
PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY
COMPUTER ENGINEERING

AN FPGA IMPLEMENTATION
FOR CONVOLUTIONAL

NEURAL NETWORK

GUILHERME DOS SANTOS KOROL

End-of-term work submitted to the
Pontifical Catholic University of Rio
Grande do Sul in partial fullfillment of the
requirements for the degree of Bachelor
in Computer Engineering.

Advisor: Prof. Dr. Fernando Gehm Moraes

Porto Alegre
2019



ACKNOWLEDGMENTS

I want to express my gratitude to all those that made this work possible.

First, to my family that has always supported me. This was only possible because
you were there. To Iris, Ricardo, and Leo my most sincere thank you. To Joice, who read
this document with me so many times, thank you for your love and support.

Second, to all my colleagues from GAPH (Grupo de Apoio ao Projeto de Hardware)
that offered suggestions and expertise. There were times that your help was crucial to the
progress of the project. To professor Marcon, Cataldo, and Ramon to whom with I had my
first research experience, thank you. To the two that were by my side (literally, as their desks
are next to mine), Leonardo and Tanauan, our technical discussions deserve my greatest
appreciation.

Last, to my advisor that, untiringly, engaged in endless meetings. Your bits of
advice, I will take with me. Thank you.



UMA IMPLEMENTAÇÃO EM FPGA PARA REDES NEURAIS
CONVOLUCIONAIS

RESUMO

Avanços recentes em plataformas de hardware impulsionam o uso de Redes Neu-
rais Convolucionais na resolução de problemas nas mais diversas áreas, tais como Proces-
samento de Linguagem Natural e Visão Computacional. Com os melhoramentos nos al-
goritmos envolvidos na aprendizagem e inferência de Redes Neurais Convolucionais, uma
grande quantidade de arquiteturas dedicadas em hardware foram propostas para prover
maior desempenho com custos reduzidos em área e consumo energético. Em especial,
os altos níveis de exigência em termos de largura de banda e poder de processamento
desafiam os projetistas a criarem estruturas de Redes Neurais Convolucionais eficientes,
e passíveis de serem implementadas em ASICs e FPGAs. Esse trabalho tem por obje-
tivo implementar, especificamente em plataformas reconfiguráveis (dispositivos FPGA), um
estudo de caso de Rede Neural Convolucional, a Alexnet. Adicionalmente, o trabalho pro-
põe a avaliação frente a uma versão em software simulada para um ambiente baseado em
processador ARM.

Palavras-Chave: FPGA, Redes Neurais Convolucionais, Alexnet.



AN FPGA IMPLEMENTATION FOR CONVOLUTIONAL NEURAL
NETWORK

ABSTRACT

Recent advances in hardware platforms boosted the use of Convolutional Neural
Networks to solve problems in several fields such as Computer Vision and Natural Lan-
guage Processing. With the improvements of algorithms involved in learning and inferenc-
ing for Convolutional Neural Networks, a huge amount of dedicated hardware architectures
have been proposed to provide high performance at low energy and area costs. Notably,
requirements in bandwidth and processing power have challenged architects to find struc-
tures that allow modern Convolutional Neural Networks to be embedded into ASICs and FP-
GAs. This work aims to implement a Convolutional Neural Network case study, the Alexnet,
targeting configurable (FPGA devices). Additionally, it proposes an evaluation against an
ARM-simulated software version.

Keywords: FPGA, Convolutional Neural Networks, Alexnet.



LIST OF FIGURES

Figure 2.1 – The basic architecture of an FPGA. Adapted from [Bailey, 2011]. . . . 13

Figure 2.2 – Example of a 3-input Look-Up-Table (LUT3). . . . . . . . . . . . . . . . . . . . 14

Figure 2.3 – A basic CLB from Xilinx FPGAs [Bailey, 2007]. . . . . . . . . . . . . . . . . . . 15

Figure 2.4 – A Xilinx FIFO implementation [Xilinx Inc, 2016b]. . . . . . . . . . . . . . . . . 15

Figure 2.5 – The DSP48E1 top view [Xilinx Inc, 2018]. . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.6 – The neuron model [Haykin and Haykin, 2009]. . . . . . . . . . . . . . . . . . . 19

Figure 2.7 – A fully-connected Artificial Neural Network. . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.8 – The convolution operation in CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 3.1 – The Alexnet CNN [Krizhevsky et al., 2012]. . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.2 – Memory heap consumption for the C++ Alexnet inference. . . . . . . . . . 30

Figure 3.3 – Memory heap consumption for the C Alexnet inference. . . . . . . . . . . . 31

Figure 4.1 – Schematic of the memory module (with a 3 blocks and 29-bit wide
configuration). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 4.2 – The adopted floating-point format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 4.3 – Floating-point multiplier top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 4.4 – The dual path floating-point adder architecture [Muller et al., 2010]. . 37

Figure 5.1 – Architecture top view. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.2 – Ping-pong scheme for interfacing Convolutional and Max-Pool layers. 39

Figure 5.3 – Convolutional layer schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.4 – Current and stride buffers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.5 – Example of a 3x3 multiply-add tree. . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.6 – The max-pool tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 5.7 – The Multilayer module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 6.1 – Top view with resource utilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



LIST OF TABLES

Table 2.1 – FPGA resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Table 3.1 – Shapes for the Alexnet CNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 3.2 – Memory required by each CONV and FC layer (assuming a 32-bit
numeric format). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 3.3 – Alexnet total number of multiply operations. . . . . . . . . . . . . . . . . . . . . . 27

Table 3.4 – Average instruction count (∗109) by single image classification, ob-
tained from OVP reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.5 – Time for the classification of a single image with the Tiny-Dnn library,
measured from the OVP simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Table 3.6 – The absolute maximum error between implemented and distributed
software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Table 6.1 – Estimated number of clock cycles by layer. . . . . . . . . . . . . . . . . . . . . . . 47

Table 6.2 – Number of clock cycles for a forward execution (convolutional layers
only). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Table 6.3 – Resource utilization for the complete design. . . . . . . . . . . . . . . . . . . . . 49

Table 6.4 – Diff between software and hardware implementation for part of the
Alexnet layer one max-pool OFMAP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50



LIST OF ACRONYMS

ANN – Artificial Neural Network

AI – Artificial Intelligence

ASIC – Application-Specific Integrated Circuit

CLB – Configurable Logic Blocks

CNN – Convolutional Neural Network

DNN – Deep Neural Network

DSP – Digital Signal Processing

FC – Fully Connected

FPGA – Field Programmable Gate Array

GPU – Graphics Processing Unit

LRN – Local Response Normalization

LUT – Look-up Table

MAC – Multiply and Accumulate

MLP – Multilayer Perceptron Network

OVP – Open Virtual Platform

RELU – Rectified Linear Unit

RTL – Register-Transfer Level

USB – Universal Serial Bus

VHDL – VHSIC Hardware Description Language

VLSI – Very Large Scale Integration



CONTENTS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1 OBJECTIVES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 DOCUMENT STRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 THEORETICAL REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 FIELD PROGRAMMABLE GATE ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 FUNCTION GENERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 BLOCK RAM MEMORIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 DSP BLOCKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4 THE VIRTEX 7 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 MACHINE LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 IMAGE CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.2 DEEP LEARNING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 ARTIFICIAL NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 CONVOLUTIONAL NEURAL NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.5 CNN ARCHITECTURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 ALEXNET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 ALEXNET RESOURCE ESTIMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 SOFTWARE EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 PUBLIC SOFTWARE DISTRIBUTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 IMPLEMENTED SOFTWARE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 HARDWARE INFRASTRUCTURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 GENERIC MEMORY MODULE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 FLOATING-POINT FORMAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 ARITHMETIC OPERATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.1 MULTIPLIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.2 ADDER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.3 FIXED-POINT CONVERTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 HARDWARE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 CONVOLUTIONAL IMPLEMENTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



5.1.1 BUFFERS OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.2 CONVOLUTIONAL TREE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 MAX-POOL LAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 MULTILAYER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 FULLY-CONNECTED LAYER EXPLORATION . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1 PERFORMANCE ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.1 ESTIMATED PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1.2 SIMULATED PERFORMANCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 RESOURCE UTILIZATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.3 ACCURACY OF THE HARDWARE IMPLEMENTATION . . . . . . . . . . . . . . . . . . . 49

6.4 FINAL REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

APPENDIX A – Alexnet C Source Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



10

1. INTRODUCTION

In artificial intelligence, deep learning is getting much attention from industry and
academia. The attention comes mainly from recent advances in hardware that provided
room for complex algorithms that run in acceptable time, making it possible to recover mean-
ing from the enormous quantity of data made available every day. Many problems regarding
the hardware architectures that are being developed for this kind of use remain open.

Nowadays, the number of applications using CNNs is countless. The two most
common fields of application are Natural Language Processing and Computer Vision. Con-
volutional Neural Networks have shown a great deal of improvement on audio [Hershey et al.,
2017], video [Karpathy et al., 2014], and image classification [Russakovsky et al., 2015], as
well as segmentation [Girshick et al., 2014], scene labeling [Pinheiro and Collobert, 2014],
and face recognition [Lawrence et al., 1997]. There are even networks that achieve better
than human-level performance in some tasks such as the ResNet that in 2015 achieved er-
ror rates lower than human experts in image classification [He et al., 2016]. Unfortunately,
this performance comes at a cost. The algorithms employed by the most modern neural net-
works require high memory bandwidth and extensive use of computational resources [Sze
et al., 2017].

To mitigate the memory and performance bottlenecks created by recent CNNs,
a tremendous quantity of hardware architectures have been proposed by industry and re-
search communities. For example, Microsoft created the Project Catapult, developing FP-
GAs accelerators for its cloud servers in [Ovtcharov et al., 2015, Putnam et al., 2016,
Caulfield et al., 2016]. Google invested in the development of a series of ASICs for deep
learning processing known as the Tensor Processing Unit [Jouppi et al., 2017]. ARM pre-
sented the ARM Machine Learning Processor and the Object Detection Processor [Zhu
et al., 2018]. Interestingly, Movidius, an Intel company, has embedded a Deep Neural Net-
work (DNN) prototyping tool into a USB stick for rapid development [Intel Corp., 2015]. More-
over, many startups appeared. To mention a few, Graphcore developed the Intelligence Pro-
cessing Unit [Stokel-Walker, 2018], NovuMind has shown NovuTensor and NovuBrain chips
for deep learning [NovuMind, 2018], Ceva introduced the Intelligent Vision Processor [Ceva,
2015].

Memory is the first challenge to address when developing hardware for deep learn-
ing [Sze et al., 2017, Wang et al., 2018]. Fundamentally, a neural network consists of a set of
neurons organized in layers. Each layer can be viewed as a series of multiply and accumu-
late operations between the input data and some parameters. It turns out that the number
of layers is getting larger with each new network is made public. From a hardware perspec-
tive, the growth in the number of layers means that the amount of data to be transferred
from memory to the processing unit and then saved back to memory is also increasing. For



11

instance, in 2012 Alexnet won the Imagenet competition with a network of 60 million param-
eters to process a single image [Krizhevsky et al., 2012]. Two years later in 2014, VGGNet
won the same contest, but instead, this network has seven times more parameters to load
[Simonyan and Zisserman, 2014a]. Hence, it is expected that the architectures make good
use (and reuse) of data to minimize the time consumed by memory transfers.

On the other hand, neural networks require a considerable amount of processing
as well. For instance, a convolution slides a window over the inputs, computing a sum
of products several times. Furthermore, the second most common kind of layer in CNNs,
the fully connected, can be viewed as a sequence of matrix multiplications, which can also
be computationally challenging for any physical implementation. Taking the networks pre-
viously cited, Alexnet has five convolutional layers and three fully connected layers while
VGGNet consists of 16 convolutional layers and three fully connected layers. This amount
of operations poses a problem even for architectures that are composed of many Graph-
ics Processing Units (GPUs) arranged on a computer. Specifically, when it is proposed to
embed these networks on FPGAs or dedicated ASICs, this volume of operations requires
well-thought schemes for sharing arithmetic resources and, consequently, saving area.

There are three primary design paths that one can follow when developing hard-
ware architectures for deep learning algorithms. The first one is adopting the use of GPUs,
where developers implement a network by programming these and taking advantage of the
high level of parallelism provided. As for the training phase, GPUs are the number one
choice for machine learning scientists, as they are mainly focused on achieving peak per-
formance once training will not be executed regularly. Besides, during this phase, high
precision floating-point operations (also provided by GPUs) are required by algorithms like
backpropagation. The other two common paths include FPGAs or ASICs. The former is
one of the most flexible choices, and the latter achieves the highest performance [Kuon and
Rose, 2007]. The design flow for an ASIC is expensive and involves many steps from initial
specification to final tape-out and fabrication, unlike FPGAs that can deliver fast time-to-
market and possible upgrades to the architecture after delivery. Fundamentally, FPGA and
ASIC have attracted numerous designers to implement inference algorithms, due to: (i) the
possibility of using numeric formats of any precision [Jiao et al., 2017, Courbariaux et al.,
2015]; (ii) the possibility of energy saving compared to GPUs [Nurvitadhi et al., 2017, Gupta
et al., 2015]; (iii) and the overall performance and potential for fine-tuning of the architecture
[Hailesellasie et al., 2018].



12

1.1 Objectives

The goal of this end-of-term work is to implement a hardware architecture for Con-
volutional Neural Networks, specifically the Alexnet Convolutional Neural Network. The hard-
ware implementation is compared to an Alexnet software version.

In a broader context, the goal is the understanding of the issues concerning the
hardware implementation of a deep artificial neural network in general. As demonstrated in
Section 2.2.4, despite the specific choice of Alexnet network as the case study, its architec-
ture modeling includes mechanisms like convolution and fully connected layers, repeatedly
used in other DNNs.

1.2 Document Structure

This document is structured in seven chapters. Chapter 1 contextualizes this work,
presenting the central issues involving the hardware development for deep learning networks
and some examples from industry. In Chapter 2, Field Programmable Gate Arrays and
Machine Learning concepts relevant to this work are given. Next, the reference CNN is
detailed in Chapter 3. In addition, a evaluation of two software implementations is presented.
Then, Chapter 4 presents the hardware modules that supported this work; and Chapter 5
details the implemented architecture. Concluding the text, Chapter 6 traces an evaluation of
the architecture, and Chapter 7 concludes the document.



13

2. THEORETICAL REFERENCE

This work embraces two distinct fields: hardware design and machine learning
(convolutional neural networks). Thus, this Chapter introduces basic concepts for both fields,
making the text self-contained, easing its reading for the general public. Section 2.1 intro-
duces concepts related to FPGAs and Section 2.2 principles of machine learning.

2.1 Field Programmable Gate Arrays

Very Large Scale Integration (VLSI) systems enabled designers to develop complex
digital circuits. Those circuits, or chips, designed using full-custom or standard cell methods,
can integrate more than a billion of transistors nowadays. However, the cost and the design
time of such chips requires a high volume of units to be sold. Field Programmable Gate
Arrays (FPGAs) have emerged providing a faster time-to-market development and rapid
prototyping [Stephen D. Brown et al., 1992].

The principle behind FPGAs is programmability. Its generic circuitry can be con-
figured to execute any function for any specific application (digital functions). To achieve
its programmability, the FPGA distributes several logic blocks across a programmable inter-
connection fabric surrounded by input and output blocks for interfacing the FPGA core with
outside devices. Also, FPGA architectures offer dedicated clock distribution and control to
synchronize all the blocks inside it, as well as dedicated blocks for memory and arithmetic
functions, for example. Figure 2.1 shows the arrangement of the basic blocks inside an
FPGA.

Figure 2.1 – The basic architecture of an FPGA. Adapted from [Bailey, 2011].



14

FPGAs may differ in the technology they are built. There are two main configura-
tion technologies for FPGAs: antifuse and RAM-based [Bailey, 2007]. Devices using antifuse
technology are configured once, but the performance is higher than memory-based FPGAs.
On the other side, external devices (SRAM, EEPROM, Flash memories) stores the config-
uration of memory-based FPGAs. The advantage of memory-based FPGAs is clear: the
easiness to modify and update the hardware.

The most frequent technology employed by FPGAs is the SRAM memory-based.
In SRAM-based FPGAs, the logic function of a block or the state of an interconnection is
controlled by programmed SRAM cells [Bailey, 2007]. The next subsections detail the logic,
memory, and arithmetic blocks in an FPGA.

2.1.1 Function Generators

The function generators are the core of any FPGA. They are responsible for per-
forming the logic functions programmed by the user. In modern FPGAs, functions are imple-
mented using look-up tables (LUT).

Figure 2.2 presents a 3-input LUT. The LUT function is stored in a register during
the device configuration. The register is a collection of memory cells containing all possible
values (truth table) for a given function. Hence, making the LUT able to implement any
function that fits its number of inputs. Once the device is configured, the LUT output is
selected according to the input values (the inputs are the multiplexer selector). Modern
FPGAs contain 6-input LUT, using 64-bit registers [Xilinx Inc, 2016a].

1

{n
ey

.c
al

az
ns

, f
er

na
nd

o.
m

or
ae

s}
@

in
f.p

uc
rs

.b
r

How to Obtain Reconfigurability?

A B C 

1

0

0

1

0

0

0

1

Example
hardware 

organization for 
4-input Look-Up-

Table (LUT4)

Truth-table
output stored in 

register

Inputs (Boolean vars) 
control mux 2n:1

0

15

Single bit S controls if
wires connected (or not)

Single bit S controls
if either a or b

connect to mux out

In other words, Hw 
reconfigurability
achievable with 

adequate 
organizations and 
control memory

7

Truth-table output stored in 8-bit register

Reg Mux

Truth-table output stored in 8-bit register

inputs

F = # 0,3,7 = (A . (B. ,C + (A. B. C + A. B. C

Figure 2.2 – Example of a 3-input Look-Up-Table (LUT3).

In current FPGAs, several LUTs are grouped into larger modules called Config-
urable Logic Blocks (CLBs). These modules provide faster internal connections between



15

LUTs than those provided by connections across the FPGA network. Also, they may house
flip-flops, shift registers, distributed RAMs, multiplexers, and arithmetic operators (Figure 2.3).

Figure 2.3 – A basic CLB from Xilinx FPGAs [Bailey, 2007].

2.1.2 Block RAM Memories

Block Ram memories (BRAMs) are FPGA internal modules, that provide fast data
access. In modern architectures they offer flexibility regarding word width, reading/writing
modes, and multi-clock capabilities. BRAMs can be inferred by synthesis tools or be instan-
tiated by the user in the design capture phase. Additionally, most FPGAs provide First In,
First Out (FIFO) modules that can be instantiate as macros by users. A schematic diagram
of a FIFO module is shown in Figure 2.4.

Figure 2.4 – A Xilinx FIFO implementation [Xilinx Inc, 2016b].



16

An important BRAM feature explored in this work is the double port access, i.e., it is
possible to have two memory accesses simultaneously. This feature enables data prefetch-
ing or simultaneous read and write accesses.

2.1.3 DSP Blocks

FPGA programmability makes them suitable for applications requiring parallel pro-
cessing. Examples of applications include Finite Impulse Response filters, video and voice
processing, Fast Fourier Transforms, and remote sensing. These applications induced the
introduction of Digital Signal Processing (DSP) blocks in modern FPGAs, enabling binary
multiplication and accumulation, without using the basic blocks (LUTs).

In a DSP block, there may be several configurable functional blocks. For instance,
the example in Figure 2.5, there is a 25 x 18 two’s-complement multiplier, a 48-bit accumula-
tor (that can also be used as up and down counter), a pre-adder, single-instruction multiple-
data arithmetic unit (dual 24-bit or quad 12-bit add, subtract, or accumulate), optional logic
unit (bitwise operations like AND, OR, NOT, AND, NAND, NOR, XOR, and XNOR), pattern
detector (overflow and underflow), and a configurable pipeline [Xilinx Inc, 2018].

Figure 2.5 – The DSP48E1 top view [Xilinx Inc, 2018].



17

2.1.4 The Virtex 7 FPGA

This work adopts the XC7VX690T Virtex 7 FPGA Xilinx device. The adoption of
this device is due to its availability in the laboratory and a large number of internal resources
for prototyping [Xilinx Inc, 2016c]. Table 2.1 details some of this device available resources.

Table 2.1 – FPGA resources.
CLBs DSP Slices 36 Kb BRAM Blocks Total BRAMs (Kb) PCIe

XC7VX690T 693,120 3,600 1,470 52,920 3

These resources correspond to the area restriction the work must follow. For each
layer of the CNN, it is evaluated the number of required resources in such a way to make
possible to prototype the design in the target device.

2.2 Machine Learning

Machine learning is an area in Artificial Intelligence (AI) responsible for algorithms
that can perform a task with no explicit programming to do so. The principle is to enable
computers to learn from experience to solve problems that would be otherwise difficult (or
impossible) to be formally described by people.

A learning algorithm is an algorithm that is capable of learning from data. Formally,
Mitchell [Mitchell, 1997] states that "A computer program is said to learn from experience (E)
with respect to some class of tasks (T ) and performance measure (P), if its performance at
tasks in T , as measured by P, improves with experience E" . A task T may be a description
of how the algorithm should treat an input example, for instance, the problem of image clas-
sification (described in subsection 2.2.1), is a machine learning task. The experience E is
the set of examples fed to the algorithm (a set of images in an image classification problem),
while P is some form of quantitative performance measurement. It can be accuracy, error
rate, or any other measure that is function of the application.

2.2.1 Image Classification

One of the core problems in Computer Vision is the task of classifying an image. It
consists in assigning an image into a class label from a fixed set of classes. The problem
has application in areas ranging from medical [Qing Li et al., 2014], defense [Yoshihisa Hara
et al., 1994] and volcanology [Gabor Kereszturi et al., 2018].



18

Usually, a classification algorithm is split into two phases. The first phase is training.
This phase is responsible for learning the model set of parameters, enabling the model to
map a certain input x to a class label k. Formally, a set of inputs in Rn (a tensor, such
as images) is used to induce parameter values so that a model f, which relates the input
examples to the set of k classes. Thus, f : Rn → {1, ..., k}. Once training is complete, the
model is put to infer any new, to the set of the known classes, example x. In other words,
the model is ready to classify new inputs.

2.2.2 Deep Learning

Similar to what happens in any area of Computer Science, part of the performance
of algorithms rely on how the input data is organized. In machine learning it is not different,
the way the information is represented is paramount. Each piece of information consumed
by a learning algorithm is called feature. Many tasks rely on hand-picked features to execute.
Hence, prior to the execution of a learning algorithm, a set of features is extracted from the
data and supplied to the algorithm.

The approach of handcrafted features may work for some simpler tasks. However,
the search for features can be difficult, or even impossible, depending on the problem com-
plexity. Suppose an image classification algorithm. In order to classify a single class, a cat,
for example, it should be known all the features that make an image of a cat different from
any other image. It would be possible to use as features the size and color of eyes, the fur,
the tail, and so on. Nevertheless, each feature can appear in numerous variations of relative
size, orientation, angle, light, etc. Hence, it is impractical to code every feature of every class
in problems of this size.

Deep learning models solve this problem by representing features internally. Those
models may describe a cat in terms of curves, shapes, and corners. According to Goodfellow
et al., it extracts complex concepts in a hierarchical manner from less complex, raw data
[Ian Goodfellow and Courville, 2016]. Moreover, in their words:

Machine learning is the only viable approach to building AI systems that can
operate in complicated, real-world environments. Deep learning is a particular
kind of machine learning that achieves great power and flexibility by learning to
represent the world as a nested hierarchy of concepts, with each concept defined
in relation to simpler concepts, and more abstract representations computed in
terms of less abstract ones.



19

2.2.3 Artificial Neural Networks

Artificial Neural Networks (ANNs) are a subset of deep learning models. ANNs
provide a general model that can learn its parameters from data in a process robust to
errors in the input data [Mitchell, 1997]. Besides the original inspiration on the biological
brain, modern ANNs do not attempt to imitate the biological brain in every aspect. The
human brain has approximately 1011 neurons, each connected on average to 104 others
[Mitchell, 1997]. This enormously dense network in our brain gives more processing power
than any computer ever built.

The fundamental unit in an ANN is the neuron (2.6). As described in [Haykin and
Haykin, 2009], the neuron model is composed of three basic elements: (i) a set of synapses,
where each synapse j, multiplied by a particular weight wkj , is connected to a neuron k ; (ii)
an adder to sum up all the synaptic input values (and an additional bias); (iii) an activation
function that limits the value produced by the adder.

Figure 2.6 – The neuron model [Haykin and Haykin, 2009].

Neurons can be connected in a variety of ways (or architectures). The most com-
mon architectures are feedforward. For a network that is said to be feedforward, the data
flows strictly in one direction, from input to output. It can also have one or multiple layers;
they distinguish in the presence of hidden layers. A hidden layer is any layer between the
first input layer of neurons and last output layer. An example of such network is shown in
2.7.

Despite the historical importance of Rosenblatt’s model, the fact that the classes
classified by the Perceptron needed to be linearly separable posed a limitation in applicability
to the model. To solve this problem, the Multilayer Perceptron Network (MLP) was proposed.
The MLP is a multilayer feedforward network, which means that it includes one or more
hidden layers.

Haykin refers to three main characteristics of MLPs [Haykin and Haykin, 2009]:
(i) the nonlinearity and differentiability of the activation functions presented on the neuron



20

Figure 2.7 – A fully-connected Artificial Neural Network.

model; (ii) the hidden layers; (iii) the high degree of connectivity. Those characteristics give
the model a great deal of generalization and performance for tasks like classification but
make the learning (or training) process challenging.

The most popular choice for training such networks is the backpropagation algo-
rithm. In general terms, it occurs in two phases. The forward phase when the input data
is provided to the input layer, and the data flow layer by layer through the network up to
the final, output, layer. The backward phase, calculates the error by comparing the result
produced by the first phase with the expected output. Then, the error propagates through
the network, layer by layer, in the opposite direction of the first phase. During the passage
through the layers, the weights are adjusted accordingly to the error of each specific layer.
As the focus of this work is on the first phase, also called inference, aspects related to the
training of ANNs are out-of-the-scope of this work.

2.2.4 Convolutional Neural Networks

The idea of an artificial neural network aimed for visual pattern recognition came
in 1983 by Fukushima, Miyake, and Takayukiito [Kunihiko Fukushima and Ito, 1983]. On the
article entitled "Neocognitron: A neural network model for a mechanism of visual pattern
recognition" the authors were the first to introduce the architecture that became known as
Convolutional Neural Network (CNN). Their architecture was capable of classifying digits
from handwritten numerals. Later, in 1998, Lecun et al. were able to train a network of con-
volutional neurons (Neocognitron) using the backpropagation algorithm [Yann LeCun et al.,



21

1989]. Since then, CNNs have grown in depth and size. Nowadays, it is possible to find
networks with hundreds of layers [He et al., 2016]. Fortunately, the building blocks (convolu-
tional and fully-connected layers) remain the same. Here, only the layers concerning Alexnet
will be detailed. However, most of them are still used in modern networks.

A convolution layer can be understood as a fully-connected layer which employs
the mathematical operation of convolution instead of the usual matrix multiplication. Lecun
and Bengio pointed out the three main ideas that explain why convolutions are exceptional
in dealing with translated and locally distorted inputs (such as images): (i) local receptive
fields; (ii) shared weights; (iii) and, optional subsampling [LeCun and Bengio, 1998].

The use of local receptive fields means that a convolutional neuron takes its input
from a reduced local of the input instead of the whole input as in a regular ANN. It also
means that the filter (or set of weights) belonging to a set of neurons is trained to extract
features that can appear in any location in the input. Additionally, it saves memory space
once the same set of weights is shared across the input. There is, also, the subsampling
that reduces dimensionality to higher layers. The process of subsampling comes from the
idea of complex cells feeding information to simpler cells in the visual cortex as described in
[Kunihiko Fukushima and Ito, 1983].

The process in a CNN convolutional layer can be described as follows: it accepts
an Input Feature Map tensor (each map may also be called channel) and another tensor
of filters [Sze et al., 2017]. Then, each filter window is convolved with (and slid across) its
respective input channel forming a new set of feature maps. Next, a vector of bias can be
added to the feature maps, generating the final Output Feature Map tensor. The process
can be more readily understood by looking at Figure 2.8.

Formally, Equations 2.1 and 2.2 describe the convolution and fully-connected lay-
ers, respectively.

O[c][x ][y ] = B[c] +
C−1∑
k=0

Width−1∑
i=0

Height−1∑
j=0

(I[k ][Sx + i ][Sy + j ] ∗W[c][i ][j ]) (2.1)

where: c, x and y are the current output channel, the horizontal and the vertical position
respectively; also, C is the total number of input and filter channels, Width and Height cor-
responds to the filter size; S is the stride1, and O is the output, I the input, and W the filter
tensors and B the bias vector.

O[y ] = B[y ] +
C−1∑
k=0

Width−1∑
i=0

Height−1∑
j=0

(I[k ][i ][j ] ∗W[k ][i ][j ]) (2.2)

1The value of stride gives the number of positions that the filter slides over to the next window.



22

C

Input tensorFilter tensor Output tensor

C

Out
pu

t 
ch

an
ne

ls

# 
fi

lt
er

s 
=

 O
ut

pu
t c

ha
nn

el
s

Input Width
In

pu
t H

ei
gh

t

Filter 
Width

F
il

te
r 

H
ei

gh
t

Output 
Width

O
ut

pu
t 

H
ei

gh
t

# Biases = Output channels

Bias vector

Figure 2.8 – The convolution operation in CNNs.

where: O is the output vector plus I and W which are the input and weight tensors, as B
is the bias vector. The index y gives the current output neuron, C is the number of input
channels, while Width and Height are the input width and height respectively.

Among convolutional and fully-connected layers, there can be other layers, such as
pooling, activation, and normalization.

Pooling layers are applied to reduce dimensionality and avoid overfitting [Krizhevsky
et al., 2012]. Typically, pooling is applied to each channel separately. The most two com-
mon forms of pooling are mean and max-pooling, the latter is used by Alexnet. A max-pool
consists in a window of reduced size that passes over the input channel, in an overlapping
fashion in the case of Alexnet, returning the maximum value. Besides, this value is written
to the output channel. More precisely, Alexnet uses windows of size 3 x 3 spaced by two
positions each in all of its pooling layers. There are three pooling layers in the Alexnet; they
follow the convolutional layers number one, two and five.

Activation is an important operation that is, in fact, part of the neuron model. Ac-
tivation functions add non-linearity to the network. There exist several functions that can be
used: sigmoid, hyperbolic, exponential and Rectified Linear Unit (ReLU) are some of the
functions found in the literature. Alexnet uses the ReLU activation function [Nair and Hinton,
2010]. ReLU differs from other functions mainly because of its non-saturating (to values
greater tha zero) characteristic that makes the network training possible [Krizhevsky et al.,
2012]. Equation 2.3 presents an example of the ReLU activation function.



23

ReLU(x) = max(x , 0) (2.3)

where: x is the value of each element in an Output Feature Map.

Normalization layers are applied (usually following activation layers) to control the
distribution in feature map values and, hence, they help to speed up learning and increase
accuracy [Krizhevsky et al., 2012]. The normalization used across Alexnet layers is the Local
Response Normalization (LRN). The authors in Alexnet explain that LRN aids the learning
by increasing generalization, reducing top-1 and top-52 errors rates by 1.4% and 1.2% re-
spectively [Krizhevsky et al., 2012]. Krizhevsky et al. introduced LRN as in expression 2.4.

bj
x ,y =

ai
x ,y

(k + α ∗
∑min(N−1,i+ n

2 )
j=max(0,i− n

2 ) (a
j
x ,y )2)β

(2.4)

where: ai
x ,y denotes the activated neuron output of filter i at position (x, y) and bj

x ,y the nor-
malized output at the same position. The idea is that a neuron gets its value by “averaging”
over the N neighboring neurons. The other variables k, α, and β are hyper-parameters set
by the network designer.

Nonetheless, the LRN normalization has not been used in most modern deep learn-
ing architectures. It is observed the adoption of other normalization functions instead of the
LRN, such as the Batch Normalization [Ioffe and Szegedy, 2015]. During the development of
this work, it was decided that the hardware implementation of an LRN layer would not be car-
ried on. Also, the LRN layer was omitted from software simulations to enable a compatible
verification against the hardware version.

The last operation, padding, is not a layer, but it is used in most networks. This
operation is useful to match the input size that feeds a layer with specific configurations. In
convolutional layers, for example, sometimes it is desirable to use a particular stride and filter
size that will not match the input feature map dimensions. Hence, padding shall be applied.
In the case of Alexnet, it uses zero-padding. It consists in adding rows and columns of zeros
around the original input map, creating a new map whose dimensions are acceptable by the
next layer (map size matches stride and filter size).

2.2.5 CNN Architectures

The literature is rich in CNNs solving problems in several areas. However, it is
possible to trace a historical trend of the development of CNN architectures by presenting
the first trainable CNN, LeNet, and the CNNs that recently scored best in the Imagenet

2In image classification applications, it is common to use the terminology of top-1 and 5. Top-N takes into
account the N classes that scored the highest probabilities among all classes in the output vector.



24

contest. This Section does not aim to present the architectures in full detail but introduces
general concepts related to the state-of-the-art in CNNs.

The first work to employ a trainable Convolutional Neural Network was LeNet
[Yann LeCun et al., 1989]. In 1998, the architecture proposed by LeCun et al. was a seven-
layers deep architecture that was able to recognize hand-written digits using 60 thousand
parameters.

Later, in 2012, the Alexnet won the Imagenet contest [Krizhevsky et al., 2012]. The
architecture is deeper and has more parameters than LeNet. The Alexnet consists of five
convolutional layers of 11x11, 5x5, and 3x3 filters. With its 60 million parameters, Alexnet
achieved a Top-5 error rate of 15.3% in the Imagenet dataset. The next year, the ZFNet
won the same contest [Zeiler and Fergus, 2014]. The architecture leveraged the Alexnet
architecture, and by tuning of hyper-parameters, the ZFNet achieved a Top-5 error rate of
14.8%.

Then, in 2014, GoogLeNet [Szegedy et al., 2015] achieved the surprisingly 6.67%
Top-5 error rate. It was close to a human-level performance in image classification. The
GoogLeNet reduced, by using small filters, the number of parameters from the 60 million in
Alexnet to 4 million. However, it introduced new elements such as the Inception module and
an architecture of 22 layers deep. Also in 2014, the VGGNet attained 7.3% Top-5 error rate
in the Imagenet dataset [Simonyan and Zisserman, 2014b]. Its architecture is more regular
that GoogLeNet, however, its 16 layers use 138 million parameters.

At last, in 2015 a CNN called ResNet beat human-level performance at the dataset
[He et al., 2016]. The ResNet achieved 3.57% Top-5 error rate. The architecture is com-
posed of 152 layers, with 60.2 million parameters. Also, it makes use of batch normalization
and other new techniques.

Among all cited CNNs, the architecture chosen to be implemented in this work is
the Alexnet [Krizhevsky et al., 2012]. There are two main reasons for this choice. First, the
network is a state-of-the-art large-scale CNN [Li et al., 2016]. Alexnet enables to exercise all
the crucial operations of any modern CNN such as multiple layers of cascaded convolutions,
fully connected layers, activation, and max-pooling layers. Second, the Alexnet is a popular
choice of network to many authors who are working on dedicated hardware architectures,
which makes it possible to run a future comparison against other implementations.



25

3. ALEXNET

Alexnet classifies images using an eight-layer deep architecture, five of which are
convolutional, and three of which are fully-connected. The input is a 227 x 227 pixels RGB
image. Further, the output is a column vector containing the probability of each of the 1000
classes from the ImageNet dataset [Russakovsky et al., 2015]. The overall network archi-
tecture is depicted in Figure 3.1.

Figure 3.1 – The Alexnet CNN [Krizhevsky et al., 2012].

As Figure 3.1 shows, the network architecture cascades five convolutional (CONV)
layers ending with three fully-connected (FC) layers. From left to right, there is the input
layer, the subsequent hidden layers (four convolutional and two full-connected), and the final
fully-connected output layer. The parameters of each layer are detailed in Table 3.1.

Table 3.1 – Shapes for the Alexnet CNN.
Layer Operation Input Size (padded) Weight/Filter Size Output Size

1 CONV 227x227x3 11x11x3 (x96) 55x55x96
1 MAX-POOL 55x55x96 3x3 27x27x96
2 CONV 31x31x96 5x5x96 (x256) 27x27x256
2 MAX-POOL 27x27x256 3x3 13x13x256
3 CONV 15x15x256 3x3x256 (x384) 13x13x384
4 CONV 15x15x384 3x3x384 (x384) 13x13x384
5 CONV 15x15x384 3x3x384 (x256) 13x13x256
5 MAX-POOL 13x13x256 3x3 6x6x256
6 FC 6x6x256 6x6x256x4096 4096
7 FC 4096 4096x4096 4096
8 FC 4096 4096x1000 1000



26

3.1 Alexnet Resource Estimation

The parameters (Table 3.1) can be further explored to estimate the memory and
computational resources needed to run Alexnet. The amount of memory required is depicted
in Table 3.2. Memory estimates were obtained using Equations 3.1 for convolutional, and
3.2 for fully connected layers.

convbits = (F ∗ F ∗ C ∗ K + B) ∗W (3.1)

where: F is the filter size, C the number of channels (depth), K the number of filters and B
the number of biases for a convolutional layer. The word size assumed for the calculations
is 32 bits and is represented by W.

fcbits = (Win ∗ Hin ∗ Cin ∗ N + B) ∗W (3.2)

where: Win and Hin are the input width and height respectively; Cin is the number of input
channels, and N is the number of neurons for the layer being evaluated. The number of
biases for the layer is B, and the word size is W.

Table 3.2 – Memory required by each CONV and FC layer (assuming a 32-bit numeric for-
mat).

Layer Input size (bits) Weights/filter plus bias size (bits)
1 - CONV 4,949,856 1,118,208
2 - CONV 9,300,992 19,668,992
3 - CONV 5,984,256 28,323,840
4 - CONV 2,088,960 42,479,616
5 - CONV 2,084,864 28,319,744

6 - FC 294,912 1,208,090,624
7 - FC 131,072 268,566,528
8 - FC 131,072 65,568,000
Total 24,866,912 1,662,135,552

Additionally, Table 3.2 offers another interesting distinction between convolutional
and fully-connected layers that is the number of required parameters. The saving in param-
eter space is one of the attractive characteristics of convolutions. Because of the small size
sliding window, convolutions do not require large filters – as in the fully-connected layers
that require orders of magnitude more memory than convolutions. However, the tensors
being moved across the CNN convolutional layers namely input and output feature maps,
consume most of the memory space. In other words, convolutional layers need more buffers
for storing feature maps while fully-connected layers need larger buffers to store parameters.



27

Similarly, it is possible to estimate the number of multiply operations for convolu-
tional and fully-connected layers by the summations in Equations 2.1 and 2.2. For the sake
of brevity, only the number multiplications at each layer are shown here (Equation 3.3).

convmults = (F ∗ F ∗ Cin) ∗ Cout ∗ Hout ∗Wout (3.3)

where: convmults denotes the total number of multiply operations in a convolutional layer,
where F is the filter size, Cin the input channels, Cout the output channels, and Hout and Wout

are the height and width of the layer output.

On the other hand, for a fully-connected layer, the number of multiplications is given
by Equation 3.4

fcmults = (Cin ∗ Hin ∗Win) ∗ N (3.4)

where: Hin, Win, and Cin denote the input feature map size (height, width, and depth), and N
is the the number of neurons in the layer.

From Equations 3.3 and 3.4, Table 3.3 presents the number of multiply operations
for each layer in the Alexnet. It demonstrates the computationally-intensive aspect of a mod-
ern CNN. With the Alexnet example, another interesting point can also be made about the
two types of layer. When analyzing the number of multiply operations required by each layer,
it is clear that convolutional layers tend to demand more computation than fully-connected
layers.

Table 3.3 – Alexnet total number of multiply operations.
Layer Multiply Ops

1 - CONV 105,415,200
2 - CONV 447,897,600
3 - CONV 149,520,384
4 - CONV 224,280,576
5 - CONV 149,520,384

6 - FC 37,748,736
7 - FC 8,388,608
8 - FC 2,048,000
Total = 1,124,819,488

3.2 Software Evaluation

The first step towards a more significant understanding of the particularities in the
implementation of CNNs was to execute and evaluate a publicly distributed version of Alexnet
in software. The second step was to implement a simpler version in C language where it



28

would be possible to get familiar with the data structures involved in a CNN forward execu-
tion.

3.2.1 Public Software Distribution

Besides the recent improvements in the available hardware as seen in the form
of new GPU, ASIC, or FPGA platforms [Nvidia, 2018, Jouppi et al., 2017, Ovtcharov et al.,
2015], the observed increase in software frameworks has also influenced the development of
new deep learning networks. There is a multitude of publicly available, open-source, frame-
works tailored to the development of artificial neural networks. They facilitate the portability
of models across developers and add the transparency necessary to experiment with differ-
ent hardware platforms [Sze et al., 2017].

For example, The Caffe framework was made public in 2014 by the University of
California, Berkeley [Jia et al., 2014]. In 2015, Google launched the Tensorflow framework
where it is possible for the developer to smoothly run the CNN either in GPUs or conven-
tional CPU architectures just by editing a few lines of its Python script [Abadi et al., 2016].
Facebook also has its open-source framework, called Torch [Collobert et al., 2002]. Despite
all the cited frameworks being capable of running the Alexnet, a portable framework with no
particular library dependencies was needed to enable simulation on an embedded environ-
ment. Consequently, the Tiny-Dnn library was used to evaluate the Alexnet in an embedded
environment [Nomi, 2018].

The simulation was carried out on the Open Virtual Platform (OVP) [Imperas, 2018].
OVP provides a platform for embedded systems development, supplying models for a variety
of processors such as PowerPC, RISC-V, MIPS, and ARM. Next, it was possible to cross-
compile the Alexnet C++ implementation, provided along with the Tiny-Dnn, targeting the
ARMv8 instruction set. Thus, the executable file can be loaded and run over the simulated
ARM Cortex-A57 single core processor. Additionally, the simulated system was required to
embed the Linux kernel (version 4.3.0). The operating system was necessary to provide
some basic system calls as the Tiny-Dnn network implementation is not “bare-metal.”

The first evaluation regards the number of ARM ISA instructions used during clas-
sification of a single image on the Alexnet. To do so, it was essential to separate the in-
structions executed during the Linux system boot from the instructions that were employed
during classification. The applied method consists in running several executions of two differ-
ent Linux initialization scripts. The first one simply waited for the system to boot and halted.
The second script, however, performed a classification after the boot is completed and then
halted the system.

Further, after several executions of both scripts, the average number of instructions
can be calculated for booting the system and for booting plus a single Alexnet execution. The



29

difference in the number of instructions gives the average instructions count for classifying
an image on the Alexnet Convolutional Neural Network. Table 3.4 presents the instruction
count for five executions of both scripts. The simulation was executed multiple times with
the same input because it was not possible, to the author knowledge, to stop the instruction
counting precisely after the halting of the operating system.

Table 3.4 – Average instruction count (∗109) by single image classification, obtained from
OVP reports.

Execution Linux boot plus Alexnet Only Linux boot
1 739.4 430.5
2 802.4 510.5
3 655.5 437.0
4 743.6 538.0
5 746.3 445.2

AVG = 737.5 472.2
Average instructions by classification: 265.2

After evaluating the total number of instructions, the Alexnet execution time was
measured using the Linux command time. The result is given in Table 3.5.

Table 3.5 – Time for the classification of a single image with the Tiny-Dnn library, measured
from the OVP simulation.

Alexnet execution time (in seconds)
real user sys

34.24 32.57 1.67

The second evaluation proposed for the Tiny-Dnn Alexnet implementation is mem-
ory consumption. Here, the Valgrind tool was used to perform a memory consumption eval-
uation [Nethercote and Seward, 2007]. The analysis was performed on the host machine,
once the simulated environment does not provide all the necessary Linux packages for the
Valgrind installation. Regardless, the same source code was profiled which gives roughly
the same number of memory allocations. In Figure 3.2, the memory heap consumption is
portrayed. The peak memory usage reaches over 520 MB.

3.2.2 Implemented Software

Next, the CNN was implemented in the C language. First, this was mainly motivated
by the initial modeling of the problem. Second, to facilitate the latter hardware verification
(providing verification "checkpoints" in the CNN data flow). Lastly, the software written in C
can be compiled to run in bare-metal platforms enabling more accurate statistics from the
OVP simulator that serve as a reference in performance for the hardware. Appendix A shows
the code for the Alexnet CNN written in C.



30

Figure 3.2 – Memory heap consumption for the C++ Alexnet inference.

The implemented software was validated using the Tiny-Dnn distributed version.
To perform the validation, the output vector of both implementations were compared after
the classification of 11 different images. After the executions, the same Top-5 classes were
retrieved by the two output vectors on all images. However, when comparing the output
vectors from the last fully-connected layer, a small error was found (Table 3.6) which can be
explained by differences in the code of arithmetic functions provided by C++ libraries, used
by Tiny-Dnn, and the software written in C. The error was measured as the element-wise
absolute difference, the maximum difference found after the classification of 11 images is
presented in the Table.

Table 3.6 – The absolute maximum error between implemented and distributed software.
Image Max Absolute Error

amplifier 0,000499815
ball 0,000995398
cat 0,001348913

cellphone 0,002319574
electricGuitar 0,000403762
inkjetPrinter 0,000041589
laserPrinter 0,005688460

monitor 0,000040695
phone 0,000801794
sink 0,000101125

slippers 0,001310173
Avg Max Absolute Error: 0,001231936



31

Simulated on the ARM Cortex-A5, the bare-metal Alexnet classified an image exe-
cuting 116.1x109 ARMv7 ISA instructions (OVP report). Moreover, the total simulated time
was 1,161.13 seconds and the memory usage peak, profiled by the Valgrind tool, achieved
250.5 MB (Figure 3.3). Note that using a simpler embedded processor (ARM Cortex-A5)
than ARM Cortex-A57 the number of instructions reduced by 50% because there is no
system calls neither the complexity of object-oriented structures. On the other side, the
execution time increases 37 times.

Figure 3.3 – Memory heap consumption for the C Alexnet inference.

Executing the software on the host machine, an Intel Core i7 at 3.4GHz with 8G
bytes of memory, the classification took only 3.234 seconds. The result is impressive, and
future works aim to explain the optimizations made by the compiler and the architecture to
execute all arithmetic and memory accesses required during an image classification.



32

Concluding, the implemented software was validated using the Tiny-Dnn (C++)
framework and simulated on a virtual ARM platform. Also, it offers means for performing an
incremental verification of the hardware by producing a set of files that contain the values
of specific points in the architecture. Additionally, it makes possible to use the simulated
environment as a baseline for performance analysis.



33

4. HARDWARE INFRASTRUCTURE

This Chapter presents the modules used in the hardware implementation. Also, it
details the memory architecture, the floating-point format, and the arithmetic operators.

4.1 Generic Memory Module

One of the main goals behind this project is to make the hardware modules as
generic as possible. It enables, via off-line configuration, the design to implement a CNN
with any set of parameters and size.

The first issue addressing the generality of the design is the memory. Throughout
the design, the same memory module is instantiated for both input and output feature maps
and weight values. Hence, the first configuration parameter of this memory is depth, which
allows configuring the amount of BRAMs for each instance. Another parameter is width.
This second parameter is important so the memory will not pose a problem for changes in
numeric format. In other words, it is possible to tweak the numeric precision with no need to
rewrite memory modules.

Specifically, the memory is configured with B blocks and each block has W BRAMS
(of 1 bit width each), where W is the word-length. Figure 4.1 gives the schematic of a generic
memory instance configured with 3 blocks and 29-bit word (width of the floating-point number
used in this work and described in the next Section). Besides, the total BRAM size being
equal to 36 Kb, the effective data storage is 32 Kb since for every 8 bits there is a parity bit.
In Figure 4.1, the total number of addressable 29-bit words is 96,000. This Figure shows the
schematics for the memory module implemented for this work. The module called GenMem
is configurable in depth to store the set of weights and feature maps that vary in size across
layers.

Any convolutional layer works with at least three data structures: filter, input, and
output feature map. For instance, the Alexnet layer one input is a 227x227x3 tensor (Table
3.1), which corresponds to 154,587 29-bit floating-point words. Dividing it by 32Kb, this
corresponds to 5 blocks (B), or 145 BRAMs. To store the output feature map produced by
the max-pool in layer one, according to Table 3.1, 69,984 words are required, resulting in 3
blocks, or 87 BRAMs. Finally, the layer one filter and bias take 34,944 words, resulting in 2
blocks, or 58 BRAMs. Thus, for the input, output, and filter, 10 blocks of generic memory
are used in layer one. This represents 290 BRAMs, corresponding to 20% of the available
resources in the target FPGA.



34

3
6K

b
B

R
A

M
 #

28
3

6K
b

B
R

A
M

 #
28

3
6K

b
B

R
A

M
 #

28

Line Address A

Line Address B
(14 downto 0)

36
K

b
B

R
A

M
 #

2

3
6K

b
B

R
A

M
 #

1

36
K

b
B

R
A

M
 #

0

36
K

b
B

R
A

M
 #

2

3
6K

b
B

R
A

M
 #

1

36
K

b
B

R
A

M
 #

0
36

K
b

B
R

A
M

 #
0

3
6K

b
B

R
A

M
 #

1

36
K

b
B

R
A

M
 #

2

Port A input

29

Port B input

29

1 1 1 1
1 1 1 1

AddrB AddrB AddrB AddrB

AddrBAddrBAddrBAddrB

AddrB AddrB AddrB AddrB

AddrA AddrA AddrA AddrA

AddrAAddrAAddrAAddrA

AddrA AddrA AddrA AddrA

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

In
A

In
B

Address B

15 + log(# of Blocks)

(14 downto 0)

Address A

15 + log(# of Blocks)

(15+log(# of Blocks) downto 15)

Wen A

W
en

A
W

en
B

W
en

A
W

en
B

W
e

nA
W

e
nB

W
en

A
W

en
B

W
en

A
W

en
B

W
e

nA
W

e
nB

W
en

A
W

en
B

W
en

A
W

en
B

W
en

A
W

en
B

W
en

A
W

en
B

W
e

nA
W

e
nB

W
en

A
W

en
B

(15+log(# of Blocks) downto 15)

Wen B

O
ut

A
O

ut
B

O
u

tA
O

u
tB

O
ut

A
O

ut
B

O
u

tA
O

u
tB

O
u

tA
O

u
tB

O
ut

A
O

ut
B

O
u

tA
O

u
tB

O
ut

A
O

ut
B

O
ut

A
O

ut
B

O
u

tA
O

u
tB

O
ut

A
O

ut
B

O
u

tA
O

u
tB

Port A output

29

Port B output

29

29

29

29

29

29

29

RenAB
To all BRAMs.

Figure 4.1 – Schematic of the memory module (with a 3 blocks and 29-bit wide configura-
tion).

4.2 Floating-Point Format

Despite existing studies pointing out that the use of fixed-point has a little impact
on the performance of deep learning accelerators [Jiao et al., 2017, Courbariaux et al.,



35

2015, Gupta et al., 2015], this work adopted floating-point representation to minimize the
accumulated error between layers and to make it easy the verification against the software
version. Our work adopted the Flopoco framework for floating-point arithmetic [de Dinechin
and Pasca, 2011]. The framework provides a list of configurable arithmetic operators tailored
for FPGAs, along with its proper floating-point format.

The format used across all modules of this work is the Flopoco floating-point config-
ured to an 8-bit exponent and 18-bit mantissa (Figure 4.2). The exponent width was chosen
based on the IEEE-754 standard that uses an exponent of same size [IEEE, 2008]. However,
the mantissa was set to the DSP block input width of the target FPGA [Xilinx Inc, 2018]. It
was necessary to fit the significand part to the DSP block input, so the integer multiplications
require a single block to be performed.

MantissaExponentException

Sign

0171825262728

Figure 4.2 – The adopted floating-point format.

4.3 Arithmetic Operators

The Flopoco framework offers an extensive list of operators1. This section only
presents the ones instantiated in this design.

4.3.1 Multiplier

Multiplication is at the core of convolutional and fully-connected layers. With the
Flopoco floating-point multiplier at hand [de Dinechin and Pasca, 2011], it was necessary
to modify it, by instantiating the DSP Block. The DSP block, which executes the Integer
Multiplication (Figure 4.3), was manually inserted in the multiplier VHDL code from Flopoco.
Afterwards, a control logic around the multiplier was implemented to control and synchronize
the operation with other modules (not depicted in Figure 4.3).

The resulting module is capable of multiplying two floating-point numbers in three
clock cycles. Also, it uses 205 LUTs, 166 flip-flops, and a single DSP block.

1http://flopoco.gforge.inria.fr/



36

Operand A

Operand B

Sign

Exponent

Mantissa

+ -

127
(BIAS)

Integer
Multiplication
(DSP Block)

+

SigProd

S
ig

P
ro

d(
37

)

ExpSum

SigProd << 1 if SigProd(37) = '1'
else SigProd << 2

SigProdExt

ExpPostNorm

Mantissa normalization

Exponent normalizationExponent addition

SigProdExt(37:20)

'0' if sigProdExt(18:0) is “00...00”
else '1'

SigProdExt(18:0)

Guard bit

SigProdExt(19) = stick Stick AND 
(Guard AND !sigProdExt(19)) OR

sigProdExt(20) 

Round bit

+

Guard

R
o

un
d

Result
Round Adder

2 + 8 + 18

2 + 8 + 18
2 + 8 + 18

8

8

18

18

38

18

28

Sign

Exponent

Mantissa

Result Sign

Figure 4.3 – Floating-point multiplier top view.

4.3.2 Adder

Another important operation in CNNs is addition. Most modern accelerators and
hardware implementations adopt multiply and accumulate (MAC) modules [Sze et al., 2018,
Sze et al., 2017, Venkataramani et al., 2017]. The obvious advantage on using MACs is
precision, because the accumulator comes right after the multiplication module, and the
result of the first operation is not rounded. However, in our case, multiplication and addition
could not be "glued" together due the the adopted architecture, which will be presented in
the next Chapter.

Conceptually, the floating-point addition takes more area and time than multipli-
cation to execute. Flopoco implements both single and dual path floating-point adders
[de Dinechin and Pasca, 2011]. Figure 4.4 shows the dual path floating-point adder avail-
able in the Flopoco framework. According to Muller in [Muller et al., 2010], the dual path
architecture is optimal for FPGA designs once it has little area overhead compared to other
single path implementations and the shifter amortizes the delay in the leading-zero counting.
In a dual path adder, first, the exponents are compared and the operands possibly swapped.
Next, the operands may be shifted to align the mantissas and one of them complemented in
case of subtraction. Then, based on the difference of the exponents, the result of the close
or far path is selected. The close path is chosen when the case is a subtraction of inputs
with exponents that differ by at most one bit. One the other hand, the far path is chosen for
adding or subtracting numbers with distant exponents (at least two bits).

The Flopoco dual path adder tailored to this work performs a floating-point addition
in six clock cycles, taking 324 LUTs, 18 shift-registers (SRL) and 208 flip-flops.



37

Figure 4.4 – The dual path floating-point adder architecture [Muller et al., 2010].

4.3.3 Fixed-Point Converter

The last Flopoco operator used is a converter to fixed-point format. Conversion
was necessary to perform comparisons in the max-pool layer. The layer, explored in more
detail in the next Chapter, first converts all the input values to fixed-point, then finds the
maximum value among them by comparing their fixed-point representation. Basically, the
conversion consists of a shifter, by the amount in the exponent, and a possible truncation.
The framework also offers conversion to fixed-point with rounding; however the additional
hardware was not seen as necessary to perform the max-pool layer.

The choice for the fixed-point size required attention to avoid overflow and under-
flow. The fixed-point width was set to 32 bits, where the lower 15 bits are the fractional part,
the next 16 bits represent the integer part, and the most significant bit gives the sign. This
setting gives a range from -65536 (216) to 65535.9999695 (216 − 2−15), which is enough to
perform comparison operations like greater than in the max-pool layer.



38

5. HARDWARE IMPLEMENTATION

Following a top-down approach, this Chapter presents the modules that compose
the implemented architecture. First, a top view of the architecture is provided. The next
sections detail the modules responsible for performing the convolution and max-pool layers,
accessing weight and feature map memories, as well as the multilayer module, which can
execute an unlimited number of convolutional layers sequentially. Concluding the Chapter, a
brief discussion of the fully connected layers is offered since this layer was not implemented
due to the lack of time to design it.

Figure 5.1 presents the proposed architecture to implement each layer of the CNN.
The left memory (A) contains the pre-processed input image and memory B contains the
set of weights for the first layer. The first layer includes the convolutional and max-pool
modules that fill the output feature map memory (C). Next, the second layer reads memory
C, executing the functions related to the second layer. Once layer two is completed, the
Multilayer starts. The multilayer executes sequentially layers three, four, and five. Note that
this multilayer structure enables to implement an arbitrary number of layers sequentially. The
result of the fifth layer is written into the output feature map, in memory G. This architecture
is, in the Authors opinion, a relevant contribution, since it allows to implement CNNs with an
arbitrary number of layers.

M
em

G
en

 (
A
)

In
pu

t 
Im

ag
e

M
em

G
en

 (
B
)

L
ay

er
 1

 w
ei

gh
ts

Layer
1

M
em

G
en

 (
C

)
O

u
tp

ut
 F

M
A

P
S

M
em

G
en

 (
D

)
L

ay
er

 2
 w

ei
gh

ts

Layer
2

M
em

G
en

 (
E

)
O

ut
pu

t 
F

M
A

P
S

M
em

G
en

 (
F

)
La

ye
rs

 3
 a

nd
 5

 w
ei

gh
ts

Multilayer
M

em
G

en
 (
G

)
O

ut
pu

t 
F

M
A

P
S

M
em

G
en

 (
I)

La
ye

r 
4

 w
e

ig
ht

s

Figure 5.1 – Architecture top view.

The "Layer" encapsulates the convolutional and max-pool modules, interconnected
in a "ping-pong" arrangement (Figure 5.2). While the producer (convolutional layer) writes
on the upper buffer, the consumer (max-pool layer) reads from the lower buffer (a). In b,
producer and consumer switch buffers and the consumer starts reading from the just filled
buffer, as the producer writes over the already consumed data in the lower buffer. The first
advantage in using "ping-pong" buffers is memory saving, once it requires less memory
space since only two channels need to be stored instead of the entire feature map. For
example, the first layer channel size is 55x55 while the entire feature map contains 96 chan-
nels. The second advantage is the latency reduction since the max-pool layer starts its



39

computations after each channel is done, not waiting for the complete feature map be ready
for consumption.

Conv Layer Max-Pool Layer

Conv Layer Max-Pool Layer

a)

b)

Figure 5.2 – Ping-pong scheme for interfacing Convolutional and Max-Pool layers.

5.1 Convolutional Implementation

A key module in the architecture is the one responsible to execute the convolution
operation. It may be divided into six functional blocks, detailed in Figure 5.3.

a) address generator;

b) input buffers;

c) a pair of Finite State Machines (FSMs);

d) convolutional tree

e) neuron Adder;

f) ReLU activation.

Additionally, it is important to note that all internal modules are configurable and
are instantiated using a set of user-defined VHDL generics, enabling the same VHDL entity
to be used across all layers.

The address generator block (A in Figure 5.3) is responsible for filling the stride
buffers with data from the input feature map (IFMAP) and filter memories. This module
generates three addresses: to read from the IFMAP memory it uses the two reading ports,
A and B, to fill the current and stride buffers; and to read from the filter weights memory, it
generates only one address.

The input buffers (B in Figure 5.3) are a pair of shift registers that store one win-
dow of the feature map and data from the next stride positions (stride buffer ), being their size
equal to the convolution filter length. As detailed in 5.1.1, data is read serially from the input



40

M
em

G
e

n
In

pu
t 

te
n

so
r

AddrB

AddrA

In
A

In
B

W
en

O
ut

A
O

ut
B

M
e

m
G

en
W

e
ig

ht
 t

e
ns

or

AddrA

In
A

W
en

O
ut

A

Current Buffer

Stride Buffer

Current Buffer

Convolution
FSM

Address Generator
Process

Enable

Control Signals 

Stride
FSM

X X X X

+ +

+

X

Convolution
Tree

Control Signals

+
Result

M
em

G
en

O
ut

pu
t 

ch
an

ne
l

AddrB

AddrA

In
A

In
B

W
en

OutA

O
u

tB

B
ia

s 
A

rr
ay

Bias Address

28 28 28 28

28282828

28

28

2828

28

28

28

28

28

28

15 + log(# of Weights 
MemBlocks)

15 + log(# of Input 
MemBlocks)

15 + log(# of Input 
MemBlocks)

15 + log(# of Output MemBlocks)

15 + log(# of Output MemBlocks)

ReLU Activation

Data In

Data In

Data In

Addr Out

Data Out

Neuron
Adder

(A) (B)

(C)

(D)

(E)

(F)

Figure 5.3 – Convolutional layer schematic.

memories. There is also another buffer, responsible for storing the weights of the current
filter.

A pair of FSMs (C in Figure 5.3) control the operation of the convolutional tree
and manage the write and read timing between the input buffers and the address generator.
The FSMs need to be tightly synchronized to produce the right set of output values. This
synchronization is important because the number of clock cycles taken by the convolutional
tree, loading the current buffer, loading the stride buffer, and memory latency are different.
In other words, the time spent by the convolution differs accordingly to the filter and stride
size.

The convolutional tree (D in Figure 5.3) computes a window of convolution. At
the leaves, it multiplies the IFMAP with the weight array. Then, it adds the multiplication
results in a tree of adders. This module is also portable to any filter size. Afterwards, the
convolutional tree produces a value, which is passed to the neuron adder. The neuron
adder is in charge of summing up the results from the input channels belonging to the same
output neuron. Additionally, this final adder adds the bias. To put it differently, when the result
window of the first input channel is produced, there is no value to increment, so the bias is
added to it and the neuron adder output is written to the OFMAP memory. Then, during the
convolutions in the next channels, the result window is accumulated together with the value
already stored in the OFMAP. This process avoids the extra step of the bias addition after
the OFMAP completion.

Only when the next layer reads from the output feature map (OFMAP), the acti-
vation (E in Figure 5.3) function is executed. The address generated by the next layer is
read from the memory, then, it passes through the activation module that performs the ReLU



41

operation (F in Figure 5.3). In other words, it only outputs values greater than zero from the
OFMAP memory.

5.1.1 Buffers Operation

This section details the input buffers – B in Figure 5.3. As explained in Sec-
tion 2.2.4, the convolution slides a window (the filter) through the IFMAP. This window reads
a certain number of positions to execute the computation of the next neuron. Normally, the
window size is greater than the stride, which makes part of the current window useful to the
next convolutional window. This property was used to decrease the time spent in loading
values from the IFMAP in the convolutional module.

For instance, in the Alexnet first layer, the window size is 11x11 with a stride of 4.
It means that 121 values need to be loaded from the IFMAP memory at first. For the next
window, the addresses increment four positions to the right. Thus, instead of reading all 121
values, only 44 new values are read (4 * 11). For instance, consider the buffers configured
to a window size of 3x3 and stride of 2, as shown in Figure 5.4.

Serial Input

Stride Input

O
ut

 0

O
ut

 1

O
ut

 2

O
ut

 3

O
ut

 4

O
ut

 5

O
ut

 6

O
ut

 7

O
ut

 8

Load Stride Current Buffer

Stride Buffer

In

In

In

29

29

29 29 29 29 29 29 29 29 29

Figure 5.4 – Current and stride buffers.

At the beginning of an operation (a new window or a new IFMAP), both buffers are
empty. Then, the current buffer is loaded with a window according to the addresses gen-
erated by the "address generator" block. After filling the current buffer, the FSM controlling
the convolutional tree starts the computation. During the time spent by the tree, the second
FSM (Stride FSM at Figure 5.3) switches the IFMAP memory port to the stride buffer and
the address generator starts to request the next two addresses for each line in the window.
Then, the stride buffer is ready to be loaded into the current buffer, which is done when the
Convolution FSM pulses the Load Stride signal. Finally, the current buffer has the contents
for the next window, and a new convolution can be computed.

This process optimizes the loading from IFMAP by inserting cutoff paths in the shift
registers. This is possible by using a memory port that is idle during the long arithmetical



42

operations. This process reduces the memory access by keeping some values and load-
ing only the stride to the input buffer. In the case of the Alexnet layer one, this reduction
represents 36.3% less memory reads in subsequent windows (44 instead of the 121 reads).

5.1.2 Convolutional Tree

Most of the literature in Deep Learning accelerators adopts systolic arrays to im-
plement convolutions. Works [Chen et al., 2016] and [Jouppi et al., 2017] employ a set of
multiply-accumulate (MAC) operators disposed in a grid-like structure. The approach has
the advantage of a high level of parallelism. However, it requires a considerable amount of
resources. First, each node in the grid consists in a pair of multiplier and accumulator. Sec-
ond, the grid requires a network to interconnect all MACs to pass the output values to other
neighboring MACs. Last, besides storing the feature maps and filters, there is the need for
a large number of input buffers spread around the grid to input the feature maps and filters.

X X X X X X X X X

+ + + +

+ +

+

+

In
 0

In
 1

In
 2

In
 3

In
 4

In
 5

In
 6

In
 7

In
 8

W
 0

W
 1

W
 2

W
 3

W
 4

W
 5

W
 6

W
 7

W
 8

Result

Figure 5.5 – Example of a 3x3 multiply-add tree.

An architectural option to systolic arrays is the multiply-add trees – Figure 5.5 and
D in Figure 5.3. This approach uses a line of multipliers and an adder tree [Zhang et al.,
2015]. The inputs of the multiply-add tree are the current buffer and the weight array. Next,
the result produced by each pair of multipliers are added in the next level. The result of the
adders in the first level travels up the tree, until the root, which produces the final result. The
module implemented in this work is capable of implementing convolutions of any size. The
size of the adder tree is configured through VHDL generic parameters.

The multiply-add tree is pipelined. The multiplication takes 3 clock cycles and each
addition 5 clock cycles. Thus, for layer one there are 121 multipliers in parallel (plus 7 dummy



43

modules to obtain a full binary tree), and 8 adder levels (log2n + 1). The time to compute
one 11x11 convolution in the current implementation is 43 clock cycles.

5.2 Max-Pool Layer

Simpler than the Convolutional Layer, the Max-pool Layer makes use of a single
FSM that controls a shift register input buffer and the max-pool tree. A process generates
the address of each window loading the input buffer. When the window is ready (buffer full),
the FSM starts the max-pool tree. After the maximum value in the window is found, it is
written to the OFMAP memory.

To illustrate a 3x3 max-pool tree, Figure 5.6 shows that the input values are con-
verted to a fixed-point format (as presented in Section 4.3.3). Then, the tree of comparators
evaluates all values. It is important to note that the fixed-point numbers are not re-converted
to floating-point. Instead, they only serve to perform the comparisons that will decode the
output value. Hence, no precision is lost in the conversion from and to fixed-point, and the
comparator can be simplified to work with integer operands.

In
 0

In
 1

In
 2

In
 3

In
 4

In
 5

In
 6

In
 7

In
 8

Start (en)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 0

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t 
(F

ix
 1

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 2

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 3

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 4

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 5

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 6

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 7

)

F
lo

a
tin

g
 t

o
F

ix
e

d
 P

o
in

t
(F

ix
 8

)

> > > >

> >

Fix 0,0

F
ix
 0

F
ix
 1

F
ix
 2

F
ix
 3

F
ix
 4

F
ix
 5

Fix 0,1 Fix 0,2 Fix 0,3

F
ix
 6

F
ix
 7

Res 0,0 Res 0,1 Res 0,2 Res 0,3

Fix 1,0 Fix 1,1

F
Ix

 0
,0

F
ix

 0
,1

F
ix

 0
,2

F
ix

 0
,3

>

Res 1,0 Res 1,1

Fix 2,0

F
ix

 1
,0

F
ix

 1
,1

Res 2,0

>

Maximum Value
28 28 28 28 28 28 28 28 28

32 32 32 3232 32 32 32 32

In 0

In 1

In 2

In 3

In 4

In 5

In 6

In 8

In 7

Res 3,0

Figure 5.6 – The max-pool tree.



44

5.3 Multilayer

Following the first two Alexnet layers, the Multilayer module implements the Alexnet
layers three, four, and five. As shown in the top view (Figure 5.1), the Multilayer feedbacks
itself creating a loop that could implement any number of subsequent convolutional layers of
the same filter size. Even that the Multilayer could be used to implement all five convolutional
layers on Alexnet, the architecture dedicates two Layer modules for the first two convolutional
layers, which have filter sizes of 11x11 and 5x5, while the remaining layers, executed by the
multilayer, have filters of size 3x3. The hardware implementation as it is, depends on the off-
line configuration to instantiate the convolutional tree. An improvement could be made to re-
configure at run-time the convolutional tree, so it would be possible to execute convolutions
of different filter sizes. Another important aspect of the Multilayer module is that it saves
FPGA resources since only one module is capable of performing multiple CNN layers.

The Multilayer encapsulates a convolutional module and the ping-pong buffer that
interfaces with a max-pool or a module that, simply, writes the data from the ping-pong
buffer to the OFMAP (when no max-pool is performed such as in the Alexnet layers three
and four). Additionally, there is a control FSM that coordinates the two multiplexers seen in
top view. To keep the diagrams in Figures 5.1 and 5.7 simplified, they do not display the
control connections from the FSM in the Multilayer. However, it is important to mention its
role in the operation of the Multilayer module.

In the case of the Alexnet CNN, during the execution of layer two, the multiplexers
are first controlled to pass the OFMAP from layer number two to the memory E (Figure 5.1).
Next, when Multilayer starts to perform the computations of layer three, the FSM sets the
multiplexers in a way that the Multilayer reads the IFMAP from memory E and writes the
OFMAP to memory G. As soon as layer three is done, the FSM re-configure both multi-
plexers, so the Multilayer starts to perform the convolutional layer four, reading the IFMAP
from memory G and writing the resulting OFMAP to memory E. Finally, layer five can start
its execution. The FSM, then, returns to the initial configuration, where the IFMAP comes
from memory E as the OFMAP goes to memory G. Similarly, the FSM controls from which
memory (F or I) the Multilayer reads the set of filter weights.

5.4 Fully-Connected Layer Exploration

Unfortunately, due to the limited time to develop this project, the fully-connected
layers were not implemented. Some exploration was done to access the viability of embed-
ding these layers into an FPGA. As demonstrated in Section 6, the convolutional layers are
consuming most of the available FPGA already. Hence, it is necessary to explore techniques



45

Conv Layer

Max-Pool Layer

Bypass

M
em

G
e

n
O

F
M

A
P

Ping-pong buffer

Figure 5.7 – The Multilayer module.

to decrease the amount of memory needed to store the fully-connected weights. Then, en-
abling the instantiation of all layers in the FPGA. An initial approach was taken to reduce
the memory requirements, which involved the discretization of weights. A clustering algo-
rithm was used to discretize the weight values. However, the error observed via software
executions made it clear that a more sophisticated approach to the problem is required.



46

6. RESULTS

This Chapter presents the results related to the proposed architecture. First, it is
given an overall performance analysis of the architecture. Next, the FPGA resource utiliza-
tion is provided. Then, a section details the validation process. Finally, some limitations
found during this work are exposed as well as possible solutions.

6.1 Performance Analysis

This section first estimates the CNN performance according to the hardware archi-
tecture. The second subsection presents results related to the VHDL simulation.

6.1.1 Estimated Performance

Before presenting RTL simulation results, the time consumed by the convolutional
layers can be extracted analytically. The total time can be divided into three parts, the time
consumed by arithmetical operations, by loading the current buffer, and by loading the stride
buffer between adjacent windows.

First, there is the time consumed by arithmetical operations, i.e., the convolutional
tree, is given in Equation 6.1.

tarith = (Hout ∗Wout ∗ Cout ∗ Cin) ∗ ttree (6.1)

where: Hout , Wout , and Cout are the OFMAP height, width and depth (number of channels)
respectively; Cin the IFMAP depth, and ttree is the convolutional tree delay observed in the
simulation. As the tree varies in size according to the convolutional filter sizes, the time taken
by the tree to complete the convolution is particular to each layer. Alexnet has filters of sizes
11x11, 5x5, and 3x3 (Table 3.1). For these configurations, tarith corresponds to 43, 35, and
30 clock cycles.

Second, there is the time taken loading the current buffer (Figure 5.4). When it is
not possible to use the stride buffer for fast access (windows not adjacent in the IFMAP), the
current buffer needs to be completely loaded before starting the convolutional tree. It occurs
in every new line of the IFMAP. In other words, when a filter window strides end, it is not
possible to use the stride buffer to load the current buffer. Equation 6.2 presents the time
consumed by the multiple loads of the current buffer for a given layer.



47

tinBuffer = (Hin ∗ Cin ∗ Cout ) ∗ tloadIn (6.2)

where: Hin and Cin are the IFMAP height and depth, Cout is the OFMAP depth, and tloadIn is
the time taken by loading the input buffer. The buffer size changes from layer to layer. For
layers one and two, tinBuffer is 121 and 26 cycles, respectively. Meanwhile, for layers three,
four, and five (3x3 filters) the time for loading the input buffer is 10 cycles.

Finally, for adjacent windows, there is no need of loading the current buffer com-
pletely. Hence, only the time for transferring the contents in the stride buffer to the current
buffer is accounted for. Equation 6.3 gives the time for the stride buffer.

tstrideBuffer = (Hout ∗Wout − Hin) ∗ Cin ∗ Cout ∗ ttransfer (6.3)

where: Hout , Wout , and Cout are the OFMAP height, width and depth, respectively. Hin and
Cin are the IFMAP height and depth, as ttransfer gives the time consumed in transferring the
values from stride to input buffer.

Therefore, the estimated time for a given layer is obtained by adding up the three
components:

tconv = tarith + tinBuffer + tstrideBuffer (6.4)

Other operations consume clock cycles during a convolution, like loading the stride
buffer, accumulating the results from input channels of the same filter, and adding bias.
However, all the operations not exploited in the calculations of tconv happen in parallel with
one or more of the three operations presented above. To estimate the number of cycles
taken by each convolutional layer in the Alexnet (Table 6.1), Equations 6.1, 6.2, 6.3 were
used.

Table 6.1 – Estimated number of clock cycles by layer.
Layer tarith tinBuffer tstrideBuffer tconv

1 37,461,600 7,910,496 3,223,296 48,595,392
2 627,056,640 19,808,256 99,041,280 745,906,176
3 498,401,280 14,745,600 88,473,600 601,620,480
4 747,601,920 11,059,200 132,710,400 891,371,520
5 498,401,280 14,745,600 88,473,600 601,620,480

The estimated number of clock cycles to execute the first five layers is 2,889,114,048,
corresponding to 5.78 seconds at 500MHz. Observe that largest parcel in the execution time
is due to the arithmetic operations.



48

6.1.2 Simulated Performance

The hardware description was simulated to assess the overall performance (Table
6.2). Assuming a frequency of 500 MHz, the architecture executes all Alexnet convolutional
layers in approximately 5.67 seconds (this small difference from the estimated time comes
from optimizations made in the hardware implementation). In contrast, the ARM Cortex-
A5 processor (an ARMv7 architecture) when simulated with the OVP tool takes 1,118.66
seconds to run the five Alexnet convolutional layers.

Results displayed in Table 6.2 are approximated because a five seconds simulation
is unfeasible to run with a discrete event simulator. The approximations were based on
simulations of the Alexnet with the convolutions having a smaller number of channel (the
simulation of the first layer used six channels instead of 96 for example). The time taken by
each layer is extrapolated to the nominal parameters.

Table 6.2 – Number of clock cycles for a forward execution (convolutional layers only).
Operation Cycles

1: Loading Input image 154,587
2: Layer 1 47,136,384
3: Channel 96 Max-pool (Layer 1) 8,028
4: Layer 2 730,619,904
5: Channel 256 Max-pool (Layer 2) 1,868
6: Layer 3 588,054,528
7: Layer 4 881.639.424
8: Layer 5 587.759.616
9: Channel 256 Max-pool (Layer 5) 395

Total: 2,835,374,734

Additionally, a usual metric for deep learning dedicated hardware is Floating-Point
Operations per Second (FLOPS). Considering the results above mentioned (5.67 seconds
at an operating frequency of 500 MHz) and the total of floating-point operations required
by the Alexnet layers one to five (2.15 ∗ 109), the implemented architecture achieves 380
MFLOPS executing the Alexnet CNN.

6.2 Resource Utilization

The design was synthesized using the Vivado tool. Table 6.3 gives the resource
utilization for the complete design. Note that the critical component is the memory. The ar-
chitecture, which is not implementing the fully-connected layers, is already requiring 96.67%
of the available BRAMs. However, the DSP blocks consumption is less than 5%. The three
modules are using only 155 DSP blocks, 121 of which are in layer one convolution, 25 of



49

which in layer two, and the remaining 9 are used by the Multilayer (Figure 6.1). The utiliza-
tion of DSP blocks points out that there is room for future improvements concerning more
parallelization (multiple convolutional trees executing in one layer).

Table 6.3 – Resource utilization for the complete design.
Resource Used Available Utilization (%)

Clock 1 32 3.13
Slice LUTs 103848 433200 23.97

Slice Registers 75902 866400 8.76
BRAM 1421 1470 96.67
DSPs 155 3600 4.31

The BRAM and DSP utilization of each module are given in Figure 6.1. As ex-
plained in Section 4.1, a parameter defines the number of memory blocks (set of 29 BRAMs)
when instantiating each memory module. The number of blocks is based on the Alexnet pa-
rameters (Table 3.1). It is important to mention that the target FPGA does not offer enough
BRAMs to accommodate all Alexnet weights. Hence, the weights of layers three, four, and
five need to be loaded from the external memory at run-time. Unfortunately, this feature
could not be implemented and is left as future work.

M
em

G
en

In
pu

t 
Im

ag
e

M
em

G
en

L
ay

er
 1

 w
ei

gh
ts

Layer
1

M
em

G
en

O
u

tp
ut

 F
M

A
P

S
M

em
G

en
L

ay
er

 2
 w

ei
gh

ts

Layer
2

M
em

G
en

O
ut

pu
t 

F
M

A
P

S
M

em
G

en
La

ye
rs

 3
/5

 w
ei

gh
ts

Multilayer

M
em

G
en

O
ut

pu
t 

F
M

A
P

S
M

em
G

en
La

ye
r 

4
 w

e
ig

ht
s

145 BRAMs

58 BRAMs

121 DSPs/29 BRAMs
25 DSPs/29 BRAMs

87 BRAMs

580 BRAMs

87 BRAMs 87 BRAMs

9 DSPs/29 BRAMs

145* BRAMs 145* BRAMs

Figure 6.1 – Top view with resource utilization.

6.3 Accuracy of the Hardware Implementation

As pointed out in Section 3.2.2, the software implementation was used to gener-
ate the feature maps that were compared against dump files from the hardware simulation.
This method enabled to validate the implementation incrementally. To compare both im-
plementations, first, the dump from the hardware simulation is processed, converting the
29-bit sequences of floating-point numbers into their decimal representations. Then, it is



50

selected in the C source code at which point in the CNN forward execution data is written
to a file. Table 6.4 presents the comparison of the first 20 positions of the layer one max-
pool OFMAP produced by software and hardware. A small error between the software and
the hardware implementation is observed. It comes from the numeric representation (C:
float single-precision, hardware: Flopoco 29-bit floating-point format). Such validations were
used across all layers during development, enabling to validate the hardware implementa-
tion.

Table 6.4 – Diff between software and hardware implementation for part of the Alexnet layer
one max-pool OFMAP.

Software Hardware Relative
Error (%)

44.91939 44.91931 0.000178097
21.23786 21.23785 4.70857E-05
8.752445 8.752502 0.000651242
19.13532 19.13525 0.000365817
19.13532 19.13525 0.000365817
10.94287 10.94293 0.000548299
13.93836 13.93839 0.000215233
18.45827 18.45837 0.00054176
18.45827 18.45837 0.00054176
14.70498 14.70511 0.000884046
14.70498 14.70511 0.000884046
8.460338 8.46048 0.001678392
10.93966 10.93976 0.000914097
18.31306 18.31305 5.46059E-05
12.3388 12.33887 0.000567313
12.3388 12.33887 0.000567313
27.41918 27.41919 3.64708E-05
22.66814 22.66809 0.000220574
12.72069 12.7207 7.8612E-05
28.2347 28.23456 0.000495846

19.10462 19.10461 5.23434E-05



51

6.4 Final Remarks

The development of this first CNN implementation brings important lessons:

Positive outcomes:

a) the arithmetic operations are not the bottleneck, and it is possible to explore a massive
parallelism in the convolutional trees;

b) FPGAs offer enough memory resources to implement the feature maps;

c) the multilayer approach enables the implementation of other CNNs, with a larger num-
ber of hidden layers;

d) the spatial parallelism to execute the tasks (e.g., convolutional trees and max-pool)
speed-up the performance of the implementation.

Negative outcomes:

a) the weight parameters must be stored in external memories;

b) the fully connected layer is challenging due to the large number of weights;

c) the performance in a PC is a result that requires further study, since optimizations
made by compilers can also be used in hardware.



52

7. CONCLUSIONS AND FUTURE WORK

The work described in this document produced a parametrizable architecture ca-
pable of executing multiple CNN convolutional layers. The case study CNN was Alexnet.
Nonetheless, it is important to mention that the hardware can be configured to other Con-
volutional Neural Networks by modifying the set of parameters. The implementation of the
first two layers showed that a set of layers could be pipelined while there are available re-
sources on the target FPGA. On the other hand, the multilayer module enables the designer
to implement an arbitrary number of convolutional layers with a limited amount of resources.

This work consisted in a set of steps, starting from the study of Convolutional Neural
Networks to the hardware validation. Objectively, the following goals were achieved:

• Understanding the design flow of an FPGA project;

• Dominium of the involved algorithms in the inference of Convolutional Neural Networks;

• Implementation of a baremetal software version of the Alexnet CNN;

• Performance analysis of the Alexnet on a virtual ARM platform;

• Implementation of several parametrizable RTL modules, including:

– Interleaved buffers

– Convolutional tree

– Max-pool tree

– Address generators

– Generic memory

The main contribution of this work is creating an environment that can be used for
further exploration, which may concern arithmetical operators or numeric representations. A
next step to improve the architecture performance is the parallelization of the convolutional
trees. It is possible to keep a single input buffer feeding the parallel trees if multiple filters are
divided into multiple memories of smaller sizes. Thus, the convolutional layer would perform
convolutions from different filters on the same input concurrently. Another future work is the
implementation of the fully-connected layers. Moreover, as the amount of memory used by
these layers and the number of necessary multiplications form an architectural challenge,
a study of techniques that can alleviate the high requirements in the bandwidth of fully-
connected layers could take place to initiate its implementation.



53

REFERENCES

[Abadi et al., 2016] Abadi, M. et al. (2016). TensorFlow: Large-Scale Machine Learning on
Heterogeneous Distributed Systems. CoRR, abs/1603.04467:19.

[Bailey, 2007] Bailey, D. G. (2007). Introduction to Reconfigurable Computing: Architectures,
Algorithms, and Applications. Springer.

[Bailey, 2011] Bailey, D. G. (2011). Design for embedded image processing on FPGAs.
Wiley-IEEE Press.

[Caulfield et al., 2016] Caulfield, A. M. et al. (2016). A cloud-scale acceleration architecture.
In IEEE/ACM International Symposium on Microarchitecture, MICRO, pages 7:1–7:13.

[Ceva, 2015] Ceva (2015). Intelligent Vision Processor. https://www.ceva-dsp.com/product/
ceva-xm4/.

[Chen et al., 2016] Chen, Y., Emer, J. S., and Sze, V. (2016). Eyeriss: A spatial architecture
for energy-efficient dataflow for convolutional neural networks. In International Symposium
on Computer Architecture, ISCA, pages 367–379.

[Collobert et al., 2002] Collobert, R., Bengio, S., and Marithoz, J. (2002). Torch: A modu-
lar machine learning software library. Technical report, Idiap Research Institute. http://
publications.idiap.ch/downloads/reports/2002/rr02-46.pdf.

[Courbariaux et al., 2015] Courbariaux, M., Bengio, Y., and David, J.-P. (2015). Training
deep neural networks with low precision multiplications. In International Conference on
Learning Representations, ICLR, pages 1–10.

[de Dinechin and Pasca, 2011] de Dinechin, F. and Pasca, B. (2011). Designing custom
arithmetic data paths with FloPoCo. IEEE Design & Test of Computers, 28:18–27.

[Gabor Kereszturi et al., 2018] Gabor Kereszturi, L. N. S. et al. (2018). Integrating airborne
hyperspectral imagery and lidar for volcano mapping and monitoring through image clas-
sification. Int. J. Applied Earth Observation and Geoinformation, 73:323–339.

[Girshick et al., 2014] Girshick, R. B., Donahue, J., Darrell, T., and Malik, J. (2014). Rich
Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, pages 580–587.

[Gupta et al., 2015] Gupta, S., Agrawal, A., Gopalakrishnan, K., and Narayanan, P. (2015).
Deep Learning with Limited Numerical Precision. In International Conference on Machine
Learning, ICML, pages 1737–1746.

https://www.ceva-dsp.com/product/ceva-xm4/
https://www.ceva-dsp.com/product/ceva-xm4/
http://publications.idiap.ch/downloads/reports/2002/rr02-46.pdf
http://publications.idiap.ch/downloads/reports/2002/rr02-46.pdf


54

[Hailesellasie et al., 2018] Hailesellasie, M., Hasan, S. R., Khalid, F., Wad, F. A., and
Shafique, M. (2018). FPGA-Based Convolutional Neural Network Architecture with Re-
duced Parameter Requirements. In IEEE International Symposium on Circuits and Sys-
tems, ISCAS, pages 1–5.

[Haykin and Haykin, 2009] Haykin, S. and Haykin, S. S. (2009). Neural Networks and Learn-
ing Machines. Prentice Hall.

[He et al., 2016] He, K., Zhang, X., et al. (2016). Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages
770–778.

[Hershey et al., 2017] Hershey, S. et al. (2017). CNN architectures for large-scale audio
classification. In IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP, pages 131–135.

[Ian Goodfellow and Courville, 2016] Ian Goodfellow, Y. B. and Courville, A. (2016). Deep
Learning. MIT Press.

[IEEE, 2008] IEEE (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008,
pages 1–70.

[Imperas, 2018] Imperas (2018). Open Virtual Platforms. http://www.ovpworld.org/.

[Intel Corp., 2015] Intel Corp. (2015). Intel Movidius Neural Compute Stick. https://
www.movidius.com/.

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerat-
ing deep network training by reducing internal covariate shift. In International Conference
on Machine Learning, ICML, pages 448–456.

[Jia et al., 2014] Jia, Y. et al. (2014). Caffe: Convolutional Architecture for Fast Feature
Embedding. In International Conference on Machine Learning, ICML, pages 675–678.

[Jiao et al., 2017] Jiao, L., Luo, C., Cao, W., Zhou, X., and Wang, L. (2017). Accelerating low
bit-width convolutional neural networks with embedded FPGA. In International Conference
on Field Programmable Logic and Applications, FPL, pages 1–4.

[Jouppi et al., 2017] Jouppi, N. P. et al. (2017). In-Datacenter Performance Analysis of a
Tensor Processing Unit. In International Symposium on Computer Architecture, ISCA,
pages 1–12.

[Karpathy et al., 2014] Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., and
Li, F. (2014). Large-scale video classification with convolutional neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR, pages 1725–1732.

http://www.ovpworld.org/
https://www.movidius.com/
https://www.movidius.com/


55

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet
Classification with Deep Convolutional Neural Networks. In Conference on Neural Infor-
mation Processing Systems, NIPS, pages 1106–1114.

[Kunihiko Fukushima and Ito, 1983] Kunihiko Fukushima, S. M. and Ito, T. (1983). Neocog-
nitron: A neural network model for a mechanism of visual pattern recognition. IEEE Trans.
Systems, Man, and Cybernetics, 13:826–834.

[Kuon and Rose, 2007] Kuon, I. and Rose, J. (2007). Measuring the gap between fpgas and
asics. IEEE Trans. on CAD of Integrated Circuits and Systems, 26(2):203–215.

[Lawrence et al., 1997] Lawrence, S., Giles, C. L., Tsoi, A. C., and Back, A. D. (1997). Face
recognition: a convolutional neural-network approach. IEEE Trans. Neural Networks,
8(1):98–113.

[LeCun and Bengio, 1998] LeCun, Y. and Bengio, Y. (1998). The Handbook of Brain Theory
and Neural Networks. MIT Press.

[Li et al., 2016] Li, H., Fan, X., Jiao, L., Cao, W., Zhou, X., and Wang, L. (2016). A high
performance fpga-based accelerator for large-scale convolutional neural networks. In In-
ternational Conference on Field Programmable Logic and Applications, FPL, pages 1–9.

[Mitchell, 1997] Mitchell, T. (1997). Machine Learning. McGraw-Hill, Inc., 1 edition.

[Muller et al., 2010] Muller, J., Brisebarre, N., et al. (2010). Handbook of Floating-Point
Arithmetic. Birkhäuser.

[Nair and Hinton, 2010] Nair, V. and Hinton, G. (2010). Rectified linear units improve re-
stricted boltzmann machines. In International Conference on Machine Learning, ICML,
pages 807–814.

[Nethercote and Seward, 2007] Nethercote, N. and Seward, J. (2007). Valgrind: A Frame-
work for Heavyweight Dynamic Binary Instrumentation. ACM Sigplan Notices, 42(6):89–
100.

[Nomi, 2018] Nomi, O. (2018). tiny-dnn Documentation - Release 1.0.0a1. Technical report,
Tiny-Dnn. https://media.readthedocs.org/pdf/tiny-dnn/latest/tiny-dnn.pdf.

[NovuMind, 2018] NovuMind (2018). NovuMind Showcases the Most Power-Efficient Chip
at CES 2018. https://www.prnewswire.com/news-releases/novumind-showcases-the-
most-power-efficient-chip-at-ces-2018-300580611.html.

[Nurvitadhi et al., 2017] Nurvitadhi, E. et al. (2017). Can FPGAs Beat GPUs in Accelerating
Next-Generation Deep Neural Networks? In ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA, pages 5–14.

https://media.readthedocs.org/pdf/tiny-dnn/latest/tiny-dnn.pdf
https://www.prnewswire.com/news-releases/novumind-showcases-the-most-power-efficient-chip-at-ces-2018-300580611.html
https://www.prnewswire.com/news-releases/novumind-showcases-the-most-power-efficient-chip-at-ces-2018-300580611.html


56

[Nvidia, 2018] Nvidia (2018). NVIDIA TITAN V. https://www.nvidia.com/en-us/titan/titan-v/.

[Ovtcharov et al., 2015] Ovtcharov, K., Ruwase, O., Kim, J.-Y., Fowers, J., Strauss, K., and
Chung, E. (2015). Accelerating Deep Convolutional Neural Networks Using Special-
ized Hardware. Technical report, Microsoft Research. https://www.microsoft.com/en-us/
research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf.

[Pinheiro and Collobert, 2014] Pinheiro, P. H. O. and Collobert, R. (2014). Recurrent con-
volutional neural networks for scene labeling. In International Conference on Machine
Learning, ICML, pages 82–90.

[Putnam et al., 2016] Putnam, A. et al. (2016). A reconfigurable fabric for accelerating large-
scale datacenter services. Commun. ACM, 59:114–122.

[Qing Li et al., 2014] Qing Li, W. C. et al. (2014). Medical image classification with convo-
lutional neural network. In International Conference on Control Automation Robotics &
Vision, ICARCV, pages 844–848.

[Russakovsky et al., 2015] Russakovsky, O. et al. (2015). ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision, 115(3):211–252.

[Simonyan and Zisserman, 2014a] Simonyan, K. and Zisserman, A. (2014a). Very Deep
Convolutional Networks for Large-Scale Image Recognition. CoRR, abs/1409.1556:1–14.

[Simonyan and Zisserman, 2014b] Simonyan, K. and Zisserman, A. (2014b). Very deep
convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

[Stephen D. Brown et al., 1992] Stephen D. Brown, R. J. F. et al. (1992). Field-
Programmable Gate Arrays. Springer.

[Stokel-Walker, 2018] Stokel-Walker, C. (2018). Move over CPUs and GPUs, the Intelli-
gence Processing Unit is the super-smart chip of the future. https://www.wired.co.uk/
article/graphcore-ai-ipu-chip-nigel-toon.

[Sze et al., 2018] Sze, V., Chen, Y., et al. (2018). Hardware for machine learning: Chal-
lenges and opportunities. In IEEE Custom Integrated Circuits Conference, CICC, pages
1–8.

[Sze et al., 2017] Sze, V., Chen, Y., Yang, T., and Emer, J. S. (2017). Efficient Processing of
Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE, 105(12):2295–
2329.

[Szegedy et al., 2015] Szegedy, C., Liu, W., et al. (2015). Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages 1–9.

https://www.nvidia.com/en-us/titan/titan-v/
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CNN20Whitepaper.pdf
https://www.wired.co.uk/article/graphcore-ai-ipu-chip-nigel-toon
https://www.wired.co.uk/article/graphcore-ai-ipu-chip-nigel-toon


57

[Venkataramani et al., 2017] Venkataramani, S., Ranjan, A., et al. (2017). Scaledeep: A
scalable compute architecture for learning and evaluating deep networks. In International
Symposium on Computer Architecture, ISCA, pages 13–26.

[Wang et al., 2018] Wang, J., Lin, J., and Wang, Z. (2018). Efficient Hardware Architec-
tures for Deep Convolutional Neural Network. IEEE Trans. on Circuits and Systems, 65-
I(6):1941–1953.

[Xilinx Inc, 2016a] Xilinx Inc (2016a). 7 Series FPGAs Configurable Logic Block. https://
www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf.

[Xilinx Inc, 2016b] Xilinx Inc (2016b). 7 Series FPGAs Memory Re-
sources. https://www.xilinx.com/support/documentation/user_guides/
ug473_7Series_Memory_Resources.pdf.

[Xilinx Inc, 2016c] Xilinx Inc (2016c). 7 Series FPGAs Overview. https://www.xilinx.com/
support/documentation/data_sheets/ds180_7Series_Overview.pdf.

[Xilinx Inc, 2018] Xilinx Inc (2018). 7 Series DSP48E1 Slice. https://www.xilinx.com/support/
documentation/user_guides/ug479_7Series_DSP48E1.pdf.

[Yann LeCun et al., 1989] Yann LeCun, B. B. et al. (1989). Handwritten Digit Recognition
with a Back-Propagation Network. In Conference on Neural Information Processing Sys-
tems, NIPS, pages 396–404.

[Yoshihisa Hara et al., 1994] Yoshihisa Hara, R. G. A. et al. (1994). Application of neural
networks to radar image classification. IEEE Trans. Geoscience and Remote Sensing,
32:100–109.

[Zeiler and Fergus, 2014] Zeiler, M. and Fergus, R. (2014). Visualizing and understanding
convolutional networks. In European Conference on Computer Vision ECCV, pages 818–
833.

[Zhang et al., 2015] Zhang, C., Li, P., et al. (2015). Optimizing fpga-based accelerator de-
sign for deep convolutional neural networks. In ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, FPGA, pages 161–170.

[Zhu et al., 2018] Zhu, Y., Mattina, M., and Whatmough, P. N. (2018). Mobile Machine
Learning Hardware at ARM: A Systems-on-Chip (SoC) Perspective. Computing Research
Repository.

https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/user_guides/ug473_7Series_Memory_Resources.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf


58

APPENDIX A – ALEXNET C SOURCE CODE

This appendix shows the source code in C that was used to carried out simulations
on the ARM platform as well as provided means for the hardware verification.

Listing A.1 – The Alexnet C implementation

/ / A lexnet CNN

#include < s t d i o . h>
#include < s t d l i b . h>
#include <math . h>

#include " param_headers /1 _ in . h "
#include " param_headers /1 _weight . h "
#include " param_headers /1 _bias . h "

#include " param_headers /2 _weight . h "
#include " param_headers /2 _bias . h "

#include " param_headers /3 _weight . h "
#include " param_headers /3 _bias . h "

#include " param_headers /4 _weight . h "
#include " param_headers /4 _bias . h "

#include " param_headers /5 _weight . h "
#include " param_headers /5 _bias . h "

#include " f c_ inc l ude . h "

/ * * * * * * * Layer Conv 1 * * * * * * * * /
#define FILTER_HEIGHT_1 11
#define FILTER_WIDTH_1 11
#define IN_HEIGHT_1 227
#define IN_WIDTH_1 227
#define IN_DEPTH_1 3
#define OUT_CONV_HEIGHT_1 55
#define OUT_CONV_WIDTH_1 55
#define OUT_HEIGHT_1 27
#define OUT_WIDTH_1 27
#define OUT_DEPTH_1 96
#define STRIDE_CONV_1 4



59

#define STRIDE_MAX_1 2
#define POOL_SIZE_1 3
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer Conv 2 * * * * * * * * /
#define PAD_IN_2 2
#define FILTER_HEIGHT_2 5
#define FILTER_WIDTH_2 5
#define IN_HEIGHT_2 31
#define IN_WIDTH_2 31
#define IN_DEPTH_2 96
#define OUT_CONV_HEIGHT_2 27
#define OUT_CONV_WIDTH_2 27
#define OUT_HEIGHT_2 13
#define OUT_WIDTH_2 13
#define OUT_DEPTH_2 256
#define STRIDE_CONV_2 1
#define STRIDE_MAX_2 2
#define POOL_SIZE_2 3
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer Conv 3 * * * * * * * * /
#define PAD_IN_3 1
#define FILTER_HEIGHT_3 3
#define FILTER_WIDTH_3 3
#define IN_HEIGHT_3 15
#define IN_WIDTH_3 15
#define IN_DEPTH_3 256
#define OUT_HEIGHT_3 13
#define OUT_WIDTH_3 13
#define OUT_DEPTH_3 384
#define STRIDE_CONV_3 1
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer Conv 4 * * * * * * * * /
#define PAD_IN_4 1
#define FILTER_HEIGHT_4 3
#define FILTER_WIDTH_4 3
#define IN_HEIGHT_4 15
#define IN_WIDTH_4 15
#define IN_DEPTH_4 384
#define OUT_HEIGHT_4 13



60

#define OUT_WIDTH_4 13
#define OUT_DEPTH_4 384
#define STRIDE_CONV_4 1
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer Conv 5 * * * * * * * * /
#define PAD_IN_5 1
#define FILTER_HEIGHT_5 3
#define FILTER_WIDTH_5 3
#define IN_HEIGHT_5 15
#define IN_WIDTH_5 15
#define IN_DEPTH_5 384
#define OUT_CONV_HEIGHT_5 13
#define OUT_CONV_WIDTH_5 13
#define OUT_HEIGHT_5 6
#define OUT_WIDTH_5 6
#define OUT_DEPTH_5 256
#define STRIDE_MAX_5 2
#define STRIDE_CONV_5 1
#define POOL_SIZE_5 3
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer FC 6 * * * * * * * * /
#define IN_HEIGHT_6 6
#define IN_WIDTH_6 6
#define IN_DEPTH_6 256
#define OUT_HEIGHT_6 4096
#define OUT_WIDTH_6 1
#define OUT_DEPTH_6 1
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer FC 7 * * * * * * * * /
#define IN_HEIGHT_7 4096
#define IN_WIDTH_7 1
#define IN_DEPTH_7 1
#define OUT_HEIGHT_7 4096
#define OUT_WIDTH_7 1
#define OUT_DEPTH_7 1
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/ * * * * * * * Layer FC 8 * * * * * * * * /
#define IN_HEIGHT_8 4096



61

#define IN_WIDTH_8 1
#define IN_DEPTH_8 1
#define OUT_HEIGHT_8 1000
#define OUT_WIDTH_8 1
#define OUT_DEPTH_8 1
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

void conv ( const f l o a t i n [ ] , const f l o a t weights [ ] , const f l o a t bias [ ] , f l o a t out [ ] ,
const unsigned kh , const unsigned kw , const unsigned ih , const unsigned iw ,
const unsigned id , const unsigned oh , const unsigned ow, const unsigned od ,
const unsigned s , char l a ye r ) {

unsigned o_s ;
unsigned i _s ;
unsigned o_x ;
unsigned o_y ;
unsigned f_x ;
unsigned f_y ;

f l o a t sum;
f l o a t * i n _ e l ;
f l o a t * f _ e l ;
f l o a t * i n _ s l i c e ;
f l o a t * f i l t e r _ s l i c e ;
f l o a t * i n _ l i n e ;
f l o a t * o_ l i ne ;
f l o a t * o u t _ s l i c e ;

unsigned l s = s * i h ;

for ( o_s = 0; o_s < od ; o_s++) {
o u t _ s l i c e = &out [ o_s * oh * ow ] ;
for ( i _s = 0; i _s < i d ; i _s ++) {

f i l t e r _ s l i c e = &weights [ ( o_s * kh * kw * i d ) + ( i_s * kh * kw) ] ;
i n _ s l i c e = &i n [ i _s * i h * iw ] ;
o_ l i ne = o u t _ s l i c e ;
for ( o_y = 0; o_y < oh ; o_y++) {

i n _ l i n e = i n _ s l i c e ;
for ( o_x = 0; o_x < ow; o_x++) {

i n _ e l = i n _ l i n e ;
f _ e l = f i l t e r _ s l i c e ;
sum = 0 . 0 ;



62

for ( f_y = 0; f_y < kh ; f_y ++) {
for ( f_x = 0; f_x < kw ; f_x ++) {

sum += f _ e l [ f_x ] * i n _ e l [ f_x ] ;
}
f _ e l += kw ;
i n _ e l += iw ;

}
o_ l i ne [ o_x ] += sum;
i n _ l i n e += s ;

}
o_ l i ne += ow;
i n _ s l i c e += l s ;

}
}

for ( o_x = 0; o_x < oh*ow ; o_x++) {
o u t _ s l i c e [ o_x ] += bias [ o_s ] ;

}
}

}

void r e l u ( f l o a t i n [ ] , const unsigned ih , const unsigned iw , const unsigned i d ) {
unsigned s ize = i h * iw * i d ;
unsigned i ;

for ( i =0; i < s ize ; ++ i ) {
i f ( i n [ i ] < 0 . 0 ) {

i n [ i ] = 0 . 0 ;
}

}
}

void softmax ( f l o a t i n [ ] , f l o a t out [ ] ,
const unsigned ih , const unsigned iw , const unsigned i d ) {

unsigned s ize = i h * iw * i d ;
unsigned i ;
f l o a t denominator = 0 . 0 ;

f l o a t alpha = i n [ 0 ] ;
for ( i =1; i < s ize ; ++ i ) {

i f ( i n [ i ] > alpha )



63

alpha = i n [ i ] ;
}

for ( i =0; i < s ize ; ++ i ) {
out [ i ] = exp ( i n [ i ] − alpha ) ;
denominator += out [ i ] ;

}

for ( i =0; i < s ize ; ++ i ) {
out [ i ] /= denominator ;

}
}

void pad ( f l o a t i n [ ] , f l o a t out [ ] , const unsigned ih , const unsigned iw ,
const unsigned id , const unsigned pad ) {

unsigned oh = i h + 2*pad ;
unsigned ow = iw + 2*pad ;
unsigned d , x , y , o_idx , i _ i d x ;

for ( d = 0 ; d < i d ; ++d ) {
for ( y = 0 ; y < oh ; ++y ) {

for ( x = 0 ; x < ow; ++x ) {

o_idx = ( oh*d + y ) * ow + x ;
i _ i d x = 0;
i f ( y < pad | | y > ( i h +pad−1) | | x < pad | | x > ( iw+pad−1) ) {

out [ o_idx ] = 0 . 0 ;
} else {

i _ i d x = ( i h *d + y − pad ) * iw + x − pad ;
out [ o_idx ] = i n [ i _ i d x ] ;

}

}
}

}

}

void add_square_sum ( f l o a t i n [ ] , f l o a t out [ ] , const unsigned s ize ) {
unsigned i ;
for ( i = 0 ; i < s ize ; i ++) out [ i ] += i n [ i ] * i n [ i ] ;

}



64

void sub_square_sum ( f l o a t i n [ ] , f l o a t out [ ] , const unsigned s ize ) {
unsigned i ;
for ( i = 0 ; i < s ize ; i ++) out [ i ] −= i n [ i ] * i n [ i ] ;

}

void l r n ( f l o a t i n [ ] , f l o a t out [ ] ,
const unsigned ih , const unsigned iw , const unsigned i d ) {

unsigned s ize_ = 5; / / A lexnet def ined
f l o a t alpha_ = 0.000100; / / A lexnet def ined
f l o a t beta_ = 0.750000; / / A lexnet def ined

unsigned i , j ;
unsigned wxh = i h * iw ;
unsigned head = size_ / 2 ;
long t a i l = ( long ) head − ( long ) s ize_ ;
f l o a t a lpha_d iv_s ize = alpha_ / s ize_ ;

f l o a t * ds t ;
f l o a t * s rc ;
f l o a t * in_square_ = mal loc ( wxh * sizeof ( f l o a t ) ) ;

for ( i = 0 ; i < s ize_ / 2 ; i ++) {
add_square_sum (&( i n [ i *wxh ] ) , in_square_ , wxh ) ;

}

for ( i = 0 ; i < i d ; i ++ , head++ , t a i l ++) {
i f ( head < i d )

add_square_sum(& i n [ head * wxh ] , in_square_ , wxh ) ;

i f ( t a i l >= 0)
sub_square_sum(& i n [ t a i l * wxh ] , in_square_ , wxh ) ;

ds t = &out [ i * wxh ] ;
s rc = &i n [ i * wxh ] ;
for ( j = 0 ; j < wxh ; j ++)

ds t [ j ] = src [ j ] * pow(1 .0 + a lpha_d iv_s ize * in_square_ [ j ] , −beta_ ) ;
}

f r ee ( in_square_ ) ;
}



65

void maxpool ( f l o a t i n [ ] , f l o a t out [ ] , const unsigned ih , const unsigned iw ,
const unsigned id , const unsigned oh , const unsigned ow, const unsigned od ,
const unsigned s t r i d e , const unsigned ps , char l a ye r ) {

unsigned x_o , y_o , k , wx , wy ;
unsigned i n_ idx , ou t_ idx ;
f l o a t max ;

for ( k = 0 ; k < od ; ++k ) {
for ( y_o = 0; y_o < oh ; y_o++ ) {

for ( x_o = 0; x_o < ow; x_o++ ) {
max = 0 . 0 ;
for ( wy = 0; wy < ps ; wy++ ) {

for ( wx = 0; wx < ps ; wx++ ) {
i n _ i d x = ( i h * k + ( y_o * s t r i d e +wy ) ) * iw + ( x_o * s t r i d e +wx ) ;
i f ( i n [ i n _ i d x ] > max) {

max = i n [ i n _ i d x ] ;
}

}
}
ou t_ idx = ( oh* k + y_o ) * ow + x_o ;
out [ ou t_ idx ] = max ;

}
}

}

}

void f c ( f l o a t i n [ ] , f l o a t weights [ ] , f l o a t bias [ ] , f l o a t out [ ] ,
const unsigned ih , const unsigned iw , const unsigned id ,
const unsigned oh , const unsigned ow, const unsigned od ) {

unsigned o_y , i_s ;
unsigned i n_s i ze = i h * iw * i d ;

for ( o_y = 0; o_y < oh ; o_y++) {
out [ o_y ] = 0 . 0 ;
for ( i _s = 0; i _s < in_s i ze ; i _s ++) {

out [ o_y ] += i n [ i _s ] * weights [ i _s * oh + o_y ] ;
}
out [ o_y ] += bias [ o_y ] ;



66

}

}

i n t main ( i n t argc , char * * argv ) {

s i z e _ t a l l o c _ s i z e ;

unsigned i ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 1 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = OUT_CONV_WIDTH_1*OUT_CONV_HEIGHT_1*OUT_DEPTH_1;
f l o a t * out_1 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_1 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;
/ / I n i c i a l i z a out_1
for ( i = 0 ; i < OUT_CONV_WIDTH_1*OUT_CONV_HEIGHT_1*OUT_DEPTH_1; ++ i ) {

out_1 [ i ] = 0 . 0 ;
}

conv ( in_1 , weight_1 , bias_1 , out_1 ,
FILTER_HEIGHT_1 , FILTER_WIDTH_1 ,
IN_HEIGHT_1 , IN_WIDTH_1 , IN_DEPTH_1 ,
OUT_CONV_HEIGHT_1, OUT_CONV_WIDTH_1, OUT_DEPTH_1,
STRIDE_CONV_1, 1 ) ;

r e l u ( out_1 , OUT_CONV_HEIGHT_1, OUT_CONV_WIDTH_1, OUT_DEPTH_1 ) ;

a l l o c _ s i z e = OUT_CONV_WIDTH_1*OUT_CONV_HEIGHT_1*OUT_DEPTH_1;
f l o a t * ou t_ l rn_1 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! ou t_ l rn_1 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

l r n ( out_1 , out_ l rn_1 , OUT_CONV_HEIGHT_1, OUT_CONV_WIDTH_1, OUT_DEPTH_1 ) ;

f r ee ( out_1 ) ;

a l l o c _ s i z e = OUT_HEIGHT_1*OUT_WIDTH_1*OUT_DEPTH_1;
f l o a t * out_pool_1 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_pool_1 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

maxpool ( out_ l rn_1 , out_pool_1 , OUT_CONV_HEIGHT_1, OUT_CONV_WIDTH_1, OUT_DEPTH_1,
OUT_HEIGHT_1, OUT_WIDTH_1, OUT_DEPTH_1,
STRIDE_MAX_1, POOL_SIZE_1 , 1 ) ;



67

f ree ( ou t_ l rn_1 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = IN_HEIGHT_2*IN_WIDTH_2*IN_DEPTH_2 ;
f l o a t * in_2 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! in_2 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

pad ( out_pool_1 , in_2 , OUT_HEIGHT_1, OUT_WIDTH_1, OUT_DEPTH_1, PAD_IN_2 ) ;

f r ee ( out_pool_1 ) ;

a l l o c _ s i z e = OUT_CONV_WIDTH_2*OUT_CONV_HEIGHT_2*OUT_DEPTH_2;
f l o a t * out_2 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_2 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

for ( i = 0 ; i < OUT_CONV_WIDTH_2*OUT_CONV_HEIGHT_2*OUT_DEPTH_2; ++ i ) {
out_2 [ i ] = 0 . 0 ;

}

conv ( in_2 , weight_2 , bias_2 , out_2 ,
FILTER_HEIGHT_2 , FILTER_WIDTH_2 ,
IN_HEIGHT_2 , IN_WIDTH_2 , IN_DEPTH_2 ,
OUT_CONV_HEIGHT_2, OUT_CONV_WIDTH_2, OUT_DEPTH_2,
STRIDE_CONV_2, 2 ) ;

f r ee ( in_2 ) ;

r e l u ( out_2 , OUT_CONV_HEIGHT_2, OUT_CONV_WIDTH_2, OUT_DEPTH_2 ) ;

a l l o c _ s i z e = OUT_CONV_WIDTH_2*OUT_CONV_HEIGHT_2*OUT_DEPTH_2;
f l o a t * ou t_ l rn_2 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! ou t_ l rn_2 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

l r n ( out_2 , out_ l rn_2 , OUT_CONV_HEIGHT_2, OUT_CONV_WIDTH_2, OUT_DEPTH_2 ) ;

f r ee ( out_2 ) ;

a l l o c _ s i z e = OUT_HEIGHT_2*OUT_WIDTH_2*OUT_DEPTH_2;
f l o a t * out_pool_2 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_pool_2 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;



68

maxpool ( out_ l rn_2 , out_pool_2 , OUT_CONV_HEIGHT_2, OUT_CONV_WIDTH_2, OUT_DEPTH_2,
OUT_HEIGHT_2, OUT_WIDTH_2, OUT_DEPTH_2,
STRIDE_MAX_2, POOL_SIZE_2 , 2 ) ;

f r ee ( ou t_ l rn_2 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 3 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = IN_HEIGHT_3*IN_WIDTH_3*IN_DEPTH_3 ;
f l o a t * in_3 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! in_3 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

pad ( out_pool_2 , in_3 , OUT_HEIGHT_2, OUT_WIDTH_2, OUT_DEPTH_2, PAD_IN_3 ) ;

f r ee ( out_pool_2 ) ;

a l l o c _ s i z e = OUT_WIDTH_3*OUT_HEIGHT_3*OUT_DEPTH_3;
f l o a t * out_3 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_3 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;
for ( i = 0 ; i < OUT_WIDTH_3*OUT_HEIGHT_3*OUT_DEPTH_3; ++ i ) {

out_3 [ i ] = 0 . 0 ;
}

conv ( in_3 , weight_3 , bias_3 , out_3 ,
FILTER_HEIGHT_3 , FILTER_WIDTH_3 ,
IN_HEIGHT_3 , IN_WIDTH_3 , IN_DEPTH_3 ,
OUT_HEIGHT_3, OUT_WIDTH_3, OUT_DEPTH_3,
STRIDE_CONV_3, 3 ) ;

f r ee ( in_3 ) ;

r e l u ( out_3 , OUT_HEIGHT_3, OUT_WIDTH_3, OUT_DEPTH_3 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 4 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = IN_HEIGHT_4*IN_WIDTH_4*IN_DEPTH_4 ;
f l o a t * in_4 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! in_4 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

pad ( out_3 , in_4 , OUT_HEIGHT_3, OUT_WIDTH_3, OUT_DEPTH_3, PAD_IN_4 ) ;

f r ee ( out_3 ) ;

a l l o c _ s i z e = OUT_WIDTH_4*OUT_HEIGHT_4*OUT_DEPTH_4;



69

f l o a t * out_4 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_4 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;
for ( i = 0 ; i < OUT_WIDTH_4*OUT_HEIGHT_4*OUT_DEPTH_4; ++ i ) {

out_4 [ i ] = 0 . 0 ;
}

conv ( in_4 , weight_4 , bias_4 , out_4 ,
FILTER_HEIGHT_4 , FILTER_WIDTH_4 ,
IN_HEIGHT_4 , IN_WIDTH_4 , IN_DEPTH_4 ,
OUT_HEIGHT_4, OUT_WIDTH_4, OUT_DEPTH_4,
STRIDE_CONV_4, 4 ) ;

f r ee ( in_4 ) ;

r e l u ( out_4 , OUT_HEIGHT_4, OUT_WIDTH_4, OUT_DEPTH_4 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 5 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = IN_HEIGHT_5*IN_WIDTH_5*IN_DEPTH_5 ;
f l o a t * in_5 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! in_5 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

pad ( out_4 , in_5 , OUT_HEIGHT_4, OUT_WIDTH_4, OUT_DEPTH_4, PAD_IN_5 ) ;

f r ee ( out_4 ) ;

a l l o c _ s i z e = OUT_CONV_WIDTH_5*OUT_CONV_HEIGHT_5*OUT_DEPTH_5;
f l o a t * out_5 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_5 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;
for ( i = 0 ; i < OUT_CONV_WIDTH_5*OUT_CONV_HEIGHT_5*OUT_DEPTH_5; ++ i ) {

out_5 [ i ] = 0 . 0 ;
}

conv ( in_5 , weight_5 , bias_5 , out_5 ,
FILTER_HEIGHT_5 , FILTER_WIDTH_5 ,
IN_HEIGHT_5 , IN_WIDTH_5 , IN_DEPTH_5 ,
OUT_CONV_HEIGHT_5, OUT_CONV_WIDTH_5, OUT_DEPTH_5,
STRIDE_CONV_5, 5 ) ;

f r ee ( in_5 ) ;

r e l u ( out_5 , OUT_CONV_HEIGHT_5, OUT_CONV_WIDTH_5, OUT_DEPTH_5 ) ;



70

a l l o c _ s i z e = OUT_HEIGHT_5*OUT_WIDTH_5*OUT_DEPTH_5;
f l o a t * out_pool_5 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_pool_5 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

maxpool ( out_5 , out_pool_5 , OUT_CONV_HEIGHT_5, OUT_CONV_WIDTH_5, OUT_DEPTH_5,
OUT_HEIGHT_5, OUT_WIDTH_5, OUT_DEPTH_5,
STRIDE_MAX_5, POOL_SIZE_5 , 5 ) ;

f r ee ( out_5 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 6 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = OUT_HEIGHT_6*OUT_WIDTH_6*OUT_DEPTH_6;
f l o a t * out_6 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_6 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

f c ( out_pool_5 , weight_6 , bias_6 , out_6 ,
IN_HEIGHT_6 , IN_WIDTH_6 , IN_DEPTH_6 ,
OUT_HEIGHT_6, OUT_WIDTH_6, OUT_DEPTH_6 ) ;

f r ee ( out_pool_5 ) ;

r e l u ( out_6 , OUT_HEIGHT_6, OUT_WIDTH_6, OUT_DEPTH_6 ) ;

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 7 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = OUT_HEIGHT_7*OUT_WIDTH_7*OUT_DEPTH_7;
f l o a t * out_7 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_7 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

f c ( out_6 , weight_7 , bias_7 , out_7 ,
IN_HEIGHT_7 , IN_WIDTH_7 , IN_DEPTH_7 ,
OUT_HEIGHT_7, OUT_WIDTH_7, OUT_DEPTH_7 ) ;

f r ee ( out_6 ) ;

r e l u ( out_7 , OUT_HEIGHT_7, OUT_WIDTH_7, OUT_DEPTH_7 ) ;
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Layer 8 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /
a l l o c _ s i z e = OUT_HEIGHT_8*OUT_WIDTH_8*OUT_DEPTH_8;
f l o a t * out_8 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! out_8 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

f c ( out_7 , weight_8 , bias_8 , out_8 ,
IN_HEIGHT_8 , IN_WIDTH_8 , IN_DEPTH_8 ,



71

OUT_HEIGHT_8, OUT_WIDTH_8, OUT_DEPTH_8 ) ;

f r ee ( out_7 ) ;

a l l o c _ s i z e = OUT_HEIGHT_8*OUT_WIDTH_8*OUT_DEPTH_8;
f l o a t * so f t_8 = mal loc ( a l l o c _ s i z e * sizeof ( f l o a t ) ) ;
i f ( ! so f t_8 ) { pe r ro r ( " mal loc f a i l e d " ) ; e x i t ( EXIT_FAILURE ) ; } ;

softmax ( out_8 , sof t_8 , OUT_HEIGHT_8, OUT_WIDTH_8, OUT_DEPTH_8 ) ;

f r ee ( out_8 ) ;

return 0;
}


	Introduction
	Objectives
	Document Structure

	Theoretical Reference
	Field Programmable Gate Arrays
	Function Generators
	Block RAM Memories
	DSP Blocks
	The Virtex 7 FPGA

	Machine Learning
	Image Classification
	Deep Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	CNN Architectures


	Alexnet
	 Alexnet Resource Estimation
	 Software Evaluation
	Public Software Distribution
	Implemented Software


	Hardware Infrastructure
	Generic Memory Module
	Floating-Point Format
	Arithmetic Operators
	 Multiplier
	 Adder
	 Fixed-Point Converter


	Hardware Implementation
	Convolutional Implementation
	Buffers Operation
	Convolutional Tree

	Max-Pool Layer
	Multilayer
	Fully-Connected Layer Exploration

	Results
	Performance Analysis
	Estimated Performance
	Simulated Performance

	Resource Utilization
	Accuracy of the Hardware Implementation
	Final Remarks

	Conclusions and Future Work
	References
	Appendix A – Alexnet C Source Code

