. Available at: <http://www.gaisler.com/>. Visited on:
Jan. 2006.

GOEL, S. K.; MARINISSEN, E. J. SOC Test Architecture Design for Efficient
Utilization of Test Bandwidth. ACM TODAES, New York, NY, USA, v.8, n.4,
p.399–429, 2003.

GOEL, S. K.; MARINISSEN, E. J. Layout-Driven SOC Test Architecture Design
for Test Time and Wire Length Minimization. In: DATE, 2003. Proceedings. . .
Washington: IEEE Computer Society, 2003. p.738–743.

GOOR, A. J. van de; SCHANSTRA, I.; ZORIAN, Y. Functional Test for Shifting-
Type FIFOs. In: EDTC, 1995. Proceedings. . . [S.l.: s.n.], 1995. p.133–138.

GOOSSENS, K.; DIELISSEN, J.; RADULESCU, A. The Æthereal Network on
Chip: Concepts, Architectures, and Implementations. IEEE Design & Test of
Computers, [S.l.], v.22, n.5, p.21–31, 2005.

GOOSSENS, K. et al. Networks on Silicon: Combining Best-Effort and Guaranteed
Services. In: DATE, 2002. Proceedings. . . Washington: IEEE Computer Society,
2002. p.423–425.

163

GOOSSENS, K. et al. A Design Flow for Application-Specific Networks on Chip with
Guaranteed Performance to Accelerate SOC Design and Verification. In: DATE,
2005. Proceedings. . . Washington: IEEE Computer Society, 2005. p.1182–1187.

GRECU, C. et al. Methodologies and Algorithms for Testing Switch-Based NoC
Interconnects. In: DFT, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.238–246.

GUERRIER, P.; GREINER, A. A Generic Architecture for On-Chip Packet-
Switched Interconnections. In: DATE, 2000. Proceedings. . . New York: ACM,
2000. p.250–256.

HARROD, P. Testing Reusable IP - A Case Study. In: ITC, 1999. Proceedings. . .
[S.l.: s.n.], 1999. p.493–498.

HELLEBRAND, S. et al. Buil-In Test for Circuits with Scan Based on Reseeding
of Multiple-Polynomial Linear Feedback Shift Resgisters. IEEE Trans. on Com-
puters, [S.l.], v.44, n.2, p.223–233, 1995.

HELLEBRAND, S.; WUNDERLICH, H. J.; HERTWIG, A. Mixed-Mode BIST Us-
ing Embedded Processors. In: ITC, 1996. Proceedings. . . [S.l.: s.n.], 1996. p.195–
204.

HENKEL, J. Closing the SoC Design Gap. Computer, [S.l.], v.36, n.6, p.119–121,
2003.

HETHERINGTON, G. et al. Logic BIST for Large Industrial Designs: Real Issues
and Case Studies. In: ITC, 1999. Proceedings. . . [S.l.: s.n.], 1999. p.358–367.

HOSSEINABADY, M. et al. Concurrent Testing of Switches in NoC-Based SoCs.
In: DATE, 2006. Proceedings. . . Leuven: European Design and Automation As-
sociation, 2006. p.1–6.

HUANG, C.-T. et al. A Programmable BIST Core for Embedded DRAM. IEEE
Design & Test of Computers, [S.l.], v.16, n.1, p.59–70, 1999.

HUANG, J.-R. et al. A Self-Test Methodology for IP Cores in Bus-Based Program-
mable SoCs. In: VTS, 2001. Proceedings. . . Los Alamitos: IEEE Computer So-
ciety, 2001. p.198–203.

HUANG, Y. et al. Resource Allocation and Test Scheduling for Concurrent Test of
Core-Based SOC Design. In: ATS, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.265–
270.

HWANG, S.; ABRAHAM, J. A. Reuse of Adrdressable System Bus for SOC Testing.
In: IEEE ASIC/SOC, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.215–219.

HWANG, S.; ABRAHAM, J. A. Test Data Compression and Test Time Reduction
Using an Embedded Microprocessor. IEEE Trans. on VLSI Systems, [S.l.], v.11,
n.5, p.853–862, 2003.

IBM. CoreConnect Bus Architecture. Version 2.2. Available at:
<http://www-03.ibm.com/chips/products/coreconnect/>. Visited on: Oct. 2006.

164

IEEE. IEEE Std 1394c-2006. Available at:
<http://grouper.ieee.org/groups/1394/c/>. Visited on: Oct. 2006.

ITRS. International Technology Roadmap for Semiconductors. Available at:
<http://www.itrs.net/>. Visited on: Jan. 2007.

IYENGAR, V.; CHAKRABARTY, K. Precedence-Based, Preemptive, and Power-
Constrained Test Scheduling for System-on-a-Chip. In: VTS, 2001. Proceedings. . .
Los Alamitos: IEEE Computer Society, 2001. p.368–374.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. J. Co-Optimization of
Test Wrapper and Test Access Architecture for Embedded Cores. Journal of Elec-
tronic Testing: Theory and Applications, [S.l.], v.18, n.2, p.213–230, 2002.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. J. On Using Rectangle
Packing for SOC Wrapper/TAM Co-Optimization. In: VTS, 2002. Proceedings. . .
Los Alamitos: IEEE Computer Society, 2002. p.253–258.

JANTSCH, A.; TENHUNEN, H. Networks on Chip. [S.l.]: Kluwer Academic
Publishers, 2003.

JUTMAN, A. At-Speed On-Chip Diagnosis of Board-Level Interconnect Faults. In:
ETS, 2004. Proceedings. . . [S.l.: s.n.], 2004. p.2–7.

JUTMAN, A.; UBAR, R.; RAIK, J. New Built-In Self-Test Scheme for SoC In-
terconnect. In: DESIGN AND DIAGNOSTIC OF ELECRONIC CIRCUITS AND
SYSTEMS, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.224–227.

KAHNG, A.; ROBINS, G. A New Class of Steiner Tree Heuristics with Good Per-
formance. IEEE Trans. on CAD of Integrated Circuits and Systems, [S.l.],
v.11, n.7, p.893–902, 1992.

KASTENSMIDT, F.; COTA, E. F.; CASSEL, M.; MEIRELLES, P.; AMORY,
A. M.; LUBASZEWSKI, M. S. Redefining and Testing Interconnect Faults in Mesh
NoCs. In: ITC, 2007, Santa Clara, CA, USA. Proceedings. . . [S.l.: s.n.], 2007.

KEUTZER, K. et al. System-Level Design: Orthogonalization of Concerns and
Platform-Based Design. IEEE Trans. on CAD of Integrated Circuits and
Systems, [S.l.], v.19, n.12, p.1523–1543, 2000.

KORANNE, S. A Novel Reconfigurable Wrapper for Testing of Embedded Core-
Based SOCs and its Associated Scheduling Algorithm. Journal of Electronic
Testing: Theory and Applications, [S.l.], v.18, n.4/5, p.415–434, Aug. 2002.

KORANNE, S. Formulating SoC Test Scheduling as a Network Transportation Prob-
lem. IEEE Trans. on CAD of Integrated Circuits and Systems, [S.l.], v.21,
n.12, p.1517–1525, Dec. 2002.

KRISHNA, C. V.; JAS, A.; TOUBA, N. A. Test Vector Encoding Using Partial
LFSR Reseeding. In: ITC, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.885–893.

KRISHNA, C. V.; TOUBA, N. A. Reducing Test Data Volume Using LFSR Re-
seeding with Seed Compression. In: ITC, 2002. Proceedings. . . [S.l.: s.n.], 2002.
p.321–330.

165

KRSTIC, A. et al. Embedded Software-Based Self-Test for Programmable Core-
Based Designs. IEEE Design & Test of Computers, [S.l.], v.19, n.4, p.18–27,
2002.

LAI, W.-C.; CHENG, K.-T. Instruction-Level DFT for Testing Processor and IP
Cores in System-on-a-Chip. In: DAC, 2001. Proceedings. . . [S.l.: s.n.], 2001. p.59–
64.

LEE S-J. LEE, K.; YOO, H.-J. Analysis and Implementation of Practical, Cost-
Effective Networks on Chips. IEEE Design & Test of Computers, [S.l.], v.22,
n.5, p.422–433, 2005.

LIU, C.; IYENGAR, V.; SHI, J.; COTA, E. F. Power-Aware Test Schedul-
ing in Network-on-Chip Using Variable-Rate On-Chip Clocking. In: VTS, 2005,
Palm Springs, CA, USA. Proceedings. . . Los Alamitos: IEEE Computer Society,
2005. p.349–354.

MAGARSHACK, P.; PAULIN, P. G. System-on-Chip Beyond the Nanometer Wall.
In: DAC, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.419–424.

MARCON, C. A. M.; AMORY, A. M.; LUBASZEWSKI, M. S.; SUSIN, A.;
CALAZANS, N.; MORAES, F. G. Applying Memory Test Algorithms to Embed-
ded Systems. In: LATW, 2004, Cartagena de Indias, Colombia. Proceedings. . .
[S.l.: s.n.], 2004. p.43–48.

MARINISSEN, E. J. et al. A Structured and Scalable Mechanism for Test Access
to Embedded Reusable Cores. In: ITC, 1998. Proceedings. . . [S.l.: s.n.], 1998.
p.284–293.

MARINISSEN, E. J. et al. On IEEE P1500’s Standard for Embedded Core Test.
Journal of Electronic Testing: Theory and Applications, [S.l.], v.18, p.365–
383, 2002.

MARINISSEN, E. J.; GOEL, S. K.; LOUSBERG, M. Wrapper Design for Embedded
Core Test. In: ITC, 2000. Proceedings. . . [S.l.: s.n.], 2000. p.911–920.

MARINISSEN, E. J.; IYENGAR, V.; CHAKRABARTY, K. A Set of Benchmarks
for Modular Testing of SOCs. In: ITC, 2002. Proceedings. . . [S.l.: s.n.], 2002.
p.519–528.

MARINISSEN, E. J.; LOUSBERG, M. The Role of Test Protocols in Testing
Embedded-Core-Based System ICs. In: ETW, 1999. Proceedings. . . [S.l.: s.n.],
1999. p.70–75.

MCCABE, J. D. Network Analysis, Architecture, and Design. 2nd ed. [S.l.]:
Morgan Kaufmann Publishers, 2003.

MENTOR GRAPHICS. Mentor Graphics Web Site. Available at:
<http://www.mentor.com//>. Visited on: Apr. 2007.

MILLBERG, M. et al. Guaranteed Bandwidth using Looped Containers in Tem-
porally Disjoint Networks within the Nostrum Network on Chip. In: DATE, 2004.
Proceedings. . . Washington: IEEE Computer Society, 2004. v.2, p.890–895.

166

MORAES, F. G. et al. HERMES: an Infrastructure for Low Area Overhead Packet-
switching Networks on Chip. Integration, the VLSI Journal, [S.l.], p.69–93,
2004.

MURALI, S. et al. A Methodology for Mapping Multiple Use-Cases on to Networks
on Chip. In: DATE, 2006. Proceedings. . . Leuven: Belgium: European Design
and Automation Association, 2006.

OCP-IP. Open Core Protocol Specification. Release 2.1. Available at:
<http://www.ocpip.org/>. Visited on: Oct. 2006.

OPENCORES. WISHBONE System-on-Chip Interconnection Ar-
chitecture for Portable IP Cores. Revision B.3. Available at:
<http://www.opencores.org/projects.cgi/web/wishbone/wishbone>. Visited
on: Oct. 2006.

OPENCORES. Plasma Processor. Available at: <http://www.opencores.org/>.
Visited on: Jan. 2006.

OST, L. et al. MAIA - A Framework for Networks on Chip Generation and Verifi-
cation. In: ASPDAC, 2005. Proceedings. . . [S.l.: s.n.], 2005. p.49–52.

PCI-SIG. PCI Express Base Specification 1.1. Available at:
<http://www.pcisig.com/specifications/pciexpress/>. Visited on: Oct. 2006.

PHILIPS SEMICONDUCTORS. Device Transaction Level Protocol Specifi-
cation. Version 2.2. 2002.

PREAS, B. T.; LORENZETTI, M. J. Physical Design Automation of VLSI
Systems. [S.l.]: Benjamin Cummings Publishing Company, 1988.

RADULESCU, A. et al. An Efficient On-Chip Network Interface Offering Guar-
anteed Services, Shared-Memory Abstraction, and Flexible Network Programming.
IEEE Trans. on CAD of Integrated Circuits and Systems, [S.l.], v.24, n.1,
p.4–17, 2005.

RAJSKI, J. et al. Embedded Deterministic Test for Low-Cost Manufacturing. IEEE
Design & Test of Computers, [S.l.], v.20, n.5, p.58–66, 2003.

RAJSKI, J.; TYSZER, J.; ZACHARIA, N. Test Data Decompression for Multiple
Scan Designs with Boundary Scan. IEEE Trans. on Computers, [S.l.], v.47, n.11,
p.1188–1200, 1998.

RAMBUS. Rambus FlexIO. Available at: <http://www.rambus.com/>. Visited
on: Oct. 2006.

RAMBUS. Rambus XDR. Available at: <http://www.rambus.com/>. Visited on:
Oct. 2006.

RAMBUS. Rambus RDRAM. Available at: <http://www.rambus.com/>. Vis-
ited on: Oct. 2006.

RAPIDIO. RapidIO Specifications. Available at:
<http://www.rapidio.org/specs/current>. Visited on: Oct. 2006.

167

REARICK, J. Practical Scan Test Generation and Application for Embedded FIFOs.
In: ITC, 1999. Proceedings. . . [S.l.: s.n.], 1999. p.294–300.

RIJPKEMA, E. et al. Trade Offs in the Design of a Router with Both Guaranteed
and Best-Effort Services for Networks on Chip. In: DATE, 2003. Proceedings. . .
Washington: IEEE Computer Society, 2003. p.350–355.

SAASTAMOINEN, I.; ALHO, M.; NURMI, J. Buffer Implementation for Proteo
Network-on-Chip. In: ISCAS, 2003. Proceedings. . . [S.l.: s.n.], 2003. v.2, p.113–
116.

SALTZER, J. H.; REED, D. P.; CLARK, D. D. End-to-End Arguments in System
Design. ACM Trans. in Computer Systems, [S.l.], v.2, n.4, p.277–288, 1984.

SILISTIX. Silistix Web Site. Available at: <http://www.silistix.com//>. Visited
on: Mar. 2006.

SILVA, F. da (Ed.). IEEE Std 1500TM-2005: IEEE Standard Testability Method
for Embedded Core-based Integrated Circuits. New York: IEEE, 2005.

SILVA, F. da; MCLAURIN, T.; WAAYERS, T. The Core Test Wrapper Hand-
book: Rationale and Application of IEEE Std. 1500TM. [S.l.]: Springer, 2006.

STMICROELECTRONICS. STNoC, Building a
New System-on-Chip Paradigm. Available at:
<http://www.st.com/stonline/press/news/back2005/b9014t.htm>. Visited on:
Mar. 2006.

STROUD, C. E. A Designer’s Guide to Built-In Self-Test. [S.l.]: Kluwer Aca-
demic, 2002.

TANENBAUM, A. S. Computer Networks. 3rd ed. [S.l.]: Prentice-Hall, 1996.

TRAN, X.-T. et al. A DFT Architecture for Asynchronous Networks-on-Chip. In:
ETS, 2006. Proceedings. . . [S.l.: s.n.], 2006. p.219–224.

UBAR, R.; RAIK, J. Testing Strategies for Network on Chip. In: JANTSCH, A.;
TENHUNEN, H. (Ed.). Networks on Chip. [S.l.]: Kluwer Academic Publisher,
2003. p.131–152.

USB. USB 2.0 Specification. Available at:
<http://www.usb.org/developers/docs/>. Visited on: Oct. 2006.

VARMA, P.; BHATIA, S. A Structured Test Re-Use Methodology for Core-Based
System Chips. In: ITC, 1998. Proceedings. . . [S.l.: s.n.], 1998. p.294–302.

VERMEULEN, B. et al. Bringing Communication Networks On Chip: Test and
Verification Implications. IEEE Communications Magazine, [S.l.], v.41, n.9,
p.74–81, 2003.

WANG, X. et al. Asynchronous Network Node Design for Network-on-Chip. In: IN-
TERNATIONAL SYMPOSIUM ON SIGNALS, CIRCUITS AND SYSTEMS, 2005.
Proceedings. . . [S.l.: s.n.], 2005. p.55–58.

168

WEBER, W.-D. et al. A Quality-of-Service Mechanism for Interconnection Networks
in System-on-Chips. In: DATE, 2005. Proceedings. . . Washington: IEEE Com-
puter Society, 2005. p.1232–1237.

WU, Y.; MACDONALD, P. Testing ASICs with Multiple Identical Cores. IEEE
Trans. on CAD of Integrated Circuits and Systems, [S.l.], v.22, n.3, p.327–
336, 2003.

XU, Q.; NICOLICI, N. Resource-Constrained System-on-a-Chip Test: a Survey.
IEE Computers & Digital Techniques, [S.l.], v.152, n.1, p.67–81, 2005.

ZEFERINO, C. A.; SUSIN, A. A. SoCIN: A Parametric and Scalable Network-on-
Chip. In: SBCCI, 2003. Proceedings. . . [S.l.: s.n.], 2003. p.121–126.

ZHANG, H. Service Disciplines for Guaranteed Performance Service in Packet-
Switching Networks. Proc. of the IEEE, [S.l.], v.83, n.10, p.1374–1396, 1995.

ZORIAN, Y.; MARINISSEN, E. J.; DEY, S. Testing Embedded-Core Based System
Chips. In: ITC, 1998. Proceedings. . . [S.l.: s.n.], 1998. p.130–143.

169

APPENDIX A

Lógica e Escalonamento de Teste para Sistemas

com Redes Intra-Chip Baseadas em Topologia de

Malha

Esta seção apresenta os objetivos e principais contribuições desta tese.
Com a crescente complexidade dos sistemas computacionais, em especial sis-

temas em um único substrato (SoC - System-on-Chip), há a necessidade de utilizar
técnicas de reuso para atingir as metas de time-to-market. Apesar das vantagens
inerentes ao reuso de núcleos, identifica-se quatro grandes problemas que devem ser
resolvidos para que se possa construir facilmente um SoC: (i) como integrar núcleos
entre si; (ii) quais linguagens para descrição de sistemas usar; (iii) como proteger a
propriedade intelectual do autor e do usuário do núcleo; (iv) como testar projetos
baseados em núcleos. Destes quatro problemas, este trabalho se limita à integração
de núcleos e ao teste do sistema. A forma usual de integrar os núcleos entre si é
através de barramentos. A interconexão por barramento é simples, do ponto de
vista de implementação, apresentando entretanto diversas desvantagens (BENINI;
DE MICHELI, 2002): (i) apenas uma troca de dados pode ser realizada por vez,
pois o meio f́ısico é compartilhado por todos os núcleos, reduzindo o desempenho
global do sistema; (ii) há a necessidade de mecanismos inteligentes de arbitragem
do meio f́ısico para evitar desperd́ıcio de largura de banda; (iii) a escalabilidade é
limitada, ou seja, o número de núcleos que podem ser conectados ao barramento é
muito baixo, tipicamente da ordem de dezenas; (iv) o uso de linhas globais em um
CI (Circuito Integrado) com tecnologia submicrônica impõe sérias restrições ao de-
sempenho do sistema devido aos elementos parasitas inerentes a fios longos. Como
alternativa a barramentos, trabalhos recentes (BENINI; DE MICHELI, 2002; ZE-
FERINO; SUSIN, 2003; BJERREGAARD; MAHADEVAN, 2006; MORAES et al.,
2004) utilizam redes de interconexão para conectar núcleos de hardware em um SoC.
Este tipo de conexão, chamada de NoC (em inglês, Network-on-Chip), atribui ao
SoC caracteŕısticas de reuso e escalabilidade em relação ao número de núcleos que
podem ser integrados no sistema.

Uma NoC é formada por roteadores e canais. Todos os núcleos do sistema são
conectados à NoC. Outra dificuldade relacionada ao projeto de SoCs é seu teste.
Com a grande integração dos SoCs, há uma grande quantidade de dados de teste
que necessitam ser transferidos do testador para o circuito. O estado da arte em tes-
tadores deve ser utilizado para alcançar as restrições tecnológicas do circuito. Porém,
estes testadores possuem alto custo devido à grande necessidade de memória, largura

170

de banda, número de pinos e velocidade limitada. Uma das principais motivações
da pesquisa de teste de sistemas integrados é manter estes custos de teste em ńıveis
aceitáveis de forma a viabilizar a sua comercialização.

O uso de NoCs pode trazer vantagens em relação a teste. O método de teste
tradicional de SoCs compreende a criação de caminhos dos pinos aos núcleos que
são usados exclusivamente durante o teste para o transporte de est́ımulos e re-
spostas de teste. Quando se usa NoCs para integrar os núcleos, estes caminhos
não somente já estão dispońıveis como também é posśıvel ter vários destes camin-
hos ativos em paralelo. O reuso da NoC para teste é interessante pois viabiliza o
teste de um maior número de núcleos em paralelo, oque reduz o tempo de teste do
sistema, sem acréscimo de área. Sistemas baseados em NoCs disponibilizam natu-
ralmente múltiplos caminhos dos pinos aos núcleos. Entretanto, o tempo de teste
pode ser sub-ótimo se o número de pinos conectados ao testador externo não for
suficiente para usar toda a largura de banda disponibilizada pela NoC. Acrescentar
pinos exclusivamente para o teste é uma solução cara, pois aumenta o custo de en-
capsulamento do sistema. Uma alternativa é embutir no próprio sistema circuitos
de auto-teste, chamado de BIST (Built-In Self-Test) (BARDELL, 1987; STROUD,
2002), que utiliza hardware embarcado para gerar padrões e avaliar respostas. Esta
abordagem reduz as restrições de um testador, reduzindo seu custo, e também pode
aumentar a utilização da NoC, reduzindo o tempo de teste. Porém, o BIST pos-
sui algumas desvantagens: (i) baixa cobertura de falhas em circuitos resistentes a
padrões pseudo-aleatórios; (ii) alto consumo de potência devido à alta atividade
e chaveamento do circuito; (iii) acréscimo de área de hardware e degradação de
desempenho.

Uma alternativa a técnicas de teste baseadas em hardware como BIST é o reuso
de processadores embarcados para teste, onde um processador executa um software
que testa partes do sistema (KRSTIC et al., 2002; LAI; CHENG, 2001). Esta
abordagem possui algumas vantagens como reduzido ou nulo acréscimo de área de
hardware e degradação de desempenho. Porém, uma desvantagem é o maior tempo
de teste devido à execução serializada do software de teste. Esta desvantagem pode
ser minimizada se o sistema possuir diversos processadores embarcados que executem
em paralelo um software de teste. Uma NoC composta por múltiplos processadores
atribuiria ao sistema caracteŕısticas como reuso e escalabilidade, além de uma grande
flexibilidade devido à programabilidade da mesma. Entretanto, antes de usar a NoC
para transportar dados de teste, é importante que a própria NoC esteja livre de
falhas, portanto, a NoC precisa ser testada antes de ser usada. O custo teste da
NoC pode ser reduzido se forem consideradas algumas de suas caracteŕısticas, como
por exemplo a sua regularidade.

Motivações e Objetivos

A pesquisa em projeto de NoCs é algo recente, mas tem crescido de importância,
incluindo centro de pesquisas não somente acadêmicos (DALLY; TOWLES, 2001;
BENINI; DE MICHELI, 2002) como também industriais (GOOSSENS; DIELISSEN;
RADULESCU, 2005; ARTERIS, 2005). Entretanto, ainda não existem produtos
usando esta tecnologia, mas vários pesquisadores estão anunciando os primeiros
test-chip. A medida que produtos comecem a ser fabricados em escala comercial,
o problema de testar sistemas com varias dezenas de núcleos em uma NoC será

171

evidenciado. Inicialmente as técnicas tradicionais de teste de SoCs poderão ser
utilizadas, mas elas acarretam em custos desnecessários que podem ser eliminados
com um estudo adequado das caracteŕısticas e arquitetura dos sistemas baseados
em NoCs. O objetivo desta tese é definir métodos que reduzam os custos de teste
de circuitos baseados em NoCs. Para isto, este trabalho foi dividido em três etapas:
(i) o reuso da NoC para transporte de dados de teste; (ii) o reuso de processadores
embutidos para teste; (iii) o teste da NoC.

Desenvolvimento, Resultados e Discussão

Alguns atuais sistemas integrados usam de 10 a 15 processadores e, de acordo
com (HENKEL, 2003), há uma tendência ao uso de até centenas de processadores
heterogêneos conectados em uma NoC. Considerando esta tendência e a dificul-
dade de testar um sistema desta complexidade, o reuso para teste de ambos NoC e
processadores embarcados surge como uma abordagem interessante para reduzir os
custos de teste. Os múltiplos caminhos que uma NoC disponibiliza para acessar um
núcleo pode ser usado para transporte de dados de teste, e os processadores exis-
tentes podem ser programados para rodar programas que testam partes do sistema,
aumentando o paralelismo do teste e reduzindo o tempo total de teste.

A estratégia de teste usada nesta tese é baseada no trabalho de Erika e colab-
oradores (COTA et al., 2002; COTA; LIU, 2006). Neste trabalho, vários detalhes
de implementação da NoC são modelados com precisão temporal. Alguns dos tipos
de detalhes incluem detalhes de organização da NoC como topologia, aridade de
roteadores; detalhes de arquitetura como estratégia de buferização na entrada ou na
sáıda, profundidade de buffers; detalhes funcionais como algoritmos de roteamento,
controle de fluxo, arbitração; detalhes temporais como tempo necessário para exe-
cutar um roteamento, tempo necessário para fazer transferência de um roteador ao
outro.

Para que uma nova implementação de NoC fosse suportada por esse modelo,
muitas vezes era necessário estender o código fonte para, por exemplo, suportar
uma nova topologia de roteadores. Isto torna a técnica pouco abrangente. En-
tretanto, existem trabalhos que estão inserindo mecanismos que provêem serviços
com garantias de qualidade na comunicação realizada pela NoC (GOOSSENS et al.,
2002; BJERREGAARD; SPARSO, 2005b). A inserção de garantias de qualidade é
importante pois em uma NoC podem existir vários recursos compartilhados entre
diferentes canais de comunicação, trazendo indeterminismo no tempo de entrega
de dados, que não é aceitável para aplicações com restrições de tempo real. Esta
tese prope o uso deste tipo de serviço com garantias para facilitar o teste, uma vez
que, por exemplo, pode-se estabelecer uma taxa mı́nima para envio de padrões de
teste. Uma vez que esta garantia de entrega de dados existe em uma comunicação
fim-a-fim, detalhes sobre a organização interna da rede podem ser ignorados, oque
simplifica o modelo e facilita a aplicação da técnica para diferentes implementações
de NoCs com suporte a garantias de serviço.

Outros detalhes a respeito do reuso da NoC para teste, como o projeto do wrapper
dos núcleos do sistema, também foram estudados. A função dos wrappers é isolar
o núcleo enquanto está sendo testado e prover acesso a todos terminais de entrada
e sáıda do mesmo. Mas um problema não abordado nos trabalhos anteriores é que
durante o teste parte do sistema está em modo funcional (a NoC) e outra parte

172

em modo de teste (o CUT). Os terminais do CUT são a barreira entre o modo
funcional e o modo teste. Entretanto, estes terminais implementam um protocolo
de comunicação entre o núcleo e a NoC. Uma vez que o núcleo está em modo de
teste, este não pode reagir ao protocolo, portanto, não pode enviar nem receber
dados da NoC. Sendo assim, é necessário que o wrapper tenha a função adicional
de implementar ao menos uma versão simplificada do protocolo de comunicação de
forma que o fluxo de dados de teste seja mantido.

Estudando a implementação mı́nima para três dos mais populares protocolos,
AXI, OCP e DTL, conclúımos que a funcionalidade dos terminais de entrada pode
ser ignorada, e a funcionalidade dos terminais de sáıda necessita implementar al-
guma lógica. É função do integrador do sistema conhecer o protocolo e descobrir
os valores adequados para cada terminal de sáıda, uma vez que estes valores podem
mudar de acordo com que o núcleo é integrado no sistema. O projetista do núcleo
deve prover uma documentação ilustrando todos os modos de uso da porta. Uma vez
que os valores corretos são atribúıdos aos terminais, o projeto do wrapper é basica-
mente fazer uma atribuição adequada de célula de wrapper aos terminais de sáıda.
Terminais que não implementam lógica relacionada ao protocolo de comunicação
devem receber a célula de wrapper padrão. O problema de conectar cada célula do
wrapper as cadeias de varredura internas ao núcleo de forma a reduzir o tempo de
teste é idêntico ao problema definido por Marinissen e colaboradores (MARINISSEN
et al., 1998) com a diferença que se necessita de conversores paralelo-serial-paralelo
que garantam a disponibilidade de um novo dado de teste a cada ciclo de relógio do
núcleo.

Uma vez que o projeto do wrapper de cada núcleo esteja definido, a próxima
etapa deve realizar o escalonamento de teste do sistema de forma a minimizar o
tempo de teste total. É necessário estabelecer a quantidade de largura de banda
que cada núcleo vai receber para o seu teste. Adaptamos o algoritmo proposto em
(GOEL; MARINISSEN, 2003a) para funcionar em um sistema baseado em NoC ao
invés de TAM dedicada. Os resultados mostraram que o uso de NoC implica em um
pequeno aumento no tempo de teste, mas coma grande vantagem de não requerer
TAMs dedicadas.

Os trabalhos que reusam a NoC para transportar dados de teste pressupõem que
a mesma foi previamente testada. Entretanto, não existem formas eficientes para tes-
tar uma NoC. Algumas de suas caracteŕısticas fazem com que métodos tradicionais
de teste de núcleos de hardware, quando aplicados a uma NoC, torne o custo em área
do wrapper muito elevado. Por exemplo, geralmente assume-se que todos núcleos
possuem full-scan e células de scan para todos terminais do núcleo. Uma NoC possui
dezenas ou centenas de buffers geralmente implementados como um registrador de
deslocamento. A implementação automática de cadeias de varredura nestes buffers
é um gasto em área desnecessário, pois os buffers já implementam registradores de
deslocamento. Outra caracteŕıstica importante é que uma NoC possui um número
muito superior de terminais comparado com outros núcleos, uma vez que a NoC
pode ser vista como um núcleo que tem conexão com todos núcleos do sistema.
Isto requer um número grande de células de wrapper, aumentado a área do sistema.
Entretanto, analisando a arquitetura tradicional de uma NoC, é posśıvel utilizar al-
gumas palavras dos buffers dos roteadores para controlar entrada e observar sáıdas.
A última caracteŕıstica importante é que a maioria das implementações de NoCs se
baseiam em topologias regulares como mesh e torus. Desta forma, os roteadores po-

173

dem ser idênticos. A existência de módulos idênticos no sistema pode permitir que
um padrão de teste seja enviado em paralelo para vários módulos, ao invés de um
só. Isso aumenta o paralelismo do teste, diminuindo o tempo de teste do sistema.
Além disto diminui o volume de dados de teste uma vez que o mesmo padrão é en-
viado para vários módulos e todos os módulos possuem a mesma resposta esperada.
Baseando-se nestas três observações, foi desenvolvido um método de teste espećıfico
para NoCs, que reduz a área necessária para DfT ao mesmo tempo que reduz o
seu tempo de teste e volume de dados de teste. Tomamos por exemplo uma NoC
hipotética onde cada porta da NoC é conectada a um núcleo. Uma das vantagens
de uma NoC em relação a barramento é justamente poder suportar mais núcleos.
Considerando um canal de dados de 32 bits, cada uma destas portas pode ter cerca
de 40 a cerca de uma centena de terminais, dependendo do protocolo utilizado e de
como este protocolo está configurado. Pode-se chegar a uma quantidade de milhares
de terminais a uma NoC. Usando o método tradicional de projeto de wrappers, isto
implica que o wrapper teria uma célula para cada um destes terminais, aumentando
o custo em área de DfT. Entretanto, observando-se a lógica das portas de entrada de
uma roteador existem buffers para armazenamento temporário de dado antes de ser
realizado roteamento do mesmo. Os primeiros elementos de memória de cada um
destes buffers podem ser usados como um substituto de células de wrapper com a
simples adição de cadeias de varredura somente na primeira palavra de cada buffer,
como ilustrado na Figura 6. Com esta técnica, ambos o controle das portas de en-
trada e a observabilidade das portas de sáıda estão garantidos. A observabilidade
também está garantida porque, como as portas de entradas de um roteador estão
conectados na sáıda de outros roteadores, é posśıvel observar a sáıda de um roteador
nas entradas de seus roteadores vizinhos.

Existe uma forte tendência ao uso de redes com topologias regulares devido a
simplicidade de seu projeto. Esta regularidade da rede pode trazer benef́ıcios para
o teste da mesma de forma que os padrões de teste podem ser enviados em paralelo
para todos os roteadores idêntico da rede. Para possibilitar este envio em paralelo de
padrões de teste, é necessário um projeto diferenciado das cadeias internas de cada
roteador e também de um novo projeto de wrapper. No ńıvel da NoC é necessário
que todas as portas de entrada de dados de scan estejam conectadas ao mesmo
terminal. As sáıdas destas cadeias podem ser conectadas a comparadores. Uma
vez que todos os roteadores recebem os mesmos est́ımulos, se todos não tiverem
falhas, eles devem gerar as mesmas sáıdas. Caso contrario, algum dos roteadores
tem alguma falha. O comparador proposto possui inclusive suporte a diagnostico
para que, no caso de falha, possa ser identificado qual roteador falhou.

Também é necessário garantir que todos os roteadores recebam exatamente os
mesmo est́ımulos nas entradas primárias. O novo wrapper foi projetado de forma a
enviar os mesmos est́ımulos, carregados nas células ci, para cada entrada primárias de
cada roteador. O wrapper também possui comparadores nas sáıdas primárias, cujo
resultado da comparação é carregado nas células co. Este projeto de wrapper que
requer um número menor de células de wrapper não somente reduz a área, pois não
requer uma célula para cada entrada e sáıda primária da NoC, mas também reduz
o tempo de teste uma vez que o comprimento da cadeias externas são reduzidos em
comparação com o projeto tradicional de wrapper.

Esta tese também propôs um método de planejamento de teste capaz de reutilizar
os processadores dispońıveis no sistema como mecanismos de geração e avaliação de

174

teste, e uma NoC como mecanismo de acesso de teste aos núcleos de hardware de
um SoC. O tempo de teste do sistema é avaliado considerando diferentes números
de processadores e interfaces externas usadas para teste. Os resultados apresentados
utilizando um conjunto de exemplos de sistemas industriais demonstraram que o uso
conjunto de NoC e processadores embutidos podem reduzir o tempo de teste sem
aumentar a área e reduzir o desempenho do sistema. A descrição original dos estudos
de caso utilizados não possui processadores. Desta forma, avaliamos tais estudos de
caso com a inclusão de dois diferentes processadores comerciais, chamados de MIPS
e SPARC. Programas de teste foram desenvolvidos para estes processadores. Foram
avaliados o consumo de potência e o tempo para gerar cada padrão de teste. Estes
dois dados foram inclúıdos em uma ferramenta de escalonamento de teste que explora
o paralelismo da NoC para possibilitar o teste de vários núcleos ao mesmo tempo.

Conclusões

As principais conclusões desta tese são:

Teste baseado em software minimiza os dois principais problemas relacionados
ao uso de BIST: perda de desempenho e aumento da área de hardware. A mini-
mização destes problemas possibilita o auto-teste de circuitos de alto desempenho e
de dif́ıceis restrições de concepção, tipicamente restrições de freqência de operação
e área de hardware. Também se observou que teste baseado em software reduz
o tempo de teste de sistemas com NoCs, uma vez que diferente de barramentos,
NoCs suportam teste de vários núcleos em paralelo. Porém, novos desafios in-
cluem a geração de vetores de teste com boa cobertura de falhas e área de memória
necessária para o programa de teste. Os trabalhos realizados apresentaram pro-
gramas de geração de padrões de teste aleatórios quem executam rapidamente em
processadores como SPARC e MIPS. Entretanto, números aleatórios geralmente ap-
resentam uma baixa cobertura de falhas. é necessário pesquisar novos programas
de teste que sejam rápidos de executar e que produzam bons vetores de teste. Uma
revisão bibliográfica apontou a existência de códigos de compressão de dados como
um posśıvel compromisso entre tempo de execução e qualidade e compressão dos
vetores. Na revisão bibliográfica apresentada no relatório do ano anterior não foi
encontrada nenhuma abordagem que avaliasse teste baseado em software em NoCs,
demonstrando a originalidade do trabalho. No ano de 2004, publicamos o primeiro
artigo sobre a temática, apresentando alguns resultados preliminares. Neste ano de
2005 apresentamos trabalhos adicionais sobre reuso da NoC para teste, onde proces-
sadores de relevância industrias foram utilizados como estudos de caso, ao invés de
processadores educacionais como no artigo anterior. Conclui-se que processadores
como MIPS e SPARC podem executar programas de teste mais eficientemente que
nos processadores anteriores, demonstrando que a técnica pode ser aplicada em sis-
temas reais.

Foi desenvolvida uma técnica de teste para NoCs regulares que explora esta reg-
ularidade para reduzir os custos de teste. Padrões de teste são enviados em paralelo
para todos roteadores idênticos e as sáıdas são comparadas por comparadores embu-
tidos no sistema. Mostrou-se que tempo de teste, volume de vetores de teste podem
ser reduzidos utilizando este técnica. Entretanto é necessário avaliar o impacto em
termos de área de roteamento na adição de comparadores no sistema. Como trabalho
futuro é necessário pesquisar estratégia de teste para redes irregulares.

175

Também durante esta tese, repensamos a estratégia de reuso da NoC como TAM.
A estratégia anterior exige uma série de detalhes de implementação da NoC de forma
a possibilitar uma predição exata do escalonamento dos pacotes de teste. Isto im-
possibilita o uso da técnica em implementações diferentes de redes, reduzindo a
abrangeria do trabalho. Os últimos trabalhos realizados trabalhou-se com NoCs
que oferecem qualidade de serviço. Estas NoCs garantem a entrega de pacotes em
intervalos de tempo predeterminado, não necessitando modelar detalhes de imple-
mentação da NoC, possibilitando a aplicação da técnica de reuso da NoC para teste
em diversas implementações de NoCs. Finalmente, comparamos a arquitetura de
teste proposta com a arquitetura de teste convencional baseada em TAMs dedicadas
estabelecendo assim as reais vantagens e desvantagens de ambos os métodos.

Por fim, a maior contribuição desta tese foi pesquisar o problema de teste em sis-
temas baseados em NoC com um enfoque que favorecesse a generalidade do método,
de forma que esse possa ser aplicado facilmente a um maior número de NoCs.

176

177

APPENDIX B

List of Papers

During the period comprising this thesis, the following articles have been pub-
lished:

1. IEEE TC: Cota, E.F.; Kastensmidt, F.L.; Cassel, M.; Hervé, M.; Almeida,
P.; Meirelles, P.; Amory, A.M.; Lubaszewski, M.S. “A High Fault Coverage
Approach for the Test of Data, Control and Handshake Interconnects in Mesh
Networks-on-Chip”. Journal IEEE Transaction on Computers, to be published
on 2008.

2. IEE CDT: Amory, A.M.; Goossens, K.; Marinissen, E.J.; Lubaszewski, M.;
Moraes, F.G. “Wrapper Design for the Reuse of NOCs and Other Functional
Interconnects as Test Access Mechanism”. Journal IEE Proceedings Comput-
ers and Digital Techniques. v.1, pp. 197–206, 2007.

3. VTS07: Amory, A.M.; Ferlini, F.; Lubaszewski, M.; Moraes, F.G. “Design-
for-Test for Routers Based on Reuse of Networks-on-Chip as Test Access Mech-
anism”. pp. 435–440. 2007.

4. ITC07: Kastensmidt, F.L.; Cota, E.F.; Cassel, M.; Meirelles, P.; Lubaszewski,
M.S.; Amory, A.M “Redefining and Testing Interconnect Faults in Mesh NoCs”.
pp. 1–10. 2007.

5. ETS06: Amory, A.M.; Goossens, K.; Marinissen, E.J.; Lubaszewski, M.;
Moraes, F.G. “Wrapper Design for the Reuse of Networks-on-Chip as Test
Access Mechanism”. pp. 213-218. 2006.

6. ITC05: Amory, A.M.; Brião, E.W.; Cota, E.F.; Lubaszewski, M.; Moraes,
F.G. “A Scalable Test Strategy for Network-on-Chip Routers”. pp. 591–599.
2005.

7. ETS05: Amory, A.M.; Brião, E.W.; Cota, E.F.; Lubaszewski, M.; Moraes,
F.G. “A Cost-Effective Test Flow for Homogeneous Network-on-Chip”. poster.
2005.

8. DATE05: Amory, A.M.; Lubaszewski, M.; Moraes, F.G.; Moreno, E.I. “Test
Time Reduction Reusing Multiple Processors in a Network-on-Chip Based
Architecture”. pp. 62–63 (short paper). 2005.

9. SBCCI04: Amory, A.M.; Cota, E.F.; Lubaszewski, M.; Moraes, F.G. “Re-
ducing Test Time with Processor Reuse in Network-on-Chip Based Systems”.
pp. 111–116. 2004.

10. LATW04: Amory, A.M.; Lubaszewski, M.; Moraes, F.G. “A Programmable
Logic BIST Controller for IP Cores”. pp. 104–109. 2004.

178

11. LATW04: Marcon, C.A.M.; Amory, A.M.; Lubaszewski, M.; Susin, A.A.;
Calazans, N.L.V.; Moraes, F.G. “Applying Memory Test Algorithms to Em-
bedded Systems”. pp. 43–48. 2004.

