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RESUMO 
 

Utilizar múltiplos processadores em um único chip, i.e. Sistema em Chip 
Multiprocessados (MPSoC), podem prover o paralelismo necessário para processar as altas taxas 
de dados que algumas aplicações têm, e.g. processamento de video em tempo real. Projetos que 
não estão preocupados com o consumo de energia podem se beneficiar do baixo custo de Field-
Programmable Gate Arrays (FPGAs) para prototipar uma MPSoC. Além disso, os FPGAs 
modernos são embarcadas com processadores hard-core  que podem ser utilizados para facilitar 
a gerência e análise das MPSoCs. Este trabalho utiliza o dispositivo Zynq-7020, o qual é 
composto de dois microprocessador ARM Cortex-A9 e uma lógica programável Artix Série 7 da 
Xilinx. Este microprocessador  é disponibilizado por diversos vendedores, e.g. NXP e Xilinx, em 
diferentes combinações de recursos dentro do chip e periféricos. A combinação da alta variedade 
de dispositivos que utilizam processadores ARM e sua popularidade tornam possível migrar este 
projeto para dispositivos similares de acordo com os recursos que forem necessários. Este 
trabalho desenvolveu uma plataforma que utiliza a lógica programável destes dispositivos para 
prototipar uma MPSoC, a Hermes MPSoC (HeMPS), e os processadores embarcados para 
gerenciar todo sistema. A HeMPS MPSoC foi modificada para utilizar os processadores ARM 
como os gerentes globais ao invés do processador Plasma. Isto prove uma interface para acessar 
os periféricos, além da capacidade de gerência da MPSoC. Foi criado uma interface de 
comandos, utilizando o protocolo Telnet, que possibilita emulação em tempo real. Desta maneira, 
um computador remoto pode transmitir aplicações para o microprocessador ARM e este ficará 
responsável por aloca-las nos processadores disponíveis da MPSoC. Para estabelecer a conexão 
entre o padrão de comunicação AXI da ARM e o utilizado pela MPSoC, um novo módulo de 
hardware foi desenvolvido, chamado de Network Interface ARM-Hermes (NIAH). Este módulo é 
reponsável por converter o protocolo ARM para o protocolo da NoC, e vice versa. O projeto 
resultante utilizou 17% dos recursos totais do dispositivo e atingiu uma frequência de 51 MHz. O 
software trata requisições tanto do computador remoto como dos processadores da MPSoC. O 
kernel original do IP do Plasma foi reescrito para os cores do ARM para que estes executassem 
uma parte das funcionalidades originais. 

Palavras-chave: MPSoC, FPGA, Sistemas de gerência,  Zynq-7000. 
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ABSTRACT 

 

 

Using multiple cores on a single chip, i.e. Multiprocessor System-on-Chip (MPSoC), can 
provide the necessary parallelism to process the high incoming data rate that some applications 
have, e.g. real-time video processing. Designs not constrained by power can benefit from Field-
Programmable Gate Arrays’ (FPGAs) low-cost to prototype MPSoCs. Moreover, modern FPGAs 
are embedded with hard-core processors that can be further explored to ease MPSoC 
management and analysis. This work uses a Zynq-7020 device, which contains two ARM®Cortex-
A9 cores and an Artix-7 Series programmable logic. Many vendors offer this microprocessor, e.g. 
NXP and Xilinx, with different combinations of on-chip resources and peripherals. The combination 
of this wide offering and its popularity makes it possible to migrate this design to other similar 
devices according to project needs, i.e. different resources. This work creates a platform that uses 
the programmable logic to prototype an MPSoC, the Hermes MPSoC (HeMPS), and the 
embedded processors to manage the complete system. The HeMPS MPSoC was modified to use 
the ARM processors as a global manager element instead of original Plasma IP. This provides an 
interface to access peripherals combined with MPSoC management capabilities. It was created a 
command interface using Telnet enabling real-time emulation. Thus, a host computer can transmit 
applications to the ARM processor that will be responsible for allocating them in available MPSoC 
processors. To establish the connection between the ARM AXI and the target MPSoC standards a 
new hardware module was created, the Network Interface ARM-Hermes (NIAH). This hardware 
converts the ARM protocol to the NoC protocol, and vice-versa. Resulting prototyped design 
occupies 17% of total device resources and achieved a 51 MHz clock frequency. The software 
handles both the host computer and MPSoC processors requests. Original Plasma IP master 
kernel was rewritten for ARM cores to perform a subset of its features. 

 

Keywords: MPSoC, FPGA, Management Systems, Zynq-7000. 
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1 INTRODUCTION 
	

In 1985, Xilinx shipped its first Field Programmable Gate Array (FPGA), the XC2064; 
offering 800 gates, sold for $55, and was produced in a 2.0µm process [ROE99]. It was the 
beginning of a new era for circuit designers. Before programmable logic, design changes, after the 
specification was finished, were often unfeasible mostly due to cost increase and manufacturing 
delays. After FPGAs arrival, new features could be added up to fabrication time without the same 
impacts. Furthermore, project duration decreases while complexity increases thanks to the fast-
growing assortment of intellectual property (cores) use [COL99]. 

The component density per integrated circuit (IC) had also been doubling at regular 
intervals – accordingly to Gordon E. Moore [SCA97], and thus allowing Systems-on-Chip (SoC) to 
emerge. A SoC is an integrated circuit that implements most or all of the functions of a complete 
electronic system [JER05]. Classically, they were projected as Application Specific Circuits (ASIC) 
until FPGAs, which comprise programmable logic arrays, started to arise. Note that FPGAs may 
further embed central processing units (CPUs) and peripherals creating a heterogeneous device. 
There are several advantages of FPGAs over ASIC as, for example, higher flexibility, reduced 
development time, and design cost. On the other hand, FPGAs have significant power 
consumption and thus might not suit low-power systems. 

Systems with a single processor may not provide enough performance for some 
applications, e.g. real time video processing. Therefore, using multiple processors may provide the 
necessary computational concurrency required to handle incoming data rates. This architecture is 
called Multiprocessor System-on-Chip (MPSoC). Moreover, the cost pressures inherent in large 
markets, as well as the fact that many of the applications have strict performance, power and 
energy requirements makes MPSoCs a sensible solution [WOL04].   

Xilinx provides a flexible platform for implementing MPSoCs: The Zynq ‘All-Programmable 
SoC’ (APSoC). It comprises two main parts: a Processing System (PS) formed around a dual-core 
ARM Cortex-A9 processor, and a Programmable Logic (PL), which corresponds to 
reprogrammable logic fabric. Both sections are linked by standard Advanced eXtensible Interface 
(AXI) connections. While the PL section is appropriate for implementing parallel logic, the PS 
supports software routines and even an operating system. Thus, the overall functionality of an 
embedded system can be appropriately partitioned between hardware and software [CRO14]. 

ARM processors are largely used nowadays, e.g. cellphones, due to their performance 
and availability. Several manufacturers provide their version with different hardware combinations 
that might be used in different applications. Moreover, the high availability of ARM based systems 
makes it a low cost solution.  

The goal of this work is to exploit Zynq’s ARM processors to manage an embedded 
MPSoC in the PL portion. The processor creates an interface between a host computer and the 
MPSoC. Therefore, it is possible to inject data into the system and return the results to the 
computer. 
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1.1 Motivation 
Embedded systems designs become every generation a more viable solution for medical, 

military, mobile and other daily applications. The reason for that is the increasing demand for 
devices capable of performing complex operations. Although the field of work might not be novel, it 
includes several main areas covered throughout the Computer Engineering Bachelor’s degree and 
future technologies trends. The target Xilinx platform is a brand new solution that embraces 
hardware and software, hence permitting a thorough study about current design challenges, 
concerns, and advantages. For those reasons, investigate those devices and apply concepts 
learned throughout the course are the focus of this final project. 

 

1.2 Objectives 
This final project has as its primary goal to apply concepts learned throughout the 

Computer Engineering course and to acquire knowledge about systems design. To fulfill the main 
goal, the specific objectives include: 

• Understand FPGA technology with embedded ARM processors; 

• Understand the communication techniques between software and reconfigurable 
components of modern FPGAs; 

• Understand an industrial design flow using Electronic Design Automation (EDA) tools, such 
as Vivado, to quickly built complex designs; 

This work intends to fulfill those milestones creating a system abstractly depicted in Figure 
1. The Target Device consists of an MPSoC prototyped in the Programmable Logic and an ARM 
processor that manages this system. The processor is an interface between the Programmable 
Logic and a Host computer. Initially, the host transfers applications to the processor, which are 
going to be stored in the memory (1). Afterwards, the host issues a request (2) to execute any of 
the available applications. Then, ARM processor reads the memory and transfer requested 
application to the Programmable Logic (3). After the operation is complete, results are transferred 
back to ARM processor (4) and sequentially to the host machine (5). 

 
Figure	1	–	Final	Project	abstract	design.	

Target Device 

ARM 

Programmable Logic 

Memory Host  1 

2 

3 4 

5 
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1.3 Document Structure 
After the introduction and contextualization are set forth by this first Chapter, the second 

Chapter provides (i) a description of conventional FPGA structure, (ii) presentation of HeMPS 
MPSoC and (iii) Vivado EDA. The third Chapter discusses the target board – Zedboard Kit, which 
resources were used and how they were configured. The fourth Chapter describes ARM AXI and 
Hermes interfaces, and presents NIAH hardware module, which was developed in this work. 
Chapter five describes the complete hardware and software set up created. The design is 
validated and analyzed in Chapter six, followed by Chapter seven that presents the conclusions. 
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2 THEORETICAL REFERENCE 

This Chapter presents FPGA related concepts, MPSoC architecture details and the 
Vivado toolset used throughout this work. 

2.1 Field Programmable Gate Array (FPGA) 
FPGA introduction in the market changed electronic circuits design workflow. 

Reprogramming a device in the field merely to correct faulty behavior or to add a new feature 
became possible. Despite this capability, a hardware developer should understand how FPGA 
works, down to its essence, for efficient utilization of available resources. This section provides a 
brief comparison of programmable devices over ASIC and an overview of its basic building blocks 
[DEH08]. 

One of the FPGA’s advantage is programmability. The same reason that enables this 
feature, i.e. configurable logic circuit, hinders its final area, timing and performance gain to achieve 
ASICs characteristics. Those are optimized to specific applications and thus save design area, 
consume less power, reduce timing delays and enhance computational performance. Even if 
FPGA is not as efficient as ASIC, its flexibility and reduced development cost are beneficial for 
many areas, e.g. scientific research. Moreover, with FPGA industry can release cheaper versions 
of a new product and, if successful, design a new ASIC version. To reuse circuit logic, i.e. FPGA 
fabric logic, grants less time to finish products and reduces costs.  

When dedicated embedded CPUs are available, as Zynq’s ARM Cortex-A9, features must 
be wisely separated to both exploit the reconfigurable logic circuit and the processor, which is 
programmed by software. Sequential code often takes advantage of processor’s characteristics, 
while heavy tasks might use hardware’s parallel nature to reduce computation time. Software 
implementation and management takes advantage of available libraries and drivers. Thus, it is 
possible to develop sophisticated and complex systems to monitor and control the device 
peripherals. Choosing where logic will be mapped, either software or reconfigurable logic, is the 
first action to better use devices with this dual nature, i.e. software and hardware design. 

A field-programmable gate array (FPGA) is, in a simplified form of view, a set of 
configurable logic blocks embedded in a general routing structure and input/output cells around the 
device (Figure 2). Moreover, those blocks are interconnected by configurable interconnections. 
The complete functionality is partitioned and divided among logic blocks, and the interconnections 
are properly configured.  

 
Figure	2	-	A	simplified	view	of	FPGAs	architecture	[BOB07].	
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2.1.1 Configuration technologies 

Basically, there are two major hardware configuration technologies: antifuse and memory-
based. While antifuse paradigm is restricted to interconnections realization, memory-based is used 
for both computation and interconnections [BOB07]. The last technology is further categorized into 
Static Random-Access Memory (SRAM), Electrically Erasable Programmable Read-Only Memory 
(EEPROM), and Flash. 

Antifuse’s customizable connections includes a special component that is initially in open 
state (Figure 3 shows an example of Vialink’s antifuse technology). When programming the device, 
high voltages are applied to melt the dielectric and, thus create a permanent connection. That is 
why this paradigm is also called one-time programmable FPGAs. 

 
Figure	3	-	Q-Logic	Vialink	antifuse	technology	[BOB07].	

SRAM memory-based technology is the most widely used method for storing configuration 
in commercially available FPGAs [DEH08]. Differently from antifuse, SRAM memory-based 
technology enables to configure both interconnections and logic blocks through the output of 
SRAM cells (Figure 4). The connection between two wires can be made using pass transistors 
(Figure 5(a)), thus allowing, or not, current to pass. Logic blocks, also called function-generators, 
use the same concept. Functionality is reprogrammed just by changing multiplexers (Figure 5(b)), 
and look-up tables (LUTs) (Figure 5(c)) stored values. 

Q

Q’R/W

Data

 
Figure	4	-	Xilinx	SRAM	cell.	

One of the SRAM advantages is device’s reconfiguration in well-known technology. On 
the other hand, this approach requires large amounts of area for both connections switches and 
logics blocks. Furthermore, since the device is volatile, i.e. it does not retain configuration when 
power is cut off, it is necessary to embed non-volatile storage to reload configuration at power-on. 
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Figure	5	-	A	representation	of	a	(a)	Pass	transistor,	(b)	programmable	MUX	and	(c)	function	generation.	

2.1.2 Function Generators 

Two of the possible functions generators are multiplexers and look-up tables (LUT). A 
multiplexor is a switching device that, according to its control signal, will feed the appropriate input 
line to the output. An LUT is a group of memory cells, which stores functions’ truth tables, and a 
decoder, which is used to access correct memory location and retrieve results (Figure 6) [BOB07]. 
An LUT is also called “universal logic gate”, since it enables to implement any logic function of up 
to n variables, where 2n represents the number of bits to store in the truth table. 

 
Figure	6	–	An	example	of	a	4-input	LUT.	

2.1.3 Interconnections 

Through the combination of multiple LUTs and multiplexers it is possible to implement 
complex circuits. Combining multiple logic blocks requires programmable interconnection 
structures that appropriately interconnect LUTs.  

Initially, the form of communication was called nearest neighbor [DEH08]. As the name 
suggests, each block may directly communicate with each immediate neighbor. The major 
disadvantage of this approach is scalability. The delay increases between distant nodes because it 
needs to traverse one or more logic blocks. A possible solution is to separate the communication 
from computation, just as segmented paradigm proposes. Two new blocks are required to achieve 
such purpose: the connection block (CB) and the switch box. Logic blocks, which contains one or 
more LUTs, access nearby resources through CB, and this links the first’s I/O to routing resources 
through programmable switches, or multiplexors (Figure 7(a)). 

Figure 7(b) details connections between such blocks in Xilinx devices. Configurable Logic 



20	

Blocks (CLB) are directly connected to switch matrixes (or switch boxes) through wires. Those may 
have different lengths depending on FPGA’s size: single, hex (a signal can traverse up to 6 CLBs) 
and long (a signal can traverse one-fourth of the FPGA length). 

There are several techniques available (such as hierarchal and row based) and this still is 
an interesting field of research, however, this document is restrained to this brief overview. 

Logic	
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Logic	
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Switch
Box

Logic	
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Block

Switch
BoxCB CB
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CBCB

CB CB
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Figure	7	–	An	abstract	representation	of	communication	segmentation	(a),	and	a	detailed	view	of	the	
routing	segments.		

2.1.4 7 Series Xilinx FPGA 

Although any combinational and sequential logic may be implemented through the 
combination of several LUTs, the number of available resources restrains design size. Hence, to 
optimize device utilization, extending basic logic block with specific elements, e.g. fast carry chain, 
multipliers, and RAM; is current industry approach. To illustrate this, let’s look over available 
industry technology. 

Xilinx 7 Series FPGA basic block, the Configurable Logic Block (CLB), contains a pair of 
slices [XIL14]. Slices are not directly connected but organized as independent columns to create a 
carry chain (COUT and CIN) with other CLBs (Figure 8). They may easily be configured in several 
different ways to behave as shift registers, storage elements or arithmetical logic and thus enhance 
device’s resource utilization.  
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Figure	8	–	Xilinx	CLB	layout	[XIL14].	

There are two different types of slices, i.e. SLICEM and SLICEL, each containing four 
LUTs, eight storage elements (flip-flops), wide-function multiplexers and carry logic. Although they 
virtually have the same elements, whereas both provide logic, arithmetic and ROM functions, only 
SLICEM supports distributed RAM and data shifter behavior. Each CLB is either composed by two 
SLICEL or one of each type.  

The CLBs are arranged in a regular array, and may access general routing resources 
through the Switch Matrix that runs vertically and horizontally between CLB rows and columns. 
Xilinx also created the Advanced Silicon Modular Block (ASMBL) architecture to optimize FPGA for 
different application domains, and extended integration by using Stacked Silicon Interconnect (SSI) 
technology [XIL12]. Discussions about those topics are beyond the scope of this work. 

Altera, for example, has a different solution from Xilinx, but both companies aim to 
achieve the same goal: enhance resource usability and thus increase performance. Xilinx’s 
solution was presented in this work because target board uses their technology.  

2.2 Hermes Multiprocessor System (HeMPS) 
The result that this final project aims to achieve is an MPSoC managed by hard-core 

processors (Section 1.2). Hence, this section introduces the Hermes Multiprocessor System 
(HeMPS) MPSoC that is used throughout this work.  

The HeMPS [CAR09] is a homogeneous NoC-based MPSoC. The main hardware 
components that HeMPS comprises are (i) Plasma-IP processing elements (PEs) and (ii) Hermes 
NoC [MOR04] communication infrastructure (Figure 9). In addition, there is a memory, called task 
repository, which holds all tasks’ object codes that will be executed in the PEs. 
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Figure	9	–	HeMPS	instance	using	a	2x3	mesh	NoC	[CAR09].	

The platform is organized in a master-slave structure, which is composed by several 
slaves PE (Plasma-IP SL) and one master (Plasma-IP MP). The master processor is responsible 
for managing system resources since it is the only with access to the task repository. The slaves 
execute the tasks sent by the master. When HeMPS starts execution, the master allocates initial 
tasks, i.e. produce data to other tasks or do not communicate, to slave processors. Throughout 
execution, tasks will be continuously loaded from task repository to the slaves. Furthermore, the 
master is also responsible for responding requests from the slaves. Those may request information 
about other tasks or inform debug messages.  

To simulate HeMPS, there are scripts that automatically generate the hardware and the 
repository filled with tasks (defined by scripts’ input). The repository is a VHDL file that is accessed 
by the master processor through the testbench.  

Further description about the two main HeMPS hardware components – the network and 
the processing element is covered in the following sections. 

2.2.1 HERMES NoC 

A NoC may be compared to traditional telecommunication network, where each host is 
connected to a single router, which is subsequently connected to others routers. Therefore, one 
host may send and receive messages from others hosts through the network. The same general 
idea is applicable to chips: microprocessors are connected to a simple routing hardware, i.e. the 
router, and those to another router, thus creating a network inside the chip. 

HERMES NoC is a scalable 2D-mesh network. The NoC contains several routers, placed 
and identified by the Cartesian plane, where the leftmost lower corner represents the origin (Figure 
10). Each node contains centralized switching control logic, four bidirectional ports to interconnect 
to other nodes (east, west, north and south), and one bidirectional port to communicate with local 
PE. Arbitration among those ports is done through Round-Robin algorithm, which provides a fairer 
service than static priority system (avoiding starvation). 
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Figure	10	–	2x2	NoC	mesh	topology	abstraction.	

	
HERMES uses wormhole switching mode, in which packets are broken down into several 

flits. The first flit, known as header, contains packet destination information while the remainder, 
called payload, contains data itself. Based on header’s information, nodes will know which way a 
packet must be sent by comparing current and requested Cartesian position. Since this 
implementation uses XY routing algorithm [CAR09], flits will first traverse horizontally until the right 
column, and then vertically. Besides that information, a node must know when communication is 
over. Hence, the first payload flit contains total data length that must be received. Consequently, 
the router is able to identify the last flit and finish communication. 

2.2.2 Plasma-IP 

Plasma CPU is a small synthesizable 32-bit RISC microprocessor encompassing a subset 
of the MIPS instruction set. Its code description is open source and is provided by OpenCores 
[RHO15]. The processor has a three-stage pipeline (fetch, decode, and execute), and uses Von 
Neumann memory architecture. The processor used by HeMPS contains modifications from 
original version, e.g. addition of interruption mechanisms, UART removal, and new memory-
mapped registers.  

To increase processing elements performance, Plasma-IP architecture separates 
communication from computation. While Plasma CPU is responsible for processing, the Network 
Interface (NI) and Direct Memory Access (DMA) modules manage communication. Moreover, local 
RAM is simultaneously accessible by the DMA and processor through a dual-port memory, which 
avoids extra hardware for elements like mutex or cycle stealing techniques. Nonetheless, area cost 
increases to provide this feature. 

The NI is responsible for receiving data from the processor, segmenting into flits and 
sending it to the network. Naturally, it also handles the inverse process. When data is available, NI 
interrupts Plasma processor that consequently configures the DMA to transfer data from the buffer 
to the memory. Once data transfer finishes the DMA informs the processor through an interruption 
request. 

2.3 Vivado Design Suite 
Vivado Design Suite [FEI12] is a new IP and system-centric design environment that 

accelerates design productivity for All-Programmable devices, i.e. a new Xilinx technology. The 
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main tools provided in this suite are Vivado IDE (Integrated Development Kit) for hardware design 
and Vivado SDK (Software Development Kit) for software development. Also, there is a tool 
capable of converting C code to hardware descriptions (using VHDL or Verilog) with few changes 
in the source code, called Vivado HLS (High-Lever Synthesis). The advantages provided by Xilinx 
tools to this final project are the large number of available IP cores, tutorial material and previous 
students work. This Section covers basic information about this toolset, however Soares’ 
contributions [SOA14] provides a complete overview.  

The complete project flow, i.e. hardware and software, (Figure 11) begins with Vivado IDE 
to create the hardware. First, it is created a block diagram, which represents the interconnections 
between all modules. It is possible to customize available IPs or create a new in this step. The tool 
verifies if all interconnections are correct and warns the user of possible mistakes. The next steps 
are logical and physical synthesis. Vivado generates reports, e.g. timing and utilization, after each 
of these steps. Therefore, the user can identify synthesis timing problems, for example, and fix 
them before proceeding. Floorplanning is might be performed in either logical or physical 
synthesis. Furthermore, after the design is complete, i.e. software and hardware, Vivado IDE offers 
real time signal debugging capabilities. In order to use this feature, it is necessary to generate 
extra hardware that captures the signals that must be verified and transmits to Vivado. 

After hardware design is complete, a bitstream (BIT) is generated and exported to Vivado 
SDK. The BIT file is used to configure the programmable logic with the created design. Now starts 
the software development step. Using the BIT file, SDK automatically generates a Board Supply 
Package (BSP) that contains register addresses, drivers from Xilinx IPs and other hardware 
settings. Moreover, it is possible to include automatically a few predefined libraries, e.g. Fat File 
System and lightweight Internet Protocol, to the project. Once software implementation is complete 
user will load the BIT file and the Executable and Linkable Format (ELF) object file [ARM98] to the 
board. The ELF contains the code (.text), initialized read-write data (.data) and statically allocated 
variables (.bss) for the executable. For further information about ELF characteristics and properties 
refer to ARM’s documentation. 
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Figure	11	–	Vivado	design	flow.	
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3 HARDWARE AND SOFTWARE INFRASTRUCTURE 

This Chapter presents the target development board, Xilinx Zedboard APSoC [CRO14], 
and the peripherals used in this work. To prototype HeMPS MPSoC it is necessary to address a 
few issues such as task storage and HeMPS/ARM intercommunication. Therefore, it was 
necessary to use, modify and create software libraries that manipulate those peripherals and thus 
build an environment for HeMPS. 

3.1 Zedboard 
Zedboard is a low-cost development board for the Xilinx ZynqTM-7000 All Programmable 

System-on-Chip (APSoC). It has a tightly coupled ARM® processing system and 7 Series 
programmable logic to create designs that combines software programming and hardware 
prototyping.  

3.1.1 Processing System 

The Zynq-7000 device contains a dual-core ARM Cortex-A9 processor with other 
processing resources forming an Application Processing Unit (APU). It further comprises 
peripheral interfaces, cache memory, memory interfaces, interconnects, and clock generation 
circuitry (Figure 12). This complete subsystem is named as Processing System (PS). 

 
Figure	12	–	The	Zynq	Processing	System	[CRO14].	

The APU is primarily comprised of two ARM processing cores, each associated with a 
NEONTM Media Processing Engine (MPE) and Floating Point Unit (FPU) computational units; a 
Memory Management Unit (MMU); and Level 1 cache memory (Harvard architecture).  It further 
contains a shared Level 2 cache memory, On-Chip Memory (OCM) and a Snoop Control Unit 
(SCU), responsible for memory coherency between L1 data cache and L2 cache. ARM processor 
maximum clock frequency is 866 MHz accordingly to Zynq-7000 specifications. 
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3.1.2 Programmable Logic 

The Programmable Logic (PL) region is based on Artix®-7 FPGA fabric which primarily 
comprises several CLBs. In addition, it contains two special purpose components: Block RAMs for 
dense memory requirements and DSP48E1 slices for high-speed arithmetic. Both are integrated 
into the logic array and normally in proximity to each other because intensive computation and 
storage of data in memory are usually closely associated operations. Further information about 
Artix-7 FPGA capabilities may be obtained through Xilinx documentation [XIL14a]. 

3.1.3 Peripherals 

This Section focus on defining which peripherals are necessary to create the system 
defined in Section 1.2. Moreover, HeMPS simulation configuration has a few characteristics that 
cannot be ported to the board. There is three questions that helps to understand which 
configurations must be changed and which peripherals were used: 

§ HeMPS’ scripts create a VHDL file called task repository that contains information 
about all applications and their respective object code. A testbench uses this file to 
feed HeMPS MPSoC with data. However, this configuration is only valid for 
simulation. Therefore, where the applications will be stored and how a host 
computer will transfer those applications to the board? 

§ In HeMPS simulation the processing elements write their results into a log file and 
thus it is possible to verify that the system is working correctly. Nonetheless, when 
HeMPS is prototyped in the programmable logic, how the system behavior will be 
verified? Furthermore, how the developer will identify software problems in the 
ARM processor? 

§ This work main goal is to replace Plasma master IP, and its corresponding kernel, 
by the ARM Cortex-A9 core. How to connect this hard-core processor, located in 
the PS portion, with other Plasma IP cores, which will reside in the PL portion?  

Those issues comprise essential design decisions for this project. The following sections 
answer each of those questions.  

3.1.3.1 Smart Digital Card 
As the first question poses, the testbench is an interface to access the repository. Scripts 

can generate different scenarios1, but the system is restarted for each new simulation. Embedding 
HeMPS in the FPGA requires a flexible and runtime repository where it’s possible to add new 
applications without power cycling, i.e. turn the board off, and on. Therefore, the platform should 
provide ways to easily insert, or remove, applications to a specific storage space. 

Smart Digital Card (SDC) is a nonvolatile memory extensively used in portable devices. It 
offers 4 MBps transfer speed, low power consumption (ranges from 0.18W to 0.36W) and clock 
frequency of up to 50MHz [AVN12][SAN07]. Using external memory avoids consuming FPGA 
Block RAM (BRAM) resources. Moreover, placing the repository inside the FPGA logic might not 
even be interesting because the master is the only processing element that has access to it. Thus, 
that would create a loop in which data travels from PL to PS, i.e. the master reads the repository, 

																																																								
1	A	scenario	contains	the	set	of	applications	to	be	executed	in	the	platform,	as	well	as	the	moment	they	should	
start	
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and then back to the first, i.e. the master sends information to slave processing elements. The 
SDC provides enough transfer speed and more than sufficient storage space, given that the 
biggest application available in HeMPs library consumes 60 KB.  

The used card has 4GB of memory and is configured with existing Fat File System 
[MIC05]. Xilinx provides a driver to use the SDC. Available routines were encapsulated into an 
Application Programming Interface (API) to automate read and write operations. Moreover, this 
API makes code cleaner and easier to manage SDC operations. The API routines were developed 
during this work. 

3.1.3.2 Ethernet 
Regarding the first and second questions, communication and observability respectively, 

both may benefit from Ethernet usage. A remote host can use Internet protocols to perform read 
and write operations on the SDC (3.1.4.1), issue command requests to the device (3.1.4.2), or 
even connect the board to other devices. Section 3.1.4 describes in more details the use of this 
peripheral. 

3.1.3.3 UART 
Universal Asynchronous Receiver/Transmitter (UART) is a hardware component used for 

serial communication. A software developer may use UART to create an environment similar to 
non-embedded software development where it is possible to visualize printf messages on the 
computer screen. Xilinx provides a function, i.e. xil_printf, which transmit messages through UART 
to a serial terminal, e.g. gtkterm, in the host computer. This feature significantly enhances software 
observability and debugability.  

3.1.3.4 DMA 
Direct Memory Access (DMA) allows certain hardware to access the memory 

independently of the CPU. Without DMA, the processor is usually occupied for the entire data read 
and write operation, and thus unavailable to perform other work. On the other hand, with DMA, the 
processor initiates the transfer and may perform any other operation while it is in progress. When it 
terminates, the DMA Controller will generate an interrupt request (IRQ) to inform the CPU. 
Similarly, when there is new information available for the CPU, an IRQ is generated. 

Therefore, the DMA is used to answer the third question. Two buffers of 64KB each, 
inside OCM (On-Chip Memory), are used for write and read operations, respectively called tx 
(transmit) and rx (receive). The buffer size was inherited from available Xilinx tutorials, however it 
is possible to change it. The write operation should be understood as the ARM processor 
transferring data to a certain hardware, while the read, as ARM receiving data from that hardware. 
In write operations, data is written into the tx buffer and DMA is configured to perform the 
transmission. Whenever there is data available for reading, the DMA Controller interrupts ARM 
processor to process incoming data. Interrupts are configured to occur either after 125 cycles, after 
the first packet, [XIL10] or when 100 packets are received. 

3.1.4 Software 

Further addressing questions posed in 3.1.3, software implements necessary logic to use 
those peripherals. Aspects that were not completely discussed are which Internet protocols that 
control repository write and read operations, and command requests. 
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3.1.4.1 Trivial File Transfer Protocol  

TFTP is a simple, lock-step, file transfer protocol that allows a host to download files to a 
remote host, in this case the board, or upload to it. Xilinx has its distribution that uses Lightweight 
Internet Protocol Library [DUN08]. It is a low memory footprint implementation suitable for 
embedded systems. However, it was necessary to modify the default storage system of Xilinx’s 
implementation to use SDC peripheral. The SDC API, developed in this work, encompasses the 
necessary functions for those changes. 

The repository combines both TFTP software and SDC peripheral. A computer, or other 
device, can send and receive files/applications through the network. For example, Linux OS 
provides a TFTP implementation that might be used. However, the user should be aware that the 
embedded implementation supports only binary operation mode. Therefore, OS software should 
be configured to match this requirement. This limitation doesn’t have any performance impact 
since it concerns transfer characteristics only.  

3.1.4.2 Command Interface 
Telnet provides bidirectional interactive text-oriented communication using a virtual 

terminal connection over TCP/IP. The Command Interface uses this protocol to receive and send 
messages to a remote computer. To process incoming requests, there are three modules: 
Command Control, Parser and Command (Figure 13). The Command Control (CmdControl) unit 
listens on port 23, establishes telnet TCP connection and handles incoming requests (1). Next, the 
parser processes user’s command (2) and identifies which command has been issued. If it is an 
unknown/invalid request or any parameter is missing no further processing takes place and the 
user is notified. On the other hand, it forwards requested code and necessary parameters to the 
Command unit (3). This executes user’s command and sends the results back (4) to Command 
Control that will forward it to the user (5).  This chosen port number was one the available and may 
be modified if necessary. 

 
Figure	13	–	Command	Interface	software	flow.	

3.1.4.3 Kernel 
The Plasma kernel provides a system call, named Echo, which tasks might use to write 

messages to a log file during simulation. Whenever Echo is executed, the kernel executes a puts 
routine. This is an assembly code that writes data into Plasma IP UART (do not confuse with 
Zedboard UART). This message is then transmitted to the testbench file and will be written to a log 
file. A task example code and resulting log file is depicted are Error! Reference source not 
found.. 
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Figure	14	–	Example	of	a	task	(on	the	left)	and	resulting	log	file	(on	the	right).	

With this feature it is possible to analyze each task’s execution flow and verify when it 
terminates. Zynq’s PL portion does not have direct access to the UART. Nonetheless, it is possible 
to use HeMPS debug service to send messages to the ARM processor, which has access to it. 
Therefore, instead of using the internal UART, the kernel builds and transmits a debug packet.  

The kernel has a reserved space in memory, called pipe, where messages are stored for 
transmission. DMA is responsible for reading the pipe and transmitting data to the NI that, 
consequently, forwards to the network. Debug packets are composed of: 

§ Destination address (remote_addr) 

§ Packet size (pkt_size) 

§ Service type (service) 

§ Processor identifier (local_addr) 

§ Task identifier (target_id) 

§ Message length (length) 

§ Message (message)  

HeMPS kernel defines that a message may have a maximum of a hundred and twenty-
eight flits. Since HeMPS is configured to use thirty-two bits flit size, each Message flit may hold 
four characters, given that one character requires eight bits. The implementation for Plasma slave 
kernel consists in procedures to received tasks from the master, execute them and transmit 
messages back. Figure 15 shows the Echo system call implementation for it. First, the task 
identifier and Echo’s message are extracted from the registers arg1 and arg0, respectively. After 
header fields are properly set (lines from 233 to 237), msg is configured to point to the first pipe 
Message position. Then, while Echo’s message character (pointed by ptr) is different from end-of-
message tag, i.e. ‘\0’, its value is stored in the pipe (msg). The variable i is used to count the 
number of characters stored in the message (slot_ptr->message). Based on its value, it is possible 
to calculate the packet length. Since each flit (thirty-two bits) holds four characters, i should be 
divided by four. Finally, DMA_Send() is invoked to perform data transfer. 

This kernel modification will increase prototyped design observability and create a way to 
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determine whether tasks have been properly transferred to slave PEs. Messages from each task 
are forwarded to the ARM processor that will transmit to the user through UART. Therefore, it is 
possible to analyze whether tasks completed or not. 

 

 
Figure	15	–	Echo	system	call	implementation.	
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4 HARDWARE INTERFACE 

Both PL and PS communication are designed to benefit from the DMA. However, the 
DMA interface uses AXI-Stream protocol while Hermes uses credit-based protocol. This Chapter 
introduces the developed hardware that enables interconnecting those two standards. This new 
module, called Network Interface ARM-Hermes (NIAH), substitutes the Plasma IP Master to 
interconnect HeMPS router architecture with the new Master processor, i.e. ARM Cortex-A9. At 
one side, NIAH is connected to Hermes NoC (represented as a cloud), and on the other, to the 
DMA (Figure 16). Data from Hermes processing elements are converted to AXI-Stream signals 
and then written to the processor’s OCM. The DMA reads the same OCM to transfers data to 
Hermes PEs through the NIAH, which now converts data from AXI-Stream to Hermes standards. 

 

 
Figure	16	–	Network	Interface	ARM-Hermes	module	interconnections.	

The following sections introduce AXI-Stream protocol and Hermes credit based control 
flow. Then it presents NIAH module and validate its implementation. 

 

4.1 Advanced eXternsible Interface Stream 
AMBA ® AXI4-Stream protocol [ARM10] is a standard interface to connect components 

that wish to exchange data. The interconnect infrastructure supports multiple master to multiple 
slave configuration, arbitrary data width conversion, synchronous and an asynchronous clock rate 
conversion, multiple clock domains, among other capabilities. 

The protocol consists of a two-way flow mechanism that enables both master and slave to 
control transfer rate across the interface. TVALID and TREADY handshake determines when 
information is transmitted. The required condition is that both signals are asserted, regardless of 
which was asserted first. After each transfer both signals are deasserted and, if there’s more data, 
the process is repeated. TLAST indicates the last data and is set along with TREADY. 
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Table 1 summarizes the most important available interface signals and their purpose. 
Signals such as TSTRB and TKEEP offer advanced control over transmission, although NIAH 
implementation does not take advantage of them. Considering TDATA of thirty-two bits (four 
bytes), both TSTRB and TKEEP contains four bits, each associated with a byte of TDATA. Their 
values are fixed to logical one in this project because, otherwise, they indicate that associated byte 
is used for control purposes. 

Table	1	–	AXI4-Stream	interface	signals	[ARM10].	

Signal Source Description 

ACLK Clock Source The global clock signal. All signals are sampled on the rising 
edge of ACLK 

ARESETn Reset Source The global reset signal. ARESETn is active-LOW. 

TVALID Master TVALID indicates that the master is driving a valid transfer. A 
transfer takes place when both TVALID and TREADY are 
asserted 

TREADY Slave TREADY indicates that the slave can accept a transfer in the 
current cycle 

TDATA[32] Master TDATA is the primary payload that is used to provide the data 
that is passing across the interface. The width of the data 
payload is an integer number of bytes 

TSTRB[4] Master TSTRB is the byte qualifier that indicates whether the content 
of the associated byte of TDATA is processed as a data byte or 
a position byte. 

TKEEP[4] Master TKEEP is the byte qualifier that indicates whether the content 
of the associated byte of TDATA is processed as part of the 
data stream. 

Associated bytes that have TKEEP byte qualifier deasserted 
are null bytes and can be removed from the data stream.  

TLAST Master TLAST indicates the boundary of a packet. 

4.2 Hermes Credit-Based Control Flow 
When a given router A wishes to transmit data to its neighbor B, it must verify if the 

selected port has credit, i.e. there is space in B’s target buffer. If that condition is true, router A 
properly sets DATA_OUT and signals router B through TX that there’s data available. Router B 
decreases each transfer available credit, according to the buffer’s space. While B offers credit, A 
may transmit new data on a cycle basis. Whenever credit is deasserted, router A must wait B to 
consume available data and increase available credit. 

Hermes Credit-Based control flow interface comprises the signals described in Table 2. 
Analyzing two neighbor routers A and B, input signals from one are connected to the other’s 
output. Thus, router A CLOCK_TX is connected to B CLOCK_RX; TX to RX, CREDIT_I to 
CREDIT_O, and DATA_OUT to DATA_IN.  
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Table	2	–	Hermes	Interface	Signals	

Signal Source Description 

CLOCK Clock Source The global clock signal. Might be used as CLOCK_RX and 
CLOCK_TX source. 

RESET Reset Source The global reset signal. RESET is active-HIGH. 

CLOCK_RX Target Router The local clock between two routers. Used to synchronize 
Target Router transmission with Source Router reception. 

RX Target Router RX indicates that Target Router is providing valid data. A 
transfer takes place when both RX and CREDIT_O are 
asserted. 

DATA_IN[32] Target Router DATA_IN is the primary payload used by Source Router to 
receive data from Target Router. 

CREDIT_O Source Router CREDIT_O indicates that Source Router is ready to accept 
data transfer. 

CLOCK_TX Source Router The local clock between two routers. Used to synchronize 
Source Router transmission with Target Router reception. 

TX Source Router TX indicates that Source Router is providing valid data. A 
transfer takes place when both RX and CREDIT_I are 
asserted. 

DATA_OUT[32] Source Router DATA_OUT is the primary payload used by Source Router 
to transmit data to Target Router. 

CREDIT_I Target Router CREDIT_I indicates that Target Router is ready to accept 
data transfer. 

 

4.3 Network Interface ARM-Hermes 
On one hand, AXI-Stream is a handshake protocol. On the other hand, Hermes is a credit-

based control flow. Therefore, NIAH must operate accordingly on both interfaces. Two state 
machines control data conversion from DMA to Hermes, and from Hermes to DMA separately 
(Figure 17). AXI-Stream slave interface is connected to Hermes signals that drive data into the 
MPSoC, while AXI-Stream master is connected to those that drive data out, i.e. to the ARM 
processor. 

 Both state machines behave similarly, i.e. the same states and transitions (Figure 18), 
differentiating on data direction. One converts Hermes credit-based signals to AXI handshake, and 
the other performs the inverse operation. States correspond to expected packet format defined in 
Section 2.2.1. Hence, a packet should begin with the header and length flits, followed by a variable 
number of payload flits. For example, the FSM that receives data from the DMA, first processes 
the header (1 and 2) and the size (3 and 4) flits. Sequentially, it will loop over step (6) and (5) until 
all payload is received (7). Finally, the state machine terminates packet processing (8) and resets 
to wait a new packet (9). The other FSM performs in a similar manner because packets have the 
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same format independently of its source, i.e. DMA or Hermes. Table 3 summarizes the function of 
each state. 

 
Figure	17	–NIAH	module	overview.	

 
Figure	18	–NIAH	Finite	State	Machine	transition	flow.	

Table	3	–	Hermes	NIAH	state	and	action	correlation.	

State Action 

INIT Initialize state machine control variables. 

HEADER Receives packet header from DMA and forwards to Hermes, or vice-versa. 

LENGTH Stores payload size and forwards to the other interface. This information is used 
by PAYLOAD state to process the right amount of data. Furthermore, data flow 
from Hermes to AXIS, generates TLAST when all packet have been received.  

PAYLOAD Loops in this state until all payloads have been transferred. Control when NIAH 
is ready to receive data. 

TRANSMIT Control when the destination, i.e. either DMA or Hermes, is ready to receive and 
data transfer. 

END Deassert signals and returns to the initial state. 
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Using the same example, Figure 19 represents the equivalent signals that are generated 
from the DMA (Slave AXI-Stream) and NIAH’s respective converted signals (Hermes input). To not 
overweight the picture, some state names were abbreviated. Header was changed to “HDR”, 
payload to “PLD” and transmit to “TX”. Note that it takes two cycles to transfer data from one 
interface to another, but it could take more depending on Hermes credit (credit_o). NIAH does not 
have storage logic. Therefore, when Hermes is ready to receive data from NIAH, it is consequently 
able to accept data from the DMA. Hence, data throughput depends on both modules availability, 
i.e. ready and credit signals. 

 
Figure	19	–	NIAH	behavior:	data	transfer	from	slave	AXI-Stream	to	Hermes	input.	

AXI-Stream data width is equal to Hermes for this project, however they may differ. This 
design assumes both are configured with thirty-two bits size. It is possible, for example, to 
configure Hermes with bigger or smaller flits but NIAH must be modified. Thus, data should be split 
up or concatenated accordingly to receiver’s data width. 

4.4 NIAH Validation 
NIAH validation was carried-out by prototyping a 2x2 Hermes NoC, which is connected to 

simplified processing elements. There are three PEs available, where each performs a different 
kind of operation. The first executes sequential add operation over the packet’s payload; the 
second, subtract operation; and the third, combines add and shift operation. Those operations 
were implemented in hardware to temporarily substitutes Plasma IPs and simplify NIAH’s 
validation. Complete Vivado design is depicted in Figure 20. The blocks in the Figure corresponds 
to: 

1. acc_dma_0: includes Hermes NoC and NIAH; M00_AXIS and S00_AXIS are NIAH’s master 
and slave AXI-Stream interface respectively 

2. axi_dma_0: Xilinx DMA module; 
3. processing_system7_0_axi_periph: AXI interconnection for control signals between the DMA 

and the PS; 

4. axi_mem_intercon: provides the DMA direct access to read and write to PS’ memory; 

5. xlconcat_0: transmits the interrupt signals from the DMA to the PS; 

6. rst_processing_system7_0_102M: the reset system; 

7. processing_system7_0: processing system instance 
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Figure	20	-	Hermes	prototyping	blocks	using	NIAH	to	communicate	with	the	PS.	

Figure 21 is an abstract model that helps to understand the validation process. Suppose 
that the SDC has already stored a set of files. The host computer, then, issues a command (1) to 
perform one of the available operations over a certain file. Consequently, the ARM processor 
reads from the SDC and writes the requested file in OCM. Next, the DMA is configured to read the 
memory (3) and transfer the file to the network. Consequently, the packet will pass through NIAH 
and reach its destination (4). Whenever computation is finished, the packet will travel the inverse 
path (5) and hence being written again into OCM by the DMA (6). The processor is interrupted, it 
reads the memory and sends the results back to the host computer (7). Since each PE performs a 
different operation, the user is capable to check if they match expected answer. 

 
Figure	21	–	NIAH	validation	flow.	

This validation flow generates the screen captures depicted in Figure 22. First, the host 
computer uses TFTP to transfer LOG.TXT file to the SDC. This file contains data to be processed 
by the PEs (shiftsum, checksum, subtract). Next, it issues one command for each PE, i.e. (1), (2) 
and (3); with telnet and verifies if results match with those from verify_results software. This 
performs the same operations as the hardware. On UART communication is possible to identify 

1 
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4 

5 

6 

7 
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the moments when the command is received, data is written into memory, how many flits are 
transferred and when it terminates.  

This setup validates the new hardware module developed in this work, i.e. NIAH, the 
Hermes NoC, the TFTP protocol, developed API, and all other structures described thus far. 
Additionally, comparing it with HeMPS setup, the major difference is the simplified processing 
elements that should be replaced by Plasma Slave IPs. 

 

 
Figure	22	–	UART	communication	and	host	computer	terminals.	
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5 HEMPS DESIGN 

Once validated the hardware-software interface (DMA and NIAH) and the communication 
interface (Ethernet and RS232), the next step is to prototype HeMPS MPSoC. This Chapter 
describes the hardware design in Section 5.1, and software used to control the MPSoC in Section 
5.2. 

5.1 Hardware 
This Section discusses from HeMPS MPSoC generation, modifications, simulation and 

finally prototyping. 

5.1.1 Architecture Characteristics 

The first step is to generate HeMPS original hardware using available scripts. The input 
for those is a file that contains information about the hardware characteristics and a set of 
applications to simulate. It is possible to configure the following hardware parameters: (i) NoC size, 
(ii) Plasma memory size and (iii) page sizes, (iv) flit size, (v) NoC buffer size and (vi) global master 
location. The corresponding settings used for this final project are presented in Table 1. Plasma IP 
is configured with four pages and thus may execute three tasks at the same time. Two pages are 
reserved for the kernel object code. Therefore, it is necessary to have, at least, 32KB for the 
kernel. With 64 KB is possible to execute two tasks simultaneously. 

Scripts compile both master and slave kernels, which are implemented in C language, to 
generate a pre-initialized BRAM memory. Those comprehend Plasma IP first two memory pages. 
Similarly to the kernel, applications are compiled to generate a VHDL file, however the resulting 
object code is transformed into a single RAM and not BRAM.  Applications consist of one or more 
tasks, written in C language, that are going to be simulated.  

 

Table	4	–	HeMPS	defined	parameters.	

Parameter Configuration 

Plasma memory size 64 KB, for each Plasma processor (requires 32 
16Kb BRAMs per Plasma processor) 

Plasma page size 16 KB 

Flit size 32 bits 

NoC buffer size 16 flits, for each available port (E, W, N, S, L) 

NoC x dimension 2 

NoC y dimension 2 

NoC master location Lower left corner (LB – lower bottom) 

 

All applications that will be simulate constitute the repository. This has information 
regarding each task individually, e.g. object code, and the application, e.g. number of tasks. The 
repository is a 32 bits word line memory, which the first address is 0x04000000. The first position 
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contains the number of tasks that the application has. The next ten memory addresses store initial 
task identifier, notifying the master PE which tasks should be allocated first. Next positions 
comprise important task information, called task headers. Each has reserved twenty-four memory 
positions to store the following data: 

§ Identifier; 

§ Code size; 

§ Code memory address; 

§ Static address; 

§ Ten spaces for dependent tasks: 

o Identifier; 

o Communication load 

The repository characteristics were already defined. This work just presented how it is 
structured. 

5.1.2 Modifications Targeting FPGA Prototyping  

To prototype HeMPS MPSoC, it is necessary to adapt the generated hardware. As 
previously discussed, inside each Plasma IP there is an UART that is used to generate the log files 
during simulation. Since in this work the debug method was modified, the UART is no longer 
necessary. Moreover, as Plasma IP master is replaced by ARM processor, it is also removed from 
the design. Nonetheless, master’s router is kept to be used by the ARM.  

To create this connection, NIAH is incorporated into HeMPS MPSoC replacing the master 
PE. This new design is referred as A-HeMPS from now on (Figure 23). S00_AXIS and M00_AXIS 
signals represent slave and master AXI-Stream interfaces discussed in Section 4.1. The slave 
interface receives data from the DMA module and forwards to HeMPS, which is represented inside 
the module in the Figure. The master interface is used to transmit data in the opposite direction. 

 
Figure	23	–	A-HeMPS	Vivado	top	module	view.	

An abstract view of the resulting design is illustrated in Figure 24, showing only A-HeMPS 
and the PS. The task repository is implemented in the SDC and the computer represents the host 
connected to the board. The Figure also highlights the OCM, with the TX and RX buffers used for 
DMA read and write operations. 
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	 Figure	24	–A-HeMPS	abstract	design	overview.	 	

5.1.3 Simulation 

Before proceeding to Vivado project creation and prototyping, A-HEMPS simulation 
should validate that all modifications are consistent, i.e. it works. The testbench simulates DMA 
AXI-Stream signals to send tasks for all PEs thus simulating the ARM processor. Besides usual 
task termination messages, in the modified slave kernel (3.1.4.3) Echo messages will further 
provide ways to verify the correct functionality of the design. Moreover, in this step the UART 
should not be removed to view the PE messages in the log file. 

The tasks that were used during simulation are depicted in Figure 25. Each task sends an 
Echo message to the master processor on task startup and conclusion (lines 12 and 16). The exit 
function is a system call that sends a packet to the master indicating that there’s an available page 
in the memory to receive another task. 

 

 
Figure	25	–	A-HeMPS’	tasks	for	simulation.	

In the simulation results, depicted in Figure 26, it is possible to verify that NIAH Slave 
interface receives data from the testbench, which simulated the DMA, and forwards to Hermes 
NoC. Task A, B, and C are transferred to slave Plasma IP 0x0001, 0x0101 and 0x0100 
respectively. During task execution, all Echo messages are stored in the pipe. When it terminates, 
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all messages are sent to NIAH master interface and a packet from exit system call.  In the end, the 
testbench receives back nine packets, where six derives from Echo and three from exit. 

	
Figure	26	–	A-HeMPS	simulation	waveform.	

5.1.4 Design 

Once simulation is set forth, and A-HeMPS is validated, the final project advances to 
design. Vivado IDE has a feature that creates a new AXI4 peripheral interface. This automatically 
generates logic that is not necessary and may be removed (Figure 27). The input/output ports 
represented in the Figure are the same of NIAH. This is the hardware module that creates the 
connection between the processor and the MPSoC. 

	
Figure	27	–	A-HeMPS	Vivado	top	VHDL	file	(simplified	code).	
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Similarly to the validation scenario, represented in Figure 20, A-HeMPS interconnects with 
the same elements. Figure 28 represents Vivado block diagram, which was abstractly 
demonstrated by Figure 24. The processing system is further configured to use UART, Ethernet, 
and USB (for programming) board peripherals necessary for this project. DMA is set to operate on 
Scatter Gather mode, which enables segmented memory data transfer.  

 
Figure	28	–	A-HeMPS		Vivado	block	design	diagram.	

After the hardware definition, the designer proceeds with logic and physical synthesis. It 
was not possible to meet timing constraints only using default settings on both steps. Even 
significantly reducing operating clock frequency, from 100 MHz to 20 MHz, time slack was always 
negative. There are two main critical paths in this design: (i) Plasma register bank; (ii) delay due to 
Zynq-7000 device BRAM disposition. Those are column oriented, and thus forces prototyped logic 
to create long wires to access certain Plasma memory segments (Figure 29). It might not be 
interesting to use LUTs as BRAMs because it would consume too much resources. Each CLB 
contains 8 LUTs that can hold 256 bits [XIL14]. Since each Plasma IP requires 64 KB of BRAM 
logic, it would be necessary 4,096 LUTs for each (dual port). Considering available resources, it 
would consume 24% of available LUTs. 

One technique used in Electronic Design Automation to enhance timing constraints in the 
design is floorplan. It consists in delimiting where some major functional blocks should be placed. 
Hence, blocks that intercommunicate might be closely placed to avoid long wires.  

Looking back to hardware (Figure 28) and abstract (Figure 24) design overview, it is 
possible to observe which blocks communicate more often and thus should be kept close. Starting 
from PS physical location, which is the orange portion in Figure 29, the next blocks are AXI 
interconnections. Those connect the PS to the DMA; therefore they should be placed near. Inside 
HeMPS routers should be close to each other and their respective Plasma IP. Between the master 
router and the DMA, NIAH should be placed. The resulting floorplanning, using those 
considerations, are depicted in Figure 30. A further division that is not represented in this Figure is 
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Plasma IP Network Interface (NI). It is possible to observe, mainly in the right PEs, that there is a 
separated portion of programmable logic placed close to the router. Those delimitations grants, at 
a certain level, that logical blocks are placed together and hence avoid long wires. 

 
Figure	29	–	Zynq-7000	device	programmable	logic,	with	the	BRAM	logic	block	placement.	

 
Figure	30	–	HeMPS	floorplanning.	
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All modules from this design operate in the same frequency. DMA AXI4 and AXI4-Stream 
interconnections, respectively connected to PS and HeMPS, are capable to support different clock 
frequencies. However current architecture may not benefit from this feature. AXI4-Stream speed 
represents how much data is possible to inject into HeMPS network, and AXI4 speed, read and 
write operations. HeMPS is both the center and slowest module, thus constraining maximum 
design clock. As pointed out, only increasing AXI4, i.e. PS, interconnection speed wouldn’t add 
much to current architecture, i.e. memory operations speed, and hence was not considered at this 
time. 

Clock frequency, area, power and other results are reserved for the next Chapter. 

5.2 Software 
The project objective is to prototype the HeMPS MPSoC and to develop a software 

manager using ARM Cortex-A9 cores. The processor is capable to communicate with the slaves 
and allocate tasks on them. Moreover, it offers an interface to users to control which applications 
the system will run. This Section describes the software implementation. 

5.2.1 Initialization 

When the ELF file is loaded into Zynq-7000 device, the first actions executed are related 
to initializing hardware components. Those consist in configure and start: (i) timers, e.g. for Snoop 
Control Unit (SCU); (ii) interrupt system, e.g. for timers and DMA; (iii) DMA; (iv) Ethernet Interface, 
e.g. IP address. 

Afterwards, interrupt requests are enabled and the management modules execute their 
startup routines. Those are TFTP, Command Interface (telnet) and MPSoC Master. A wrapper unit 
called dispatch is responsible for sequentially initializing each routine. The Internet protocols, TFTP 
and telnet, routines consist on basic UDP and TCP procedures to bind a specific port to device’s IP 
address. Port numbers are 69 and 23 respectively. Furthermore, it is defined which function 
handles incoming requests on those ports. Finally, the MPSoC Master allocates memory for 
internal control units. 

After all peripherals and software modules are properly initialized, execution waits a user 
request to continue. Default IP address is 192.168.0.1/24; therefore the user should properly 
configure the computer interface to communicate with the board. 

5.2.2 File Transfer Requests 

Complementing discussion in Section 3.1.4.1, the TFTP protocol is responsible to handle 
user’s read and write requests to the SDC. It is not related to any MPSoC or repository concept but 
only to receive and send files.  

5.2.3 Command Interface 

Described in Section 3.1.4.2, the Command Interface is responsible to interpret the user 
commands and forward to HeMPS master. This work defined three commands, represented in 
Table 5. They aim to provide a flexible interface to users create execution scenarios on the fly. 
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Table	5	–	HeMPS	available	commands.	

Command Parameters Description 

hemps start None Sends HeMPS initialization packets to each slave. Those 
inform where Master processor is located in the NoC. 

hemps load Repository File Reads parameter, which should be a repository file, and 
loads it. This command is used to create execution scenarios 
with one or more applications. 

hemps run None Executes the scenario loaded by hemps load command. 
Applications are allocated to slaves in the same order that the 
users issued hemps load requests. 

5.2.4 HeMPS Master 

HeMPS Master needs to control applications, loaded by the user, and executes Plasma IP 
Master original functions. Those consist of: 

1.  Task allocation; 

2. Mapping heuristics; 

3. Handling slave PE requests: 

a. Debug messages; 

b. Task location; 

4. MPSoC control operations 

Let’s discuss those items in the same manner that the device is used. After the software is 
loaded in the PS, the user connects with TFTP to transfer repository files, or telnet to issue 
commands. The Master expects repository files in a similar format used for simulation with a few 
modifications. HeMPS scripts generate two types of repositories, one described in C language and 
the other in VHDL. Any of those might be used because what is removed from them is language 
syntax defines. This approach makes easier and more straightforward for the Master to process 
the files and takes advantage of existing scripts. Linux sed command is used to convert the 
generated file to the new format. Figure 31 demonstrates the difference between C/VHDL and A-
HeMPS file. Each character is interpreted as a byte and thus creates a 32 bits per line “memory”. 

After files are loaded into the SD Card, the user issues Table 5 commands to execute 
applications. The form they are presented in the Table corresponds to the order in which actions 
take place. 

5.2.4.1 Hemps start 
The MPSoC should be started prior to any other action. That means all slave processing 

elements must be notified to perform startup routines and receive the master address, i.e. address. 
This ensures that slaves know who they should obey and inquire about any control status. The 
corresponding function to this command is depicted in Figure 32. First, it erases any old values 
that OCM might have, and then builds a packet called Initialization Packet and configures the DMA 
to perform the transfer. An Initialization Packet contains the master address and identified as 
Initialize Slave service. This operation is repeated for all available slaves, which is statically 
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defined accordingly to hardware specifications. 

 

 
Figure	31	–	Comparison	among	C,	VHDL	and	A-HeMPS	repository	files.	

 
Figure	32	–	hemps	start	command	implementation.	

5.2.4.2 Hemps load 
Afterwards, the user is capable to load repository files that will make part of the execution 

scenario. The load operation corresponds to reading the repository file and extract number of 
tasks, where is their object code, i.e. “memory address”, and with which other tasks they 
communicate. Those parameters are stored in a set of structures so that Master does not have to 
read the file again, unless to get tasks’ object code, to execute them. Moreover, there are other 
information that identify which tasks are initials and where tasks have been allocated. An abstract 
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overview of hemps load implementation is represented in Figure 33. Note that the master is not 
concerned with any particular structure, it just uses repository API to control them. 

 
Figure	33	–	hemps	load	abstract	command	implementation.	

5.2.4.3 Loaded Applications 
Applications’ information is stored in a three level hierarchy: repository, application and 

task, from higher to lower levels. The repository is composed of all applications that the user has 
issued a hemps load command, which are subsequently formed by several tasks. Besides the 
task header, defined in Section 5.1, there are two other important parameters stored for each task. 
One identifies whether it is initial or not, and the other contains information about in which slave PE 
it is allocated. Table 6 summarizes all tasks parameters using implementation names.  

To support multiple application execution, each has an associated identifier. They are 
assigned accordingly to hemps load call order. Therefore, first loaded application is identified by 
one, the second by two, and so on. 

5.2.4.4 Hemps run 
At this moment, the repository has applications loaded by the user and the Master will 

allocate them to the slave processing elements. Initially, it gets from the repository the first 
application and allocates all initial tasks. During this procedure, initial_allocated variable is 
deasserted. This is a measure to ensure that, if DMA interrupts initial task allocation, no other 
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request is processed. After this first step, all pending requests are then processed. This procedure 
is repeated for all repository applications. Thereafter, the master waits all allocated tasks to 
indicate that they have finished, and consequently all applications. The functions that perform 
those actions are abstractly represented in Figure 34. 

Table	6	–	Task’s	defined	parameters.	

Parameter Type Description 

id 32 bits integer Identifier 

code_size 32 bits integer Object code size 

address 32 bits integer Object code address (line) in the memory (file) 

static_position 32 bits integer Defines task position. This HeMPS version does not use this 
parameter. 

initial Boolean2 Identifies which tasks should execute first 

dependencies List It is a list of all other tasks that this one will communicate. 
Consists in target task identifier and communication load 
information. 

	

 
Figure	34	–	hemps	run	abstract	command	implementation.	

																																																								
2	Boolean	is	represent	as	integer.	Since	ARM	Cortex-A9	is	a	32	bits	architecture,	this	type	is	actually	a	32	bits	
variable.	



50	

More details about where tasks are mapped and how DMA interrupt requests are handled 
is described next. 

5.2.4.5 Mapper 
The Mapper responsibility is to control slave PE status, allocate tasks and store this 

information, i.e. where they were allocated. There is three important information for each 
processing element: identifier, address and available memory pages. To determine where a task is 
going to be allocated, the Mapper verifies which PE has more available pages (Figure 35). The 
implementation of a complex mapping heuristic is out of scope of this work. Nonetheless, the basic 
necessary structure, accordingly to Plasma master kernel, was developed. 

 
Figure	35	–	Mapper	slave	PE	allocation	decision.	

After every task is mapped (mapper_task_map), the number of target PE available pages 
is decremented. As already commented, when a slave kernel executes an exit system call a Task 
Terminated packet is sent to the master. This will inform the Mapper to increment the number of 
available pages and hence, if there is tasks available, allocate them. 

Even though the repository supports several applications, the Mapper implementation 
does not handle all possible scenarios. For example, the Mapper does not handle cases where a 
task must be allocated and there is no available PE. This project achieved more than expected, 
therefore there was no available time to implement all new necessary functionalities. Further 
discussion is reserved to the final Chapter. 

5.2.4.6 MPSoC message handler 
During tasks’ execution, a slave processor may send messages that should be one of the 

following three different types of service: 

§ Task Request: Whenever a task wants to communicate with another, it asks the 
Master for its location. In turn, the Master verifies if the target task has already been 
allocated. If it has, Master requests the Mapper for its location, else allocate target 
task and then, in both cases, informs the requesting PE its location. 



51	

§ Task Terminated: Indicates that a specific task has finished execution (exit system 
call). Whenever this type of service is received, the Master forwards packet 
information to the Mapper.  

§ Debug Message: Slave processor use this service to send Echo messages to the 
master that, consequently, transmits to the user through the UART. This is related to 
the kernel modifications explained in Section 3.1.4.3.  

When there is a request, the DMA interrupts the Master to handle them. Both Task 
Terminated and Debug Message may be processed any time without problems. However, it might 
not be possible to handle a Task Request service at that moment, i.e. when interruption occurred. 
The difference between those services is that Task Request has to answer a requesting slave, 
while the other two don’t.  

To answer the slave PE, it is necessary to write a packet to memory, i.e. tx buffer. The 
problem arises if the Master was already using the same buffer to send another packet. Therefore, 
there are two flags that implement a mutex logic:  

§ initial_allocated : Indicates whether all initial packet have already been allocated or if 
is doing so. Even if a PE requests an unallocated task, beginning tasks should be 
allocated prior the others.  

§ handling_pr : Handling Pending Requests flag, indicates that another request that 
could not be processed at interruption, is under processing. Therefore, the new 
request must be stored. 

The appropriate action, when one of those flags is asserted, is to store incoming request 
for future processing. The list where this information is stored is called pending_requests. After 
initial tasks have being allocated, Master checks if there is any pending request and take 
appropriate actions.  

5.2.5 HeMPS Debug 

Additionally to the software project, a debug mechanism was created to help this and 
future development. As previously discussed, the UART peripheral is used to print messages in 
the remote computer and thus understand how software is executing. Therefore, another 
component was included in the API to ease its usage. This new routine is called hemps_debug. If 
this functionality is used instead of directly accessing the peripheral, it is possible to enable/disable 
all messages just changing one define:  

#define HEMPS_DEBUG_MODE 

With this define all messages are active, on the contrary, all deactivate. 

 

After all applications have finished executing, the Master returns a message through 
Command Control (3.1.4.2) to the user. Now, with both hardware and software design explained, 
the document advances to its final part: Validation, Result Analysis and Conclusions. 
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6 DESIGN ANALYSIS AND VALIDATION 

After the design set forth, this Chapter considers final project results, imposed limitations 
and how to possibly overcome those. In addition, discussion follows to general design validation, 
i.e. overall functionality. 

6.1 Hardware Characteristics 
This Section analyzes the developed hardware design characteristics, i.e. area, power 

and timing, for the final project. 

6.1.1 Timing 

Using optimized logical and physical synthesis settings and floorplan technique the 
hardware design achieved 51 MHz clock frequency. The Processing System AXI interfaces are 
capable to operate at a maximum of 250 MHz, hence it is possible to further enhance resulting 
frequency. In spite of working with synthesis settings and floorplannig represented an important 
part of this work, it is out of scope to prototype HeMPS hardware at the highest possible speed. 

6.1.2 Area 

Zynq-7000 programmable logic utilization report, for the complete design, is shown in 
Table 7. Special blocks, e.g. DSP and XADC, where not used and thus do not integrate this table.  

Table	7	–	Complete	design	area	utilization	report.	
Resource Utilization Available Utilization (%) 

Slice LUTs 18,045 53,200 33.92 

Slice Registers 10,467 106,400 9.84 

Memory 50 140 35.71 

Clocking 1 32 3.12 

 

Using VivadoTM utilization reports it is possible to further analyze how much HeMPS 
module contributes to the complete design area. Considering Table 8 results for each resource, 
HeMPS complete block represents 62.43% of all used logic.  

Comparing both tables, it is clear that Plasma IP memory significantly contributes to 
BRAM usage (96%).  

Table	8	–	HeMPS	area	utilization	contribution.	
Resource Utilization Utilization (%) 

Slice LUTs 13,030 72.20 

Slice Registers 4,760 45.44 

Memory 48 96.00 

Clocking 0 0.00 
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6.1.3 Power 

VivadoTM power analysis feature is used to estimate system power consumption after 
routing. Vectorless Estimation [XIL13] engine is capable of generating circuit activity through 
algorithms and heuristics that can even approximate glitching rate for any nodes in the netlist.  
Results are not as accurate as post-route simulation with reasonably long duration and realistic 
stimulus, but it provides a good estimation for this work.  

Results depicted in Figure 36 shows that the Processing System represents 90% of 
Dynamic Memory Consumption. HeMPS module consumes 7% of total dynamic power, which is 
the sum of BRAM and Logic consumptions.  

 
Figure	36	–	Design	power	analysis.	

6.2 Software Characteristics 
This Section covers software analysis in a structural form of view, i.e. memory usage and 

leakage. Behavioral verification is discussed in Section 6.3. VivadoTM does not provide software 
analysis tools in this level. Therefore, it is necessary to verify implemented software separately 
from the SDK. There are several available tools in Linux OS; hence all tests were performed in it.  

One of embedded system’s concerns regards memory usage. Problems might remain 
hidden during test phase and only manifest after a long time that the product in the field. For this 
reason all software that manipulates memory should be verified. Xilinx libraries did not integrate 
testing scenarios because coarse errors are more likely due to new developed code. Even though 
this might be true for the scope of this work, it does not mean that those libraries are faulty-free. 
The modules that were tested are: 

§ Command Interface: 
o Parser; 
o Command Control; 
o Command; 

§ Mapper; 
§ Scenario structures: 

o Repository; 
o Application; 
o Task; 

§ Master. 
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6.2.1 Valgrind 

Valgrind [VAL14] is an instrumentation framework for building dynamic analysis tools. This 
final project uses Memory Check and Massif Heap Profiler built in tools to evaluate memory 
leakage and usage respectively.  

6.2.1.1 Memory Check 
The Memory Check tool verifies if allocated memory during program execution is 

completely freed in the end, and all memory accesses are aligned. Considering a real scenario for 
this final project, applications are included and removed from it. Consequently, it should be verified 
that removal routines work properly, i.e. free all memory. Figure 37 depicts the testes used to 
evaluate memory. It reads 100,000 times two different applications, simulates allocation and task 
termination. 

 
Figure	37	–	Test	routine	used	to	verify	memory	requirements.	

After all tests were executed in the final version no memory leaks or unaligned memory 
accesses were found. This results are demonstrated in Figure 38. 

 

 
Figure	38	–	Valgrind	MemCheck	report.	

6.2.1.2 Massif Heap Profiler 
Massif gives a graph detailing memory allocation throughout test time. Even though the 

Cortex-A9 is 32 bits architecture and machine used for testing is 64 bits, results are useful to 
estimate memory usage. Repository concentrates memory operations and after creating ten 
applications, each with three tasks and two dependences, around 5KB was used. Disregarding 
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minimal Mapper’s contribution and other control structures, each application consumes around 
500B for this scenario.  

However, those results do not apply for other cases because application contain different 
number o tasks. This tool was mainly used to analyze how much memory task structures 
consume. Conclusion was that each task uses approximately 144 bytes, plus 12 bytes per 
dependence, considering memory alignment and administrative bytes. This indicates that 
structures do not require much memory and thus benefiting embedded systems.  

6.3 Validation 
The main goal of this Section is to validate the final project design functionality. NIAH 

hardware and master software are the major modifications from original architecture. Therefore, 
the tests focus on those, but are not restricted to them.  

6.3.1 First Scenario 

The first scenario, depicted in Figure 39, consists of three independent tasks. All are initial 
and thus the master sequentially allocates them. Mapper’s logic assures that each task is mapped 
to a different processing element to force all to participate. Tasks perform three actions: 

1. Echo - begin message; 

2. Performs computation; 

3. Echo – terminate message 

 
Figure	39	–	Independent	tasks	application	

User controls the system through the Command Interface and TFTP. Possible actions are 
(i) transfer the application to the board; (ii) connect to the command interface; (iii) start A-HeMPS 
MPSoC; (iv) load application file to current scenario; and (v) run. 
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Figure	40	–	User	using	A-HeMPS	command	interface.	

The master processor transmits through UART all steps required to execute user’s 
commands (Figure 41). Since tasks are short, i.e. do not perform heavy computation; their Echo 
messages arrive right after they were allocated. It is so fast that there is not enough time to 
allocate another task before those messages arrive. Note that ARM processor does not individually 
waits any task. This happens here because there is not enough time to send a new task before 
debug arrives. 

 

 
Figure	41	–	MPSoC	reports	for	simul1.txt:	independent	tasks.	

6.3.2 Second Scenario 

The second scenario depicted in Figure 42, is a traditional consumer-producer application. 
Two tasks, i.e. A and B, generated data and forward to another, i.e. C, to be consumed. The 
consumer depends on producers’ data; therefore only A and B are initially allocated. Eventually, 
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they will need to transfer generate data to the consumer. Consequently, both send a Task Request 
message to the ARM processor that will allocate task C. Afterwards, tasks A and B are informed 
C’s location, which also receives information regarding A and B’s position. Once tasks A, B and C 
knows each other’s’ location, the producers send all data to the consumer. In the end, task C 
informs the master if the expected data format from both A and B were received correctly. 

 
Figure	42	–	Dependent	tasks	application	

Results from the second application are depicted in Figure 43. After the user has issued 
the same command set described for the first test case, the following actions take place (the 
Figure has the corresponding messages from each step): 

1. Allocate task B (identifier 0) to 0x0100 PE; 

2. Allocate task A (identifier 2) to 0x0010 PE: 

a. During this stage, task B requests where task C is located; 

b. Saves this request, because not all initial tasks have been allocated; 

3. Start pending packets handling, the first is from B: 

a. During this stage, task A also requests where task C is located; 

b. Saves this request, because another is being processed; 

c. Task C (identifier 1) was not allocated, thus allocates to 0x0101 PE; 

d. Sends to task B and C, each other’s location; 

4. Task A also has a pending request: 

a. Task C is already allocated; 

b. Sends to task A and C each other’s location; 
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5. After consumer and producers finish communicating (MPI), each sends a Terminate 
service packet to the master 

Note that there is an (**) in this Figure, right after task C allocation (3.c), indicating that 
one duplicated request was avoided. When C starts execution, it needs to receive data from task A 
and thus needs to know where task A is located. As task A already made a similar request, master 
does not need to answer it twice. 

 
Figure	43	–	MPSoC	reports	for	simul2.txt:	consumer	and	producer.		

	

6.4 Limitations 
Final project duration is short and sometimes it is not possible to cover all cases. This 

Section explains this design’s limitations. 

6.4.1 Application 

Suppose the scenario previously described is executed. As presented, the scenario 
executes correctly, but what happens if a new scenario is loaded? The answer is that it will not 
execute correctly due to two issues. One is related to HeMPS scripts that generate applications 
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and the other one related to the kernel master. 

The current implementation requires that all applications must be compiled together to 
generate an unique repository. All tasks compiled in the current implementation receive an unique 
ID, inserted in the object code. It is not possible to insert dynamically a new application into the 
system because it will generate a conflict in the tasks ID. So solve this issue it would be necessary 
to generate on-the-fly the tasks’ IDs to avoid such conflicts. The HeMPS 7.0 (new HeMPS version) 
already supports this feature. 

The second issue is related to the kernel master. When a new scenario is loaded, the 
previous mapping tables are not cleaned. Therefore, a given initial task will receive a wrong task 
position when it tries to communicate with a new task. To solve this issue, it is required to 
implement a simple function to clean the master structures when a new scenario is loaded. 

6.4.2 Mapper 

The Mapper is responsible for deciding where tasks are allocated. This decision is based 
on which processing element has more available memory pages. However, when all PEs are busy 
this task should be scheduled to execute later. Due to limited time to develop this project, this 
feature was not implemented. 
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7 CONCLUSIONS AND FUTURE WORK 

 

The work described in this document produced the A-HeMPS platform, which comprises 
an MPSoC prototyped in the programmable logic and a manager using ARM®Cortex-A9 cores. 
Moreover, this system is connected to a remote computer capable to create application scenarios 
to evaluate the design. 

The proposed objectives demanded the author to practice and improve knowledge 
learned throughout the Computer Engineering course. The complete process to design A-HeMPS 
fulfilled the project goals: 

(i) understand an industrial design flow to create complex designs;  

(ii) understand a modern FPGA technology with embedded ARM cores;  

(iii) understand the communication techniques between software and reconfigurable 
components of modern FPGAs;  

(iv) prototype an MPSoC in the target FPGA programmable logic;  

(v) use the available ARM processors to control the MPSoC.  

Additionally, this final project was able to surpass the initial goals, creating a larger and 
more complete case-study design, with tasks exchanging messages. 

This project’s main contribution was to create a prototyping platform for HeMPS with a 
command interface to execute applications. To achieve this, it was necessary to understand 
HeMPS hardware design to modify it; implement a system call in the kernel to debug the MPSoC; 
gather available software, i.e. for peripherals, and implement Plasma IP master functionality. This 
implementation was based on existing master kernel, however it was designed from scratch. It is 
different from original implementation and does not have all functionalities. 

It is possible to use different devices based on ARM processor for this project. 
Nonetheless, it was not evaluated which modifications would be necessary because it depends on 
each different device. It is important that it offers the same peripherals, otherwise it would be 
necessary to make bigger changes in the design, i.e. regarding peripherals. Moreover, the new 
device should be compatible with Vivado IDE to use A-HeMPS and Xilinx DMA IPs. 

A possible future work for this final project would be to develop State-of-art MPSoC 
solutions. Expand developed software to include mapping heuristics, fault tolerant techniques and 
others. Moreover, it would be interesting to implement ways to extract relevant information about 
the MPSoC, e.g. network traffic, to evaluate their impact in field scenarios. 
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