
Pontifícia Universidade Católica do Rio Grande do Sul

Faculdade de Engenharia / Faculdade de Informática

Engenharia de Computação

EFFECTS OF NoC ARCHITECTURAL

PARAMETERS IN MPSoC PERFORMANCE

Douglas Roberto Guarani da Silva

Bruno Scherer Oliveira

End of Term Work

Prof. Fernando Gehm Moraes, PhD.

Porto Alegre

2013

Douglas Roberto Guarani da Silva

Bruno Scherer Oliveira

EFFECTS OF NoC ARCHITECTURAL

PARAMETERS IN MPSoC PERFORMANCE

End of Term work presented as part of

the activities to obtain the degree of Computer

Engineering at the Faculty of Engineering at the

Pontifical Catholic University of Rio Grande do

Sul.

Prof. Fernando Gehm Moraes, PhD.

ADVISOR

ABSTRACT

The goal of this end of term work is to evaluate the impact of the Network-on-Chip (NoC)

parameters over the performance of applications on Multiprocessors Systems-on-Chip (MPSoCs).

Nowadays, MPSoCs have so many constraints of performance that bus-based communications are not able to

achieve the full potential of MPSoCs. Therefore, the adoption of networks-on-chip (NoCs) is a trend for the

communication infrastructure in MPSoCs due to their performance compared to bus-based architectures and

scalability compared to crossbar-based architectures. However, we were not able to find any reference in the

state-of-the-art evaluating the impact of NoC parameters in the performance of applications running in

MPSoCs. This work proposes a simulation-based monitoring method to evaluate network performance. Such

monitoring collects performance results for different MPSoC applications scenarios, and for each scenario

network parameters such as buffer size, routing algorithm and topology vary. The goal is to correlate NoC

parameters with the MPSoC performance. This work adopts the HERMES NoC and the HeMPS MPSoC and

tries to answer the following question: “ how does a given NoC parameter affect the performance of the

MPSoC?”

“Sometimes the questions are complicated

and the answers are simple”

Dr. Seuss

CONTENTS

1 Introduction ... 11

1.1 Introduction.. 11

1.2 Motivation.. 11

1.3 Objectives of this Work .. 12

1.4 Document Structure .. 12

2 NoC and MP SoC.. 13

2.1 NoC ... 13

2.1.1 Network Topologies .. 13

2.1.2 Communication Mechanism .. 14

2.1.3 Routing Algorithm... 14

2.1.4 Switching Mode .. 14

2.1.5 HERMES NoC .. 15

2.2 HeMPS MP SoC (HERMES Multiprocessor System) .. 17

3 NOC Monitoring and Evaluation .. 19

3.1 Monitoring Concepts .. 19

3.2 Non-intrusive Monitors... 19

3.2.1 Local Monitor.. 20

3.2.2 Data Link Monitor... 21

4 NoC Architectural Parameter Evaluation .. 24

4.1 NoC Parameters.. 24

4.1.1 Buffer Depth ... 24

4.1.2 Routing Algorithms ... 24

4.1.3 Arbitration... 26

4.1.4 Topology... 26

4.2 Experimental Setup .. 27

5 Results ... 29

5.1 MPEG Application Results ... 29

5.1.1 Buffer Depth ... 29

5.1.2 Mesh Routing Algorithms.. 31

5.1.3 Topology Comparison ... 32

5.1.4 Torus Routing Algorithms ... 34

5.1.5 Torus vs. Partially Adaptive Algorithm vs. Arbitration vs. Original HeMPS............. 35

5.2 Synthetic Application ... 37

6 Conclusions ... 38

References .. 39

LIST OF FIGURES

Figure 1 – Network Nodes [WOS07]. .. 13

Figure 2 – Examples of direct network topologies (a) Mesh 2D 3x3; (b) Torus 3x3; (c) Hypercube

3D [WOS07].. 14

Figure 3 – An example of system based on the NoC HERMES. N represents a processing element

and the routers are identified by their XY coordinates in the network [WOS07]. ... 15

Figure 4 – HERMES -VC interface between routers [WOS07] .. 15

Figure 5 – HERMES router structure for two virtual channels. The E Module represents the circuit

that schedules an input port to output port connection. This Crossbar is already optimized for the XY routing

algorithm [WOS07]. .. 16

Figure 6 – An instance of the HeMPS MPSo C with six processing elements [CAR09]. 17

Figure 7 – Location of the local monitor. ... 20

Figure 8 – Location of the Data Link Monitor.. 21

Figure 9 – Visualization of the network utilization... 22

Figure 10 – Parameters used to generate t he visualization. ... 22

Figure 11 – Effect of traffic loads with different routing algorithm in a NoC. 23

Figure 12 – Example of valid paths in the XY routing algorithm [MEL04]. 24

Figure 13 – Example of valid paths in the West-First routing algorithm [MEL04].......................... 25

Figure 14 – Example of valid paths in the Negative-First routing algorithm [MEL04]. 25

Figure 15 – Evaluated Scenery with all disturbing and the main application (T1: start.c; T2 : ivlc.c;

T3: idct.c; T4: iquant.c, T5: print.c). M is the manager processor.. 27

Figure 16 – Average Latency of the flow T4  T5 for different buffer depths (similar results for the

other flows). .. 29

Figure 17 – Jitter of the flow T4  T5 for different buffer depths.. 30

Figure 18 – Average Latency of the flow T3  T4 for different mesh routing algorithms. 31

Figure 19 – Jitter of the flow T3  T4 for different mesh routing algorithms................................. 31

Figure 20 – Minimal, Average and Maximal Latencies of the flow T4  T5 for different topologies.

 .. 32

Figure 21 – Jitter of the flow T4  T5 for different topologies. ... 33

Figure 22 – Average Latency of the flow T2  T3 for different torus routing algorithm. 34

Figure 23 – Average Latency of the flow T4  T5 with all disturbing flows in the path for different

torus routing algorithm... 34

Figure 24 – Jitter for two flows, with maximum disturbing traffic for different torus routing

algorithm. .. 35

Figure 25 – Overall comparison of latency in the flow T4  T5 .. 36

Figure 26 – Overall comparison of jitter in the flow T4  T5.. 36

LIST OF TABLES

Table 1 – Execution time (ms) for different buffer depths. ... 30

Table 2 – Execution time (ms) for different mesh routing algorithms. .. 32

Table 3 – Execution time (ms) for different topologies. ... 33

Table 4 – Execution time (ms) for different torus routing algorithms. .. 35

Table 5 – Execution time (ms) for different architectures. .. 37

LIST OF ABBREVIATIONS

DMA Direct Memory Access

FIFO First In, First Out

HeMPS HERMES Multiprocessor System

MP Master Processor

MPSoC Multiprocessor System-on-Chip

NI Network Interface

NoC Network-on-Chip

PE Processing Element

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

QoS Quality of Service

SoC System-on-Chip

SP Slave Processor

UART Universal Asynchronous Receiver/Transmitter

VHDL Very High Speed Integrated Circuits Hardware Description Language

11

1 INTRODUCTION

“He who has begun has half done.

Dare to be wise; begin!”

Horace , Epistles

1.1 Introduction

In 1965, Gordon Moore foresaw that every 18 months the number of transistors in an integrated

circuit would double while keeping the same price. Therefore, it became possible to develop complete

systems inside one single chip, and so the Systems-on-Chips (SoC) were created. A SoC is an integrated

circuit that implements the majority or all the functionality of a whole electronic device [JER05]. When the

SoC contains multiple processors, it shall be called Multiprocessor System on Chip (MPSoC).

These MPSoCs may be designed as general purpose, being able to run a set of different applications,

with performance constraints. To achieve such goal, they present capabilities for being adaptable to provide

quality of service (QoS). Another feature of MPSoCs is that they can are able to load applications during

execution time. For this reason, there are MPSoCs with built -in methods to define applications mapping for a

better performance and power management [SCH10].

Nowadays, MPSoCs are present in many commercially available systems, with a broad use in areas

like signal processing and telecommunications. Such MPSoCs are built with an architecture that, in its

nature, contains heterogeneous resources, which may include a diversity of dedicated hardware, multiple

general-purpose processors, memories and an interconnection architecture [WOL04].

The interconnection architecture used by these MPSoCs varies. Some Authors have foreseen that

bus-based and point-to-point connections would not fulfill the communication requirements of today’s

integrated circuits. Consequently, starting from concepts originated from computer networks, the concept of

intra-chip network (or Network-on-Chip, NoC) was created [BEN02]. This interconnection architecture

brings many improvements over bus-based interconnections: efficient power usage and reliability [ZAM11],

scalability of bandwidth (compared to buses) [KUM13][STE12] and reusability. The basic architecture of an

intra-chip network is a set network of routers connected to certain elements. Communications work by

sending data from a processing element through a router through intermediate channels until it reaches its

destiny [BEN02].

The state-of-the-art of NoC research presents many works evaluating application specific NoC

designs [MOD11]. However, according to our review, none has approached the problem of how general-

purpose NoC designs affect applications running in MPSoCs connected using this infrastructure. The buffer

size, routing algorithm and NoC topology are examples of parameters that should be explored to have a

better understanding of how the NoC affects applications running in MPSoCs.

The goal of this work is to generate these missing metrics, and thus to evaluate how different NoC

parameters influence the application level. Therefore, obtaining some understanding of how on-chip

networks – designed for general purpose MPSoCs – and their parameters impact applications performance.

1.2 Motivation

While researching the state of the art of NoC-based MPSoCs, we were not able to find any study on

the impact caused by the NoC architecture over a set of different applications using an MPSoC as

infrastructure for running applications. For this reason, we will explore this path with the goal to generate

such metrics, determining how NoC parameters impact applications running on MPSoCs.

12

1.3 Objectives of this Work

The objectives of this end of term work include:

 Get a better understanding of how NoC-based MPSoCs work, resulting in added understanding and

comprehension of NoCs;

 Develop local and link level non-intrusive monitoring methodologies and systems, able to collect packet s

statistics transmitted through the NoC;

 Create methodologies and systems able to generate metrics using the collected data. Those metrics

include:

 Network latency;

 Network jitter;

 Network throughput ;

 Network estimated area and frequency.

 Develop a reference work for students, researchers and engineers that want to have a better

understanding of how NoC parameters affect the execution of applications running in MPSoCs;

 Apply many of the concepts learned during the undergraduate course of Computer Engineering.

1.4 Document Structure

After the introduction and contextualization set forth by this first Chapter, the second Chapter

provide a description of MPSoCs and NoCs, followed by a presentation of the HeMPS MPSoC. In the third

Chapter we discuss the monitoring methodology and systems, together with the analysis methods. This is

followed by the fourth Chapter, which present s the evaluated NoC parameters. The fifth Chapter present s the

evaluated scenarios. The sixth and most important Chapter presents the end of term work results and finally

the seventh Chapter presents our conclusions.

13

2 NOC AND MPSOC

“All we have to decide is what to do with

the time that is given to us.”

J.R.R. Tolkien , The Fellowship of the

Ring

This Chapter presents basic concepts required to the development of this work. Section 2.1 presents

concepts about NoCs while section 2.2 covers MPSoC features necessary for the understanding of this work.

2.1 NoC

Networks on-chip emerged as an alternative to bus architectures. The main characteristics of this

architecture are the following [OST03][KUM13][STE12][ZAM11]: (i) enhanced reliability and efficiency of

power management; (ii) larger scalability of the bandwidth with regard to bus based architectures; (iii)

distributed routing decisions.

The NoC concept became a main trend in embedded systems. This is mostly related to the fact that

NoCs have a more efficient power usage (compared to bus connections), once that the communication is

made in a peer-to-peer mode, using smaller wires due to the smaller distance between those peers. In bus-

based connections, the usage of longer wires results in bigger power usage.

Due to the multiplicity of possible paths in a NoC, it is possible to explore the communication

parallelism between nodes, meaning that multiple nodes can engage in simultaneous transactions. Bus based

architectures can make a single transaction at any given moment, limiting the bandwidth per node.

Scalability relates to the ability to connect additional nodes of hardware, without major performance

loss. Actually, in NoCs the addition of modules in the network induce an augmentation of the number of

communication channels, therefore potentially improving the performance [OST03]. In bus-based

interconnections, this fact is not observed. What actually happens is that the additional nodes increase the

bus length, reducing its performance.

2.1.1 Network Topologies

There are two categories of network topologies for multiprocessors, according to how routers and

processing nodes are interconnected: direct networks and indirect networks [ZEF03] [MOR04]. In direct

networks, as illustrated in Figure 1, each router has a processing node linked with it , and this pair can be seen

as a unique element, typically referred as a node or tile [DUA01].

Figure 1 – Network Nodes [WOS07].

The most common direct orthogonal (intersected at right angles) networks are the n-dimensional

arrays of nodes, such as: mesh (Figure 2-a), torus (Figure 2-b) and hypercube (Figure 2-c).

Node = processing node
+ switching node

14

In indirect networks not all routers are connected to processing nodes. Only a few routers have

connection to processing nodes, and these routers are the only ones that can be the source or target of

messages. Examples of indirect topologies include tree, butterfly, ban yan networks and clos networks

[DUA01].

Figure 2 – Examples of direct network topologies (a) Mesh 2D 3x3; (b) Torus 3x3; (c) Hypercube 3D

[WOS07].

2.1.2 Communication Mechanism

The communication mechanism specifies how a message evolves through the network. Two methods

for transferring messages are circuit switching and packet switching [HWA92]. Circuit switching consists in

establishing a connection before sending the data, which means it allocates a sequence of channels to

guarantee the QoS. After connection establishment , any other attempt to use the allocated channels is denied,

until the connection is released. For packet switching, packets are transmitted without any need for

connection establishment procedures. For this reason, each packet is routed individually from its source until

it reaches its target .

2.1.3 Routing Algorithm

A routing algorithm defines the path that a packet takes between its source and target routers.

Depending where routing decisions are made, it is possible to classify routing in source or distributed routing

[DUA01]. In source routing the path taken by packets is defined at the origin. In distributed routing, every

router decides the next direction to send the packet. Routing algorithms can be classified as deterministic or

adaptive, based on how the path is defined to transmit packets. A deterministic routing employs a path that is

uniquely defined by the source and target addresses only [MOR04]. Adaptive routing may define the path

also according to instantaneous network traffic [DUA01][MOR04]. Adaptive routing can still be divided into

partially or fully adaptive. Partially adaptive routing uses only a subset of the available physical paths

between source and target routers, by imposing a set of rules restricting the possible routes. Fully adaptive

algorithms do not impose any restriction to these rules.

2.1.4 Switching Mode

The choice of a switching mode is required when using packet switching. This defines how packets

traverse routers. Some of the modes are store-and-forward, virtual cut -through and wormhole [NI93]. The

store-and-forward mode completely stores the packet in the router, and then forwards it to the next router. In

virtual-cut-through mode, the packet is forwarded once the next router guarantees that the packet can be

completely accepted. Therefore, the use of a buffer to store a complete packet is a necessity, just like in the

store-and-forward mode, although with potentially lower communication latency. The wormhole method is a

variation of the virtual cut -through mode, which avoids the need for large buffer space, because packets are

sent between routers in units called flits (flow control digits). Typically, only the header flit has the routing

information. Hence, all other flits that compose a packet follow the same path reserved by the header

[MOR04].

(a) (b) (c)

15

2.1.5 HERMES NoC

We use in this work the HERMES NoC, developed in the GAPH research group [MOR04]. This NoC

uses as communication mechanism packet switching, wormhole mechanism, and adopts a mesh topology,

due to the easiness to develop the router algorithm, generat e the layout and add new nodes [MEL05]. Figure

3 illustrates a 3x3 instance of the Hermes NoC.

Figure 3 – An example of system based on the NoC HERMES. N represents a processing element and

the routers are identified by their XY coordinates in the network [WOS07].

As presented in Figure 4, the following signals compose the interface between routers:

 Tx: indicates data availability;

 Data_out: data to be sent ;

 Ack_tx: control signal indicating successful data reception;

 Rx: control signal indicating data availability

 Data_in: data to be received

 Ack_rx: control signal indicating successful data reception

The number of control flow, flit width, buffer depth and routing algorithm are parameterizable.

Figure 4 – HERMES interface between routers [MOR04]

Each router uses a centralized control and has up to 5 bidirectional ports: North, South, East, West and

Local. Besides the Local port , each port connects the router to a neighbor router. The Local port connects the

router to a processing element. Each link has two unidirectional channels (physical channels). Each physical

channel can be multiplexed in m-virtual channels. Figure 5 shows a router with two virtual channels per

physical channel.

Each input port has its own buffer for decreasing performance loss when flits are blocked. This

performance loss happens because when a flit is blocked, subsequent flits can be blocked in the routers along

the path from the source to the router with the blocked port . By using a buffer, the number of routers affected

02 12 22

01 11 21

00 10 20

N N N

N N N

N N N

16

by the flit blocking can be reduced. The buffer implemented in the HERMES Router works as a circular First

In First Out (FIFO).

The input port of each router is responsible for receiving flits, and to store them in the buffer of the

correct virtual channel. The lane_rx has n bits, where 2n is the number of virtual channels. After buffer

selection, the flit is stored and the number of credits (not to be taken as the credit_in signal) of the virtual

channel (free spaces to storage) is decreased. W hen the output port transmits a flit , it is removed from the

buffer and the number of credits is increased. The available credit information is transmitted to the neighbor

router by the credit_o signal. It has 1 bit for each virtual channel, which is interpreted similarly to the

lane_rx.

Figure 5 – HERMES router structure for two virtual channels. The E Module represents the circuit that

schedules an input port to output port connection. This Crossbar is already optimized for the XY routing

algorithm. Dots indicate a possible connection between an input and output port pair [WOS07].

The HERMES NoC uses a centralized control logic that implements the arbitration logic and the

routing algorithm. By receiving a header flit , the arbitration is executed and if the requisition is granted, the

routing algorithm is used to connect the flit of the input port to the chosen output port. Every router must

have a unique network address. To simplify network routing, the addresses are expressed in XY coordinates,

whereas X represents horizontal position and Y the vertical one.

When all flits are transmitted, the connection is closed. The connection can be closed in two

different ways: by a trailer or by using a flit counter. When using a trailer two or more flits are used as packet

terminator and an additional logic is used to detect the trailer. Therefore, to simplify the design, the

HERMES router has a counter for each input channel. The coun ter of each channel is initialized when the

second flit of a packet is received, which represents the number of flits that constitute the payload. The

counter is decreased for each successfully transmitted packet. Therefore, when the counter value reaches

zero, the position of the free vector of the output virtual channel goes to 1 (free=1), closing the connection.

A
rb

it
ra

ti
o

n
 a

n
d

R
ou

ti
ng

E E E E E

Input Ports
East

West

North

South

Local

Partial Crossbar 10x10

East West North South Local

Output Ports

17

2.2 HeMPS MPSoC (HERMES Multiprocessor System)

We use the HeMPS MPSoC [CAR09] as the reference platform for this work. The basic

characteristics of the HeMPS MPSoC are: homogeneous processing; use of NoC; communication by

message exchanging; and paged memory organization.

All processing elements have the same architecture, thus simplifying object code generation and task

mapping and migration. The use of a NoC is justified to enhance scalability [PAS08].

Each processing element has its own private memory, responsible for the storage of data and

instructions. This reduces data traffic during communication. Communication in HERMES is based on

message exchange, which is more natural for distributed memory systems. By using a paged memory

organization there is a simplification of the task mapping process as well as in task migration processes.

Consequently, there is no need to use complex memory management mechanisms [CAS13].

The HeMPS MPSoC contains three main components: (i) Plasma-IPs, the HeMPS processing

elements; (ii) an instance of the HERMES NoC used as communication infrastructure; (iii) an external

memory called task repository. Figure 6 presents an instance of the HeMPS architecture with a 2x3

HERMES NoC connecting six Plasma-IPs.

 Figure 6 – An instance of the HeMPS MPSoC with six processing elements [CAR09].

The Plasma-IP is the processing element used by HeMPS. It consists in two types of instances:

master, called Plasma-IP MP, responsible for the resource management of the system ; and slave, named

Plasma-IP SL. In the HeMPS MPSoC there is a single Plasma-IP MP which implements a centralized

resource management mechanism. Plasma-IP is composed by the following components:

(i) A plasma processor [PLA11], a 32-bit RISC processor with an encompassing subset of the

instructions from the MIPS2000 architecture. The Plasma used in the HeMPS is a modification of

the version 2.0 of the Plasma processor, which includes new memory mapped registers, and the

exclusion of the UART module;

(ii) A private memory, which contains the operating system, called microkernel, executed by the Plasma

processor. In the case of the Plasma-IP SL, the memory is divided in pages with fixed size, and each

page can house one task;

(iii) A direct Memory Access (DMA) module that enables the processor to execute tasks without

controlling the message exchange with the network. Primary functions are to transfer the object code

from arriving tasks from the network interface to the processor memory and send the master

processor debugging messages;

(iv) A network interface, which connects the HERMES NoC to the Plasma processor and to the DMA,

responsible to implement the communication protocol with the NoC.

The task repository is a external memory to the MPSoC that contains the object code for all tasks

that possibly run on the system. The first positions of the repository contain descriptors for every task, with

information such as a unique identifier, the initial position and the task size. In HeMPS, all applications are

18

modeled through task graphs, where vertices represent tasks, and edges stand for communications between

tasks. Tasks without dependencies are called initial tasks. When the MPSoC is initialized with a pre-

determined application, the mapping heuristics loads only the initial tasks to the MPSoC. The other tasks are

dynamically mapped to processing elements at run time, depending on requested communication and

available resources.

19

3 NOC MONITORING AND EVALUATION

“It's a dangerous business going out

your front door.”

J.R.R. Tolkien , The Fellowship of the

Ring

In this Chapter we present monitoring concepts, along with the specification of the developed

monitors and their functionalities.

3.1 Monitoring Concepts

Monitors can be either software or hardware components capable of analyzing the system resources

in dynamic workloads [KON13].

There are multiple types of monitors, categorized according to their respective functionality, such as:

 Monitors for performance: Observe the behavior of a system, collecting, for example, throughput

and latency-related statistics.

 Monitors for Q uality-of-Service: Observe if latency, throughput and utilization follow pre-

determined constraints.

 Monitors for power, energy and temperature: Have the role of finding thermal hotspots and large

temperature gradients in the circuit , as well as power consumption.

Monitors can also be classified according to:

 Implementation technique: Monitoring can be mechanisms based on software, hardware or hybrid.

 Sampling frequency: According to this criteria monitors may be classified as continuous, periodic,

on-demand or adaptive.

 Intrusiveness: Monitors may be Intrusive or non-intrusive, whether the monitor behavior can

perturb the system execution or data flow.

All these definitions are based on the survey of Kornaros et. al. [KON13].

3.2 Non-intrusive Monitors

This work develops an implementation of monitors capable of extracting a significant amount of

statistics from a NoC that are later processed by a set of tools. With these statistics, we can measure network

utilization and performance metrics of an intra-chip network in multiple application scenarios. Two types of

monitors are implemented: one type designed to obtain data link utilization and the other type to obtain the

latency and throughput between sender/receiver pair s.

The monitors are components described in simulation-only VHDL. Multiple monitors are

instantiated inside each router, with the objective of analyzing packets transmitted through the network. Just

by adding these monitors, we are able to extract all data required to obtain metrics that this work employs.

The applications running in the MPSoC do not need any modification, as well as the architecture of any other

module of the MPSoC.

The HeMPS MPSoC has an RTL description, which is accurate at the clock cycle level. Therefore,

monitors are expected to run also at the clock cycle level, taking advantages of VHDL features that are not

synthesizable, such as support to file operations. While evaluating the MPSoC platform, monitors generate

text files containing statistics about the network. These text files are used as input for additional tools that are

able to extract network metrics.

20

Monitors have the objective of helping to analyze how modifying certain parameters of the intra-

chip network affect the application performance in the MPSoC. They neither modify the packet s nor include

any additional latency in the network; therefore, they are not intrusive with respect to platform execution. It

is also important to highlight that such monitors evaluate the entire execution time of the applications (the

time suring which a full set of application runs, or when the simulation stops) in the MPSoC.

3.2.1 Local Monitor

This monitor is placed at the local port of each router , as illustrated in Figure 7. Its objective is to

extract statistics related to the communication between a given source and one or more targets. This monitor

creates a text dump of all packets that traverse the ports where these monitors were instantiated.

Figure 7 – Location of the local monitor.

Inside each router, two local monitors are instantiated between the network interface and the local

buffer, as shown in Figure 7. In this location, monitors are able to ascertain the exact moment that each

packet joins or leaves the network.

Since there are such monitors at every router, one for each local port link, each monitor generates

two types of text dumps:

 All packets that a specific PE receives, obtained through the monit or located in the RX local port;

 All packets that a specific PE sends, obtained through the monitor located in the TX local port.

For each packet that a PE sends or receives, this monitor records the following information in a text

file for each port:

 The first clock cycle that the monitor detected the transmission of a packet in a specific port;

 The clock cycle when the last flit of this packet passed through the port;

 The packet data.

A tool, developed in Python, capable of simultaneously interpreting the outputs of every local

monitor network matches equivalent packets in both receiving and sending pairs. Thus, it is possible to

extract the point-to-point network latency for each specific packet . The latency is computed using the

following equation:

𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑅𝑥𝐶𝑙𝑘𝐸𝑛𝑑 − 𝑇𝑥𝐶𝑙𝑘𝐵𝑒𝑔𝑖𝑛

Where: RxClkEnd is the clock cycle when the last flit of a packet arrived in the PE, TxClkBegin is the clock

cycle the sender PE injected the first flit of the packet in the network. Thus, the unit of the Latency is clock

cycles.

PE Router
Buffer

Local
Monitor

RX

Local
Monitor

TX

21

After obtaining the latency for each packet , following metrics are computed for each sending-

receiving pair of PEs, and for the entire network:

 Average packet latency: Many parallel applications require a low average communication latency

between processing elements to fully take advantage of multiprocessing. This value is calculated

using the equation, for each source-destination pair:

𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦 =
𝑆𝑢𝑚𝐿𝑎𝑡𝑒𝑛𝑐𝑖𝑒𝑠

𝑄𝑡𝑦𝑃𝑎𝑐𝑘𝑒𝑡𝑠

Where: AvgLatency is the average latency, SumLatencies is the sum of all the packet latencies and

QtyPackets is the amount of transferred packets.

 Jitter: Jitter is the deviation from the average latency. It affects the ability of the applications to

adapt to this difference, thus, this value affects directly the Quality -of-Service. The jitter is the

standard deviation of the latencies and can be calculate by following th is procedure

o For each packet exchanged between a source-destination pair, compute the latency variance:

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = (𝑃𝑎𝑐𝑘𝑒𝑡𝐿𝑎𝑡𝑒𝑛𝑐𝑦 − 𝐴𝑣𝑔𝐿𝑎𝑡𝑒𝑛𝑐𝑦) 2

o The square root of the mean of the square of differences is the jitter.

𝐽𝑖𝑡𝑡𝑒𝑟 = √
𝑆𝑢𝑚𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑄𝑡𝑦𝑃𝑎𝑐𝑘𝑒𝑡𝑠

 The minimum packet latency: Minimum packet latency between each source-destination pair.

 The maximum packet latency: Maximum packet latency between each source-destination pair.

 The sum of the latencies: Sum of all extracted latencies between each source-destination pair.

 The number of packets and flits : Transmitted between each source-destination pair

3.2.2 Data Link Monitor

This monitor type has the objective of extracting network usage. This monitor is instantiated in the

sending link of every router, as shown in Figure 8. These monitors count the number of packets and flits that

each one of these ports transmits in a specific amount time, named time window.

Similar to the local monitor, the data link monitor records in a text file the collected data. However,

instead of storing every packet, the data link monitor stores how many packets and flits each port

transmitted, separating this information by time windows. Using these text files generated by the data link

monitor, an intermediate tool generates a database containing an optimized copy of the extracted statistics.

The user can then employ a graphical tool, also developed in Python, to open this database and analyze the

network usage.

Figure 8 – Location of the Data Link Monitor.

Data Link
Monitor
(West)

RouterRouter

Router

Router

Router

Data Link
Monitor
(North)

Data Link
Monitor

(East)
Data Link
Monitor
(South)

22

Figure 9 and Figure 10 show the interface of these graphical tools displaying the statistics acquired

from a 3x3 network. Figure 9 shows the network utilization according to the parameters selected in the

window shown in Figure 10.

Figure 9 – Visualization of the network utilization .

Each box in Figure 9 represents a router. Every router has two numbers inside its representation. The

upper number is the router address, and the lower number between parentheses is the quantity of transmitted

units (packets or flits) sent by every port.

Arrows represent a channel between two routers. The arrow direction identifies the specific channel

direction and the number inside the arrow represents how many units this specific link transmitted.

Colors represent utilization relative to the maximum computed usage. Green represents an element

that is not used. Red denotes the most used element. Shades between green and red represent linearly

growing utilization.

Figure 10 – Parameters used to generate the visualization .

23

Figure 10 shows the following parameters:

 Maximum Usage: Defines the convention used in the element coloring and normalized values.

o Selection: The utilization is relative to the most utilized router and data channel in the

selected time window.

o Total: The utilization is relative to the total utilization of each specific element, considering

all t ime windows combined. For example, if 10 packets were transmitted in a specific link

during all the evaluation time, and in the selected time window five packets were transmitted

in this link, this link utilization will be considered as 50% in the selection.

 Unit: Defines the data unit used in the visualization.

o Flit: The values represent the number of transmitted flits.

o Packet: The values represent the number of transmitted packets.

 Visualization: Defines the method used to display the values.

o Q uantity: The number used is the exact quantity of units transmitted.

o Normalized: Normalizes the value, as the ratio between each element and the maximum

usage.

 Join Time Windows: Allows the user to join the specified number of time windows. They are

shown as a single item in the list and act as if the user had selected these items simultaneously.

The user can use the Time Window List to select the time window displayed in the visualization.

This list can be filtered by changing the Minimum Clock and Maximum Clock . It is also possible to select

multiple time windows by selecting more than one item. In this case, the value used in each element will be

the sum of this element value in every selected time window.

Finally, the user can take a snapshot of the current v isualization by clicking on the button Create

Snapshot. When the user clicks this button, a new window is open with a copy of the current visualization.

When the time window is changed, the visualization is updated accordingly, but this snapshot remains

unchanged.

This graphical tool provides an easy way of finding network portions that are over -utilized, which

can lead to thermal hotspot s, faster aging and latency increase in the network. This tool can also analyze the

routing algorithm.

Figure 11 is an example of the data extracted from a 6x6 network, using a complement traffic

scenario with 100 packets and different routing algorithms. Figure 11(a) uses the XY routing algorithm,

stressing the center of the network. Figure 11(b) uses the West-First routing algorithm, pushing the traffic to

the left. Finally, Figure 11(c) uses the Negative-First routing algorithm, pushing the traffic to the bottom-left.

(a) XY (b) West-First (c) Negativ e-First

Figure 11 – Effect of traffic loads with different routing algorithm in a NoC.

24

4 NOC ARCHITECTURAL PARAMETER EVALUATION

“It is when I struggle to be brief that

I become obscure.”

Horace , Epistles

In this Chapter, the evaluated NoC parameters are presented, as well as the adopted test scenario.

These parameters include, buffer depth, routing algorithm and topology. To conduct a fair evaluation, a real

application (MPEG decoder) was mapped in the HeMPS MPSoC, with a set o f communication flows

disturbing the MPEG traffic.

4.1 NoC Parameters

4.1.1 Buffer Depth

Buffers are an integral part of the network router. In most NoC architectures, the buffers are

responsible for the largest portion of router silicon area and dissipated power. Therefore, it would be an

advantage if we could reduce this, thus decreasing the overall NoC area overhead, without significant

performance reductions. In this work, we evaluate four different buffer depths: 4, 8, 16 and 32 flits. The

original HeMPS uses a 16-flit buffer depth.

4.1.2 Routing Algorithms

As the routing algorithm plays a major role in the NoC architectures, the present work evaluates the

performance of 5 routing algorithms: XY, West-First, Negative-First, Odd-Even and the Torus Routing

Algorithm for Network on Chip (TRANC).

4.1.2.1 XY Algorithm

The XY routing algorithm is deterministic, meaning that packets follow always the same path, even

when there are congestions. The XY algorithm compares the target packet address to the current router

address. When they are the same, the algorithm redirects the packet to the local port. If not, the packet is first

sent in the horizontal direction until it reaches the target router column. Then, the packet is sent in the

vertical direction, until it reaches its destination. Figure 12 shows an example of different paths used by the

XY routing algorithm.

Figure 12 – Example of valid paths in the XY routing algorithm [MEL04].

25

4.1.2.2 West-First Algorithm

The West-First algorithm is partially adaptive. When the target router address is in the same column

of the packet or the West of the current router, packets are routed deterministically, similarly to the XY

algorithm (paths 1 and 2 of Figure 13). However, when the target router is located to the East of the source

router, routing proceeds adaptively. Therefore, when the packet is blocked for some reason, the packet can

be sent through East, North or South directions, avoiding the blocking condition (bars in paths 3 and 4 of

Figure 13). The algorithm forbids curves to West when routing adaptively to avoid deadlock conditions.

Blocking situations are represented in this Figure as red bars between routers.

Figure 13 – Example of valid paths in the West-First routing algorithm [MEL04].

4.1.2.3 Negative-First

Being similar to the West -First algorithm, this algorithm is also partially adaptive. It considers North

and West directions as “negative” directions and South and East as the “positive” ones. The algorithm

forbids that packets take curves from positive directions to a negative one. However, the packets can take

any other turns to take advantage of the adaptive routing. Figure 14 shows an example of the Negative-First

routing algorithm.

Figure 14 – Example of valid paths in the Negative-First routing algorithm [MEL04].

26

4.1.2.4 Odd-Even Algorithm

The Odd-Even is an adaptive routing algorithm [DAL93]. Differently from the partially adaptive

algorithms discussed above, Odd-Even do not impose a limitation to packet directions. It allows packets to

route adaptively in every direction. To avoid deadlocks, two specific rules limit the turns in specific columns.

It interchangeably calls a column as odd or even, according to the coordinates of the specific column. The

turning model follows the following rules:

i) A packet cannot execute a turn from East to North when in an even column and it cannot

perform a turn form North to West when in an odd column.

ii) A packet cannot execute a turn from East to South when in an even column and it cannot

perform a turn from South to West in an odd column.

Applying these two rules, packets can take any other turns to avoid congestions.

4.1.2.5 Torus Routing Algorithm for Network on Chip (TRANC)

The Torus Routing Algorithm for Network on Chip (TRANC) is an algorithm designed for Torus

networks [DAR12]. It is a deterministic routing algorithm, similar to the XY algorithm for mesh topology.

When we used it to evaluate its performance, it is compared with other available routing algorithm for Torus,

which is the adapted West-First algorithm.

4.1.3 Arbitration

In a network on-chip, packets arrive in a given input port , and are redirect to an output port,

according to the packet target address. In certain cases, multiple packets arriving in different input ports may

require the same output port . Therefore, it is necessary t o schedule the output port aiming to provide a fair

usage of the output channel by the input channels. This scheduling must be done ensuring that no packet

waits indefinitely to be directed to its target. The act of scheduling the usage of the output port is the

responsibility of router arbiters. This work evaluates two implementations of the arbitration: centralized and

distributed round robin.

4.1.3.1 Centralized

The centralized arbitration consists in a single module managing the usage of the output ports. In the

HERMES NoC, the Switch Control module does this management . The arbiter knows the state of every

output port, allowing the implementation of adaptive routing algorithms. However, this implementation may

have a small performance, because the arbiter cannot schedule more than one packet simultaneously.

4.1.3.2 Distributed

In the distributed arbitration, each router port controls independently the routing and the arbitration.

Each input port has a routing module associated to it , and each output port has an arbiter. The routing module

requests a specific output port and the arbiter selects one specific input port if it has received multiple

requisitions. This implementation is faster, because multiples packets can be allocated to their output port

simultaneously, however, it occupies more area, since it necessary to replicate the routing control and the

arbiter for each port . Adaptive routing algorithms may be also used with distributed control. The mechanism

to allow adaptive routing in a distributed architect ure is based in the status (free/used) of each output port.

The routing module of each input port reads the status of the output ports to select the one to transmit the

packet.

4.1.4 Topology

The present work evaluates the 2D-mesh and the 2D-Torus topologies. Both are known for their

advantages, as scalability for the mesh and the smaller diameter for the Torus. When the topologies are

27

compared, both use the same routing algorithm, with the purpose to quantify the impact of the topology in

the performance.

4.1.4.1 Mesh Architecture

The mesh architecture is based on an m x n mesh. Except the routers at the edges, all other routers

have four neighboring routers, and a processing element connect ed to the local port . Its major advantage is

scalability, being possible to connect a large amount of PEs in a regular-shape structure.

4.1.4.2 Torus

The Torus topology is also based on an m x n mesh, but it is characterized by connecting all edges to

their equivalent on the opposite side. The Folded Torus topology is a topology where the physical placement

of the routers are made in such a way that the wires always have the same length, thus, minimizing the

problem of the links connecting edge routers.

4.2 Experimental Setup

To evaluate the NoC parameters, we chose a scenario corresponding to a real use of the MPSoC. The

chosen scenario uses an mpeg decoder as main application, with a set of producer/consumer applications

generating disturbing traffic. The mpeg application contains 5 tasks: start, ivlc, idct, iquant, print. The start

task sends frames to the ivlc task. Tasks ivlc, idct, iquant are responsible to execute the decoding algorithm.

The last task, print, receives the decoded frames. A 4x4 HeMPS instance is used, with the PLASMA

processor as PE. The entire environment was generated using the HeMPS Generator [CAR09] tool.

 Figure 15 presents the task mapping. This task mapping benefits the Torus topology and adaptive

routing, since a deterministic algorithm would be affected by the traffic generated by the disturbing traffic.

Thus, this mapping scenario can highlight the advantages of these techniques.

Figure 15 – Evaluated Scenery with all disturbing and the main application (T1: start.c; T2: ivlc.c; T3:

idct.c; T4: iquant.c, T5: print.c). M is the manager processor.

The manager PE (PLASMA-MP) is mapped in the router 30. The PLASMA-MP sends the task object

code to the PEs, according to the chosen mapping.

28

The producer/consumer (PC) application contains 2 tasks, generating traffic at the maximum

processor rate (on average 15% of the available link bandwidth). The producer generates dummy packets,

with a payload containing 200 flits, addressed to the consumer task. The goal of this application is to disturb

the application under evaluation.

Based on the task mapping shown in the Figure 15, multiple sub-scenarios were created, varying the

amount of disturbing tasks. The simulated sub-scenarios comprise (each disturbing application is represented

by two letters, e.g., AB):

(i) No Disturbing

(ii) Disturbing AB

(iii) Disturbing AB CD

(iv) Disturbing AB CD EF

(v) Disturbing AB CD EF GH

(vi) Disturbing AB CD EF GH IJ

(vii) Disturbing AB CD EF GH IJ KL

(viii) Disturbing CD

(ix) Disturbing FE

(x) Disturbing FE GH

(xi) Disturbing IJ

(xii) Disturbing IJ KL

A second scenario was evaluated, with a synthetic application replacing the mpeg one. It is also

based on 5 different tasks communicating sequentially with each other. However, the first task generate s

packets at the maximum processor rate (on average 13% of the available bandwidth). These packets have a

payload size of 200 flits. Then, the subsequent tasks will just redirect this packet to the next task, without

executing any computation on the packet. The goal of this scenario is to obtain the highest injection rate that

PEs can generate.

Each sub-scenarios is simulated twice:

(i) Fixed simulation time: the number of frames or packets of the application under evaluation is very

high, and the simulation is executed during 100 ms. The goal is to measure the impact of the evaluated

parameters in the latency, jit ter and throughput.

(ii) Application bound: the simulation runs until the end of the application under evaluation (the MPEG

application decodes 128 frames and the synthetic one transmit 1500 packets). The goal is to measure the

impact of the evaluated parameters in the execution time.

The obtained results are derived from the entire simulation time. This includes the beginning of the

simulation where the tasks object code are transmitted to the slave processors. The warm-up time is not

considered, due to the long simulation time.

29

5 RESULTS

“You see, but you do not observe.”

Sir Arthur Conan Doyle, (Scherlock

Holmes) A Scandal in Bohemia, 1982

In this Chapter we present the results related to the parameters being evaluated, with the metrics

generated by the monitors. The experimental setup was presented in the previous Chapter.

5.1 MPEG Application Results

The results presented in this section correspond to the MPEG application executing with a fixed

simulation time (100 ms). The extensive set of data and charts can be accessed on our Supplementary

Material (http://www.inf.pucrs.br/moraes/my_pubs/tcc/tcc_bruno_douglas_sup_material.pdf) with all the

Tables and Charts used to build the analysis of th is End of Term Work. It was not included in the text due to

its size.

5.1.1 Buffer Depth

This section evaluates the effects of different buffer depths in the network latency, jit ter and

execution time. Four different buffers depths were evaluated: 4, 8, 16 and 32 flits. Results are extracted from

a network with a mesh topology, XY routing algorithm, and centralized arbitration.

5.1.1.1 Latency

Results show that the buffer depth did not influence the latency in an overall perspective. For

example, when no disturbing traffic is added, the average latency is practically equivalent for different

buffers configurations - Figure 16(a).

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 16 – Average Latency of the flow T4  T5 for different buffer depths (similar results for the

other flows).

Even when adding all disturbing traffic, the average latency is almost the same for different buffers

configuration, as shown in Figure 16(b). In this specific example, a 2.3% latency reduction between the

buffer 4 and the buffer 32 configurations was observed. However, this difference is not a rule when

increasing the buffer size, showing even some increases in the latency as the buffer size increases in some

4
0

4

4
0

0

4
0

0

4
0

0

4
0

4
.4

9
5

6

4
0

0
.4

9
5

6

4
0

0
.4

9
5

6

4
0

0
.5

0
4

4

4
0

5

4
0

1

4
0

1

4
0

1

0

100

200

300

400

500

4 8 16 32

La
te

n
cy

 (
C

lo
ck

 C
y

cl
e

s)

Buffer Depth (Flits)

Latency (T4  T5)

Min. Latency Avg. Latency Max. Latency

4
0

4

4
0

0

4
0

0

4
0

0

5
5

0

5
4

9
.4

6
4

6

5
4

3
.4

1
5

9

5
3

7
.5

7
9

6

1
1

6
9

1
2

3
5

1
1

1
8

1
2

3
6

0

200

400

600

800

1000

1200

1400

4 8 16 32

La
te

n
cy

 (
Cl

oc
k

Cy
cl

es
)

Buffer Depth (Flits)

Latency (T4  T5)

Min. Latency Avg. Latency Max. Latency

http://www.inf.pucrs.br/moraes/my_pubs/tcc/tcc_bruno_douglas_sup_material.pdf

30

other paths. It is important to mention that the HeMPS MPSoC stalls in some situations using a buffer depth

equal to 4. It was out of the scope of this work to investigate this issue.

5.1.1.2 Jitter

Similarly to the latency evaluation, the buffer depth did not affect the jitter. With no disturbing

traffic, Figure 17(a), as expected the jitter is almost 0, corresponding to a constant latency. Increasing the

disturbing traffic, the jitter increases with all buffer depths, as shown in Figure 17(b).

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 17 – Jitter of the flow T4  T5 for different buffer depths.

5.1.1.3 Execution Time

The impact on the overall execution time when changing the buffer depth was minimal. Table 1

presents the execution time in milliseconds varying the buffer depth.

Table 1 – Execution time (ms) for different buffer depths.

 Execution time (ms) without distur bing tr affic Execution time (ms) with distur bing tr affic

 4 8 16 32 4 8 16 32

Star t 55.5 55.5 55.5 55.5 56.3 56.3 56.3 56.2

Ivlc 56.0 56.0 56.0 55.9 56.7 56.7 56.7 56.7

Idct 56.1 56.1 56.1 56.0 56.8 56.8 56.8 56.7

Iquant 56.1 56.1 56.1 56.1 56.9 56.8 56.9 56.8

Pr int 56.8 56.8 56.8 56.8 57.6 57.5 57.6 57.5

The buffer depth is the first NoC parameter evaluated. The NoC buffer is used to compensate the

amount of time required by arbitration and routing. In an MPSoC environment, injection rates are small

(bellow to 10%), not requiring in this way a buffer to amortize the performance penalty induced by the router

neither to store packets due to congestion . Therefore, this work proposes the use of small buffers, 4 or 8 flits

depth, to reduce the NoC area and power.

0
.5

0
.5

0
.5

0
.5

0

0.1

0.2

0.3

0.4

0.5

0.6

4 8 16 32

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Buffer Depth (Flits)

Jitter (T3  T4)

Jitter

17
5.

76
37

1
7

3
.5

1
5

6

17
3.

97
25

17
6.

23
3

0

50

100

150

200

4 8 16 32

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Buffer Depth (Flits)

Jitter (T4  T5)

Jitter

31

5.1.2 Mesh Routing Algorithms

5.1.2.1 Latency

Figure 18 present latency values for 4 different routing algorithms. The YeAH NoC uses

distributed XY, with distributed arbitration. With no disturbing traffic (Figure 18 (a)), latency values are

similar, presenting a small variation of 2.2%. A different scenario is observed when disturbing traffic is

added (the flow T3T4 favors adaptive routing from East to South, avoiding the disturbing I-J and K-L.).

Even if the average latency presents similar results, the routing adaption enabled to reduce the maximum

latency. As can be observed in Figure 18 (b), negative-first and west-first present the smaller latency

variation.

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 18 – Average Latency of the flow T3  T4 for different mesh routing algorithms.

5.1.2.2 Jitter

Again, with no disturbing traffic an almost zero jitter is observed (Figure 19(a)). In Figure 19(b) the

jitter of the negative-first and west -first are very small, since adaptation enabled to avoid congested areas

(flows I-J and K-L). In this specific case, these partially adaptive algorithms perfor med much better.

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 19 – Jitter of the flow T3  T4 for different mesh routing algorithms.

4
1

0

4
0

5

4
1

0

4
0

5

4
0

0

4
1

0
.5

4
0

5
.5

4
1

0
.5

4
0

5
.5

4
0

0
.5

0
4

4

4
1

1

4
0

6

4
1

1

4
0

6

4
0

1

0

100

200

300

400

500

Negative -Fi rst Odd -Eve n West-Fir st XY YeAH

La
te

n
cy

 (
C

lo
ck

 C
yc

le
s)

Routing Algorithm

Latency (T3  T4)

Min. Latency Avg. Latency Max. Latency

4
0

9

4
0

5

4
1

0

4
0

5

4
0

0

41
0.

56
19

4
3

5
.1

5
9

3

41
0.

52
65

43
2.

30
53

43
6.

76
21

4
1

7

8
3

8

4
1

1

8
6

5

8
5

6

0

200

400

600

800

1000

Negative -Fi rst Odd -Eve n West-Fir st XY YeAH

La
te

n
cy

 (
C

lo
ck

 C
yc

le
s)

Routing Algorithm

Latency (T3  T4)

Min. Latency Avg. Latency Max. Latency

0
.5

0
.5

0
.5

0
.5

0
.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Negative -Fi rst Odd -Eve n West-Fir st XY YeAH

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Routing Algorithm

Jitter (T3  T4)

Jitter

0
.7

0
2

8 9
2

.1
5

7
5

0
.4

9
9

3

8
5

.4
6

7
5

1
0

2
.5

4
3

5

0

20

40

60

80

100

120

Negative -Fi rst Odd -Eve n West-Fir st XY YeAH

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Routing Algorithm

Jitter (T3  T4)

Jitter

32

5.1.2.3 Execution Time

The impact on the overall execution time when changing the routing algorithm was also minimal.

Table 2 presents the execution time varying the buffer depth.

Table 2 – Execution time (ms) for different mesh routing algorithms.

 Execution time (ms) without distur bing tr affic Execution time (ms) with distur bing tr affic

 NF OE WF XY YeAH NF OE WF XY YeAH

Star t 55.5 55.5 55.5 55.5 55.6 56.3 56.2 56.3 56.3 56.1

Ivlc 56.0 56.0 56.0 56.0 56.0 56.7 56.7 56.7 56.7 56.5

Idct 56.1 56.1 56.1 56.1 56.1 56.8 56.7 56.8 56.8 56.6

Iquant 56.1 56.1 56.1 56.1 56.2 56.8 56.8 56.8 56.9 56.7

Pr int 56.8 56.8 56.8 56.8 56.9 57.6 57.5 57.6 57.6 57.4

The routing algorithm in mesh networks is the second NoC parameter evaluated. The net effect of

the routing algorithm seems to be small. However, it may strongly reduce the jitter, an important parameter

for applications with QoS. Therefore, the Authors recommend to adopt MPSoCs with adaptive routing

algorithms, since they potentially may benefit applications.

5.1.3 Topology Comparison

The topology comparison consists in finding out what is the major performance difference between

these architectures. The major weakness of the torus topology is the wraparound wires, which may be

mitigated using a folded torus topology, increasing the wire length twice compared to the mesh topology .

The torus architecture should present a smaller latency and jitter when packets travel from one edge to the

other of the mesh. To highlight the advantage of the torus topology it was chosen as observed flow the

communication T4T5 (see Figure 15). To evaluate just the effect of the topology we used the same routing

algorithm for both simulations, the West-First routing algorithm.

5.1.3.1 Latency

Flow T4T5 presents 1 hop in the torus topology and 3 hops in the mesh topology . In the scenario

with no disturbing traffic (Figure 20 (a)) the latency is constant, being 404 and 394 clock cycles for the mesh

and torus topologies respectively.

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 20 – Minimal, Average and Maximal Latencies of the flow T4  T5 for different topologies.

4
0

4

3
9

4

4
0

4
.5

0
4

4

3
9

4
.4

9
5

6

4
0

5

3
9

5

0

100

200

300

400

500

West-First Torus West-Fi rst

La
te

n
cy

 (
Cl

oc
k

Cy
cl

es
)

Topology

Latency (T4  T5)

Min. Latency Avg. Latency Max. Latency

4
0

4

3
9

4

5
6

6
.2

9
2

4
8

8
.6

0
7

9

1
1

8
8

1
0

2
6

0

200

400

600

800

1000

1200

1400

West-First Torus West-Fi rst

La
te

n
cy

 (
Cl

oc
k

Cy
cl

es
)

Topology

Latency (T4  T5)

Min. Latency Avg. Latency Max. Latency

33

The mesh topology, in this scenario, has disturbing flows E-F and H-G in the path, presenting higher

latency variation. The torus topology presents an average latency 16.8% smaller, with a small variation. The

observed variation comes from the PE sharing, between tasks print (T5) and D.

5.1.3.2 Jitter

As expected, with no disturbing traffic the jitter is almost zero (Figure 21 (a)). The jitter with

disturbing traffic (Figure 21 (b)) is 37.7% smaller with the torus topology.

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 21 – Jitter of the flow T4  T5 for different topologies.

5.1.3.3 Execution Time

The impact on the overall execution time when changing the routing algorithm was also minimal.

Table 3 presents the execution time varying the buffer depth.

Table 3 – Execution time (ms) for different topologies.

 Execution time (ms) without distur bing tr affic Execution time (ms) with distur bing tr affic

 Mesh Topology Tor us Topology Mesh Topology Tor us Topology

Star t 55.5 55.6 56.3 56.1

Ivlc 56.0 56.0 56.7 56.5

Idct 56.1 56.1 56.8 56.6

Iquant 56.1 56.2 56.8 56.7

Pr int 56.8 56.9 57.6 57.4

The topology is the third NoC parameter evaluated. In a homogeneous MPSoC, applications hardly

could benefit from a torus topology, since mapping heuristics have as cost function to put communicating

tasks as close as possible (obviously it is possible to create dedicated mapping heuristics for torus

topologies). However, the torus is a choice if IPs have fixed mapping at the edges of the mesh, as shared

memory controllers. In such case, the access time for such memories would benefit from a torus topology.

0
.5

0
.5

0

0.1

0.2

0.3

0.4

0.5

0.6

West-First Torus West-Fi rst

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Topology

Jitter (T4  T5)

Jitter

1
9

0
.8

2
5

8

1
3

8
.5

5
8

5

0

50

100

150

200

250

West-First Torus West-Fi rst

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Topology

Jitter (T4  T5)

Jitter

34

5.1.4 Torus Routing Algorithms

This section evaluates how the routing algorithm affects the network latency and jitter in torus

networks. Two routing algorithms are evaluated, being the TRANC algorithm and the West -First algorithm.

The results are extracted from a network with 16-flit buffers depth.

5.1.4.1 Latency

Figure 27 presents latency values, for flow T2T3. With no disturbing traffic, a constant latency is

observed. With disturbing traffic, the TRANC algorithm shows an advantage of 6.6% when compared to the

West-First routing algorithm. The west -first takes the horizontal path first, thus being affected by the

disturbing CD. The TRANC takes the vertical path first, being not affected by the disturbing traffic.

(a) No disturbing traf f ic (b) Maximum disturbing traf f ic

Figure 22 – Average Latency of the flow T2  T3 for different torus routing algorithm.

Using another flow, T4T5, Figure 23, the west-first algorithm had an advantage of 4.4% compared

to the TRANC algorithm. In this situation, the west -first used the wraparound link, while the TRANC not.

Figure 23 – Average Latency of the flow T4  T5 with all disturbing flows in the path for different torus

routing algorithm.

5.1.4.2 Jitter

Figure 29 compares the jitter of both flows (T2T3 and T4T5) with disturbing traffic,

demonstrating that the jitter is a function of the task mapping coupled to the adaptation strategy. Therefore,

there is not a general rule to select the best routing algorithm.

4
0

8

4
0

8

4
0

8
.9

9
5

6

4
0

8

4
0

9

4
0

8

0

100

200

300

400

500

Torus TRANC Torus West-Fi rst

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Routing Algorithm

Latency (T2  T3)

Min. Latency Avg. Latency Max. Latency

4
0

8

4
0

8

4
0

8

4
3

5
.0

8
8

1

4
0

8

8
5

5

0

200

400

600

800

1000

Torus TRANC Torus West-Fi rst

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Routing Algorithm

Latency (T2  T3)

Min. Latency Avg. Latency Max. Latency

3
9

4

3
9

4

5
1

0
.4

7
5

8

4
8

8
.6

0
7

91
0

2
6

1
0

2
6

0

200

400

600

800

1000

1200

Torus TRANC Torus West-Fi rst

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Routing Algorithm

Latency (T4  T5)

Min. Latency

Avg. Latency

Max. Latency

35

(a) Flow T2T3 (b) Flow T4T5

Figure 24 – Jitter for two flows, with maximum disturbing traffic for different torus routing algorithm.

5.1.4.3 Execution Time

The impact on the overall execution time when changing the routing algorithm was also minimal.

Table 4 presents the execution time varying the buffer depth.

Table 4 – Execution time (ms) for different torus routing algorithms.

 Execution time (ms) without distur bing tr affic Execution time (ms) with distur bing tr affic

 Tor us TRANC Tor us West-Fir st Tor us TRANC Tor us West-Fir st

Star t 55.6 55.6 56.1 56.1

Ivlc 56.0 56.0 56.5 56.5

Idct 56.1 56.1 56.6 56.6

Iquant 56.2 56.2 56.6 56.7

Pr int 56.9 56.9 57.3 57.4

5.1.5 Torus vs. Partially Adaptive Algorithm vs. Arbitration vs. Original HeMPS

This section contains a comparison between the main parameters that were observed during this

work. As the buffer depth presents the same effect in all sizes, it is not going to be compared. When

comparing the Torus, we will be using the TRANC algorithm, as it presented the best results compared with

the West-First. For partially adaptive algorithms, we will use the West-First as it presented similar results to

the Negative-First and better results than the Adaptive Odd-Even algorithm. Distributed arbitration is chosen,

using the YeAH router. All those parameters are compared with the original HeMPS architecture, which uses

the XY routing algorithm, centralized arbiter, with a mesh architecture. By doing this comparison, we will be

estimating which is the parameter that affects mostly the performance.

5.1.5.1 Latency

The latency is one of the most important performance metric, as it affects jit ter and throughput. From

previous results, without disturbing traffic, latency values are almost the same, regardless the NoC

parameters. Figure 25 presents the latency values applying disturbing traffic, using flow T4T5 as example.

0

8
5

.3
9

2
1

0

20

40

60

80

100

Torus TRANC Torus West-Fi rst

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Routing Algorithm

Jitter (T2  T3)

Jitter

1
6

6
.0

8
4

1
3

8
.5

5
8

5

0

50

100

150

200

Torus TRANC Torus West-Fi rst

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Routing Algorithm

Jitter (T4  T5)

Jitter

36

Figure 25 – Overall comparison of latency in the flow T4  T5

The torus topology with the TRANC algorithm presents an improvement of 10% related to the

original HeMPS. Which matches with the differences previously observed when comparing mesh and torus

architectures. Comparing the routing algorit hms (west-first versus XY) and the arbitration policy (YeAH

versus XY) there is no perceptible gains.

5.1.5.2 Jitter

With no disturbing traffic the jitter is almost zero. Although, with the scenario with disturbing

traffic, we can see that there is an overall improvement using Torus TRANC compared to the other

parameters.

Figure 26 – Overall comparison of jitter in the flow T4  T5

In our supplementary material, the difference that the Torus TRANC presents in relation to the other

flows, is much greater in some specific cases, when the packets must travel from edge to edge of the mesh .

As it was stated earlier, the usage of it shall present an overall higher overall performance, although it still

presents an area increase, which can be reduced by the usage of a folded Torus topology .

5.1.5.3 Execution Time

The execution time is not affected varying the NoC parameters, as presented in Table 5.

3
9

4

4
0

4

4
0

0

3
9

6

5
1

0
.4

7
5

8

5
6

6
.2

9
2

5
4

3
.4

1
5

9

5
5

8
.4

2
4

81
0

2
6

1
1

8
8

1
1

1
8

1
2

5
3

0

200

400

600

800

1000

1200

1400

Torus TRANC West-First XY YeAH

La
te

nc
y

(C
lo

ck
 C

yc
le

s)

Architecture

Latency (T4  T5)

Min. Latency

Avg. Latency

Max. Latency

1
6

6
.0

8
4

1
9

0
.8

2
5

8

1
7

3
.9

7
2

5

1
8

6
.7

8
8

1

0

50

100

150

200

250

Torus TRANC West-First XY YeAH

Ji
tt

er
 (C

lo
ck

 C
yc

le
s)

Architecture

Jitter (T4  T5)

Jitter

37

Table 5 – Execution time (ms) for different architectures.

 Execution time (ms) without distur bing tr affic Execution time (ms) with distur bing tr affic

 TRANC WF XY YeAH TRANC WF XY YeAH

Star t 55.6 55.5 55.5 55.6 56.1 56.3 56.3 56.1

Ivlc 56.0 56.0 56.0 56.0 56.5 56.7 56.7 56.5

Idct 56.1 56.1 56.1 56.1 56.6 56.8 56.8 56.6

Iquant 56.2 56.1 56.1 56.2 56.6 56.8 56.9 56.7

Pr int 56.9 56.8 56.8 56.9 57.3 57.6 57.6 57.4

The application chosen by the Authors, an MPEG decoder, is a representative application for

MPSoCs. As a general conclusion for this set of experiments, the bandwidth offered at each NoC link NoC

(1.6 Gbps) is enough to support the traffic of this application, together with disturbing flows. Therefore, the

design of the NoC router may be the simplest one, reducing the area and power overhead due to the

communication infrastructure. It is important to remember NoCs offer parallels transactions and scalability,

features not supported by bus-based infrastructures.

5.2 Synthetic Application

A second set of simulations was executed, using the same producer/consumer application as the

main application. The goal is to have an application with a higher injection rate, since we were not able to

fully stress the network using the MPEG decoder with the disturbing flows. This experiment cannot be seen

as general scenario, its goal is to investigate how the NoC supports applications supposed to congest the

NoC.

The results using the synthetic applications can be fully viewed on our supplementary material. For

the latency, the synthetic scenario follows the tendencies observed in the first set of experiments. For

example, the torus has a better latency response in comparison with the mesh. Related to the routing

algorithms in the mesh topology, the partially adaptive algorithms are benefited when they can avoid

congested areas.

Nonetheless, we were not able to find a change in the results, comparing both scenarios. As a general

conclusion, for NoC-based MPSoCs, routers offer enough bandwidth and internal NoC congestion is not a

relevant issue.

38

6 CONCLUSIONS

“Don't cry because it 's over. Smile

because it happened.”

Dr. Seuss

The work described in this document has produced a set of techniques and systems with the

objective to evaluate which parameters affect applications running in NoC-based MPSoC. In order to find

out which are those parameters, the HERMES Multiprocessor System-on-Chip was used as case of study.

The first contribution of this work are the monitoring tools. To collect performance data from

HeMPS, a set of non-intrusive monitors were created and placed in several variations of HERMES routers.

The data link monitors record traffic statistics from all NoC links (North, East , West and South), and the

local monitor record statistics at the local ports. These monitors generate text files during simulation. These

text files are then used as inputs to our set of tools that generates the necessary metrics to analyze each

parameter of the network. The tools consist in one graphical tool (datalink.py) that can identify hotspots, and

the path taken by the packets in the NoC. The second tool (local.py) generates reports to obtain the metrics

required to make the system analysis. These tools were extensively validated with different routing

algorithms, verifying if the paths taken by packets were correct , and if the number of transmitted packets was

correct.

The second contribution of this work corresponds to the evaluation of NoC architectural parameters

in MPSoC performance. Due to limited time to develop this work, some features were not explored, such as

virtual channels and duplicated physical channels. A test case scenar io was designed to test the NoC

parameters, with an application disturbed by different synthetic flows. This test case scenario was designed

to benefit the torus topology, adaptive routing algorithms and distributed arbitration, thus exposing the

possible advantages of such characteristics in MPSoC performance. The complexity of this task was

immense, since it was necessary to create different MPSoC instances (adapting it to new routing algorithms,

new NoC topologies, etc), and execute thousands of simulations. The use of scripts and a grid infrastructure

to simulate the MPSoC instances allowed to obtain the extensive set of results presented in the

supplementary material (2.112 charts).

Results point out that the use of the specific real applications does not generate enough traffic to

fully stress the employed NoC. For example, the average injection rate of the MPEG decoder was around 1%

of the available individual channel bandwidth. Hence, a second test cased was developed using a synthetic

producer/consumer application as the application under evaluation. Such scenario achieved, in average, 15%

of the available individual channel bandwidth.

Analyzing the obtained results, it was observed that the difference that appears when using different

buffer sizes is minimal, meaning that the use of a smaller buffers is advantageous in terms of area without

significant performance loss. Therefore, this work recommends the usage of small buffers, with 4 or 8-flit

depth. Moreover, the use of partially adaptive algorithms can be advantageous in some cases, since the jitter

is reduced. The use of the torus topology is recommended for performance improvement , but it presents

higher area overhead.

Finally, as proposed in the beginning of this work, we were able to determine how parameters of the

NoC affect the MPSoC applications. The answer is that the topology has a greater impact , and a combination

of a torus topology, with a routing algorithm designed for this topology with the use of a small buffer will

bring a reduction on the routers’ area without performance loss in relation to the traditional mesh, XY, 16-flit

buffer depth NoC, used today by HeMPS.

39

REFERENCES

[BEN02] Benini, L.; De Micheli, G. Networks on chips: a new SoC paradigm . Computer, v.35(1), 2002,

pp. 70-78.

[CAR09] Carara, E.; Oliveira, R.; Calazans, N.; Moraes, F. HeMPS: A Framework for NoC Based MPSoC

Generation. In: ISCAS, 2009, pp. 13456-1348.

[CAS13] Castilhos, G. Gerência distribuída de recursos em MPSoCs – Mapeamento e Migração de

Tarefas. Dissertação de Mestrado, Programa de Pós-Graduação em Ciência da Computação,

PUCRS, 2013, 66 p.

[DAL93] Dally, W.J.; Aoki, H. Deadlock-free adaptive routing in multicomputer networks using virtual

channels, Parallel and Distributed Systems, IEEE Transactions on , vol.4, no.4, pp.466,475, Apr

1993

[DAR12] Dara Rahmati, Hamid Sarbazi-Azad, Shaahin Hessabi, and Abbas Eslami Kiasari. 2012. Power-

efficient deterministic and adaptive routing in torus networks-on-chip. Microprocess. Microsyst.

36, 7 (October 2012), 571-585.

[DUA01] Duato, J.; Yalamanchili, S.; Ni, L. Interconnection Networks: an engineering approach . Morgan

Kaufmann, Revised Edition, 2002, 624 p.

[HWA92] Hwang, K. Advanced Computer Architecture: Parallelism, Scalability, Programmability.

McGraw-Hill, New York, 1992, 672 p.

[JER05] Jerraya, A.; Wolf, W. Multiprocessor Systems-on-Chips. Morgan Kaufmann Publishers Inc,

2005, 602p.

[KON13] Kornaros, G.; Pnevmatikatos, D. A Survey and Taxonomy of On-Chip Monitoring of Multicore

Systems-on-Chip. ACM Transactions on Design Automation of Electronic Systems, v.18(2),

2013, 38p.

[KUM13] Kumar, R.; Deshpande, H.; Choi, G.; Sprintson, A.; Gratz, P. Bidirectional interconnect design

for low latency high bandwidth NoC. In: ICICDT, 2013, pp. 215-218.

[MEL04] Mello, A; Ost, L.; Calazans, N.; Moraes, F. Evaluation of Routing Algorithms in Mesh Based

NoCs. PPGCC-PUCRS Technical Report Series, 2004, 11 p.

[MEL05] Mello, A.; Möller, L.; Calazans, N.; Moraes, F. MultiNoC: A multiprocessing system enabled by

a network on chip. In: DATE users forum, 2005, pp. 234-239.

[MOD11] Modarressi, M.; Tavakkol, A.; Sarbazi-Azad, H. Application-Aware Topology Reconfiguration

for On-Chip Networks. IEEE Transactions on Very Large Scale Integration Systems, v.19(11),

2011, pp. 2010-2022.

[MOR04] Moraes, F.; Calazans, N.; Mello, A; Möller, L.; Ost, L. Hermes: an Infrastructure for Low Area

Overhead Packet-switching Networks on Chip. Integration, the VLSI Journal, v.38(1), 2004, pp.

69-93.

[NI93] Ni, L.; McKinley, P. A Survey of Wormhole Routing Techniques in Direct Networks. Computer,

v. 26(2), 1993, pp. 62 –76.

[OST03] Ost, L. Redes Intra-Chip parametrizáveis com interface padrão para síntese em Hardware.

Dissertação de Mestrado, Programa de Pós-Graduação em Cinência da Computação, FACIN-

PUCRS, 2003, 102p.

[PAS08] S. Pasricha; N. Dutt. On-Chip Communication Architectures. Morgan Kauffman, 2008, 544p.

[PLA11] Plasma CPU. Available at: http://plasmacpu.no-ip.org/

[SCH10] Schranzhofer, A.; Jian-Jia C.; Santinelli, L.; Thiele, L. Dynamic and adaptive allocation of

applications on MPSoC platforms. In: ASP-DAC, 2010, pp. 885-890.

[STE12] Stefan, R.; Molnos, A.; Ambrose, A.; Goossens, K. A TDM NoC supporting QoS, multicast, and

fast connection set-up. In: DATE, 2012, pp. 1283-1288.

[WOL04] Wolf, W. The Future of Multiprocessors System -on-Chips. In: DAC, 2004, pp. 681-685.

40

[WOL12] M. Wolf. Computers as components: principles of embedded computing system design . New

York: Morgan Kaufmann Publishers, 2012, 528p.

[WOS07] Woszezenki, C. Alocação de Tarefas e Comunicação entre Tarefas em MPSoCs. Dissertação de

Mestrado, Programa de Pós-Graduação em Ciência da Computação, FACIN-PUCRS, 2007.

121p.

[ZAM11] Zamzam, D.; Abd El Ghany, M.A.; Hofmann, K.; Ismail, M. Highly reliable and power efficient

NOC interconnects. In: NORCHIP, 2011, pp. 1-4.

[ZEF03] Zeferino, C. A. Redes-em-Chip: Arquiteturas e modelos para avaliaçao de área e desempenho.

Tese de Doutorado, Programa de Pós-Graduação em Computação, UFRGS, 2003, 194p.

	1 Introduction
	1.1 Introduction
	1.2 Motivation
	1.3 Objectives of this Work
	1.4 Document Structure

	2 NoC and MPSoC
	2.1 NoC
	2.1.1 Network Topologies
	2.1.2 Communication Mechanism
	2.1.3 Routing Algorithm
	2.1.4 Switching Mode
	2.1.5 HERMES NoC

	2.2 HeMPS MPSoC (HERMES Multiprocessor System)

	3 NOC Monitoring and Evaluation
	3.1 Monitoring Concepts
	3.2 Non-intrusive Monitors
	3.2.1 Local Monitor
	3.2.2 Data Link Monitor

	4 NoC Architectural Parameter Evaluation
	4.1 NoC Parameters
	4.1.1 Buffer Depth
	4.1.2 Routing Algorithms
	4.1.2.1 XY Algorithm
	4.1.2.2 West-First Algorithm
	4.1.2.3 Negative-First
	4.1.2.4 Odd-Even Algorithm
	4.1.2.5 Torus Routing Algorithm for Network on Chip (TRANC)

	4.1.3 Arbitration
	4.1.3.1 Centralized
	4.1.3.2 Distributed

	4.1.4 Topology
	4.1.4.1 Mesh Architecture
	4.1.4.2 Torus

	4.2 Experimental Setup

	5 Results
	5.1 MPEG Application Results
	5.1.1 Buffer Depth
	5.1.1.1 Latency
	5.1.1.2 Jitter
	5.1.1.3 Execution Time

	5.1.2 Mesh Routing Algorithms
	5.1.2.1 Latency
	5.1.2.2 Jitter
	5.1.2.3 Execution Time

	5.1.3 Topology Comparison
	5.1.3.1 Latency
	5.1.3.2 Jitter
	5.1.3.3 Execution Time

	5.1.4 Torus Routing Algorithms
	5.1.4.1 Latency
	5.1.4.2 Jitter
	5.1.4.3 Execution Time

	5.1.5 Torus vs. Partially Adaptive Algorithm vs. Arbitration vs. Original HeMPS
	5.1.5.1 Latency
	5.1.5.2 Jitter
	5.1.5.3 Execution Time

	5.2 Synthetic Application

	6 Conclusions
	References

