

SoC-WiMed: Wireless SoC for Medical Monitoring of Vital Signs with a Focus on Security and Low **Power Consumption**

Porto Alegre, Brazil May 29, 2025

Goal of the SoC-WiMed Project

smart watch

- Develop a SoC for vital signs monitoring with 3 subsystems:
 - biomedical signal acquisition
 - digital signal processing, including Al-based processing and encryption
 - data transmission using Bluetooth Low Energy (BLE)
- Balance between performance, security, and power consumption

EnSilica proposed the SoC-WiMed project and has an interest in the technology transfer of the solutions developed within the project

Overview of the SoC-WiMed

SoC-Wimed

- integration of different technologies analog, digital, and RF
- Hardware fully developed within universities, with no use of third-party
 IPs
- Training of human resources in microelectronics
- Innovative solution featuring low power consumption and enhanced security for loT
- Potential for technology transfer to the industry

SoC-Wimed

- Project team, including students and faculty: ≈ 30 people involved
- NDA signed with TSMC 28nm technology
- PDK configured and synchronized across the three institutions
- Defined acquired signals: PPG (photoplethysmography) and ECG (electrocardiogram)
- First tapeout planned for August 2025

36-month project 2-3 *planned tapeouts*

Bloco Digital (PUCRS)

RISC-V processor – RS5 – RV32IMAC + Zkne + Zicsr + U/M Modes

https://github.com/gaph-pucrs/RS5

W. A. Nunes, A. E. Dal Zotto, C. da Silva Borges and F. G. Moraes,

RS5: An Integrated Hardware and Software Ecosystem for RISC- V Embedded Systems, In: LASCAS, 2024

Hardware:

- 1. RS5 RV32IMAC
 - a. PLIC
 - b. RTC
 - c. Memory
- 2. AXI-Lite bus
- 3. UART /SPI / GPIO / QSPI
- 4. MemLoader
- 5. Interface with other subsystems AFE and BLE

Software - Zephyr RTOS

- Deployment of the open-source Zephyr OS
- Low memory requirements (< 20 KB)
- Configuration and development of drivers
- Bluetooth support
- Multitasking capability

Integration with the analog system

- Peripheral specification defined
- Hardware and software implemented
- Testing through emulation of data transmitted via SPI

FPGA Prototyping

- FPGA Artix7 (@100MHz)
- Arduino simulates lowfrequency ADC data

USB-Serial connection AES 128-bit encryption (Zkne) Arduino

ASIC Implementation

- Post-synthesis simulation with physical memories @256MHz in the 3 corners - signoff ok (setup/hold)
- GDS: 620 μm x 380 μm

ASIC Implementation

Analog on top – integration with the pad ring

Analog Front-End

instrumentation amplifier

programmable gain amplifier

Instrumentation amplifier

- 3 electrodes (2 inputs and 1 output)
- Requires high common-mode rejection ratio
- Integrated high-pass filter to eliminate body potential
- Requires the design of 5 operational amplifiers
 - → current status: layout verification

PGA - programmable gain amplifier

- Amplify the signal acquired by the INA.
- The PGA is controlled by the processor that adjusts the gain of the inverting amplifier upon detecting saturation in the ADC output signal
- The gain adjustment is performed by a circuit that modifies the state of switches, allowing the amplifier gain to be changed.

→ processor controls this module

Low-pass filter

Flags

Controller

- Fourth-order biquadratic Butterworth low-pass filter (250 Hz)
- Sallen-Key low-pass topology

Objective: minimize aliasing effects and ensure proper ADC operation by filtering out all unwanted frequencies from the analog signal before sampling

ADC – Incremental Sigma-Delta

- Design and simulation validated in Matlab
- Fourth-order modulator with >22 bits of ENOB
- Target: 16-bit ENOB and 500 samples per second (sps)

analog

→ current status: electrical simulation

ADC – Incremental Sigma-Delta

- Design and simulation validated in Matlab
- Fourth-order modulator with >22 bits of ENOB
- Target: 16-bit ENOB and 500 samples per second (sps)

Digitized ECG signal converted to analog

Photoplethysmography (PPG)

Sensor used to detect changes in blood volume through optical signals

Composed of three parts:

LED Driver

- · Controls the current through the LEDs
- Adjusts the minimum saturation level of the ADC

Feedback Resistance

Adjusts ADC saturation by selecting the feedback resistance.

Current Compensation

- Controls the current injected into the transimpedance amplifier.
- · Adjusts the maximum saturation level in the ADC

Photoplethysmography (PPG)

- Simulation of the acquired optical signal
 - Red: ideal signal
 - Blue: signal acquired with saturation compensation

→ status : MATLAB simulation

Bluetooth Module

RF Receptor

2 - Digital Demodulator

3 Frequency Generator

→ ADPLL - All Digital Phase-Locked Loop

- Operating frequency range: 4.3 to 5.2 GHz
- In-band phase noise: < -91 dBc

