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1. Introduction – many-core systems

Computational systems tend towards parallel architectures with 
multiprocessor on chip systems – MPSoCs

UltraSparc T5 (2013) Esperanto ML Chip - 1,100 RISC-V Cores (2020)Cell Processor - IBM (2006)
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Fig. 11. SPARC T5 micrograph.

to accommodate different topologies with improved efficiency.
The memory link implements the short-reach (SR) SerDes
with analog equalizer and 1-tap decision feedback equalizer
(DFE). The coherence links use the long-reach (LR) SerDes
with 8-tap DFE to support direct communication among 8
sockets. Fitting and routing 210 lanes (420 diff pairs) of SerDes
I/O along the chip periphery limits the available area per
four lanes. This constrains the number of power and ground
bumps and makes it challenging to manage crosstalk and power
distribution. A bump pattern is chosen carefully to provide
sufficient isolation for near-end-crosstalk with a slight increase
in far-end-crosstalk.
The Short Reach (SR) high-speed SerDes macro enables the

T5 memory link to operate at serial data rates up to 12.8 Gb/s.
Instead of a conventional input amplification buffer, the SR
receiver analog front-end introduces a Wide Band Amplifier
(WBA) for input buffer gain stage, linear equalization and
tail correction. This new design helps boost link performance
with improved power efficiency. Compared to a conventional
analog input buffer and linear equalizer, WBA has limited flat
gain from 1/10 Nyquist through Nyquist to reduce crosstalk
risk. WBA is also focused on equalizing contents below 1/10
Nyquist which is complementary to TX FIR (Fig. 10). The
tail correction feature can help reduce , , , and

, allowing the use of a 1-tap DFE instead of a 5-tap DFE
without sacrificing link performance. Links with WBA have
higher Vmargin than with a simple input buffer. Silicon testing
has demonstrated expected overall performance of the design,
including both data rate and power efficiency.
Various techniques minimize the power consumption of the

high-bandwidth SerDes interface. Baud-rate CDR reduces the
number of required samplers by half at the receiver front-end
and results in the reduction of clock distribution and parasitic

loads on critical analog node. In addition, the TX FIR is im-
plemented without the sum-to-one constraint, which assigns a
specific tap data to a given branch of TX DAC. This is to elim-
inate the use of mux from multi-tap data to minimize the clock
and predriver loading.

VII. CONCLUSION
This paper introduces the architectural and physical design

features of the next generation SPARC T5 processor. It has 16
cores, 8MB L3 Cache, increased IO bandwidth and 8-way glue-
less system support. The chip is fabricated using TSMC’s 28 nm
process and is currently shipping in SPARC T5 2-way, 4-way
and 8-way servers. Enhanced physical design methodologies
and composition techniques were used to reach 3.6 GHz. New
power saving features like DVFS and the use of the FLL to
meet the ever increasing performance demands and constrained
power envelopes of modern servers were introduced.
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NoC-based many-core SoCs enable
• high connectivity
• massive parallelism 
• simultaneous executions of 

several applications

Increase and continuous adoption in 
electronic systems 

• IoT, ML, autonomous-car systems, 
hardware accelerators, cell phones, …

Tile GX– Tilera (100 cores) à Mellanox 
à Nvidia bought Mellanox in 2019 - 6.9 bi

1. Introduction – many-core systems  



5

Resource sharing during the application execution
• shared computation: cores and memory 
• shared communication: NoC links and 

routers

Access peripherals (M) without expose 
application data

1. Introduction – the security problem (hw)
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1. Introduction – Application’s Execution Phases

Application admission 
• object code/data transfer from an off-chip entity to the MPSoC
• system must trust on the entity transmitting the application 
• the integrity of the application/data must be verified to avoid the insertion of malicious code  

Execution time
• malicious attacker may have access to sensitive computation or communication data 
• computation (cores) and communication (NoC) must be protected

Communication with external devices
• unauthorized access to instructions and data in shared memory and peripherals can 

compromise the applications' execution
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Confidentiality 
• the property of non-disclosure of information to unauthorized processes, entities or users

Availability 
• the protection of resources from threats that might impact any of the system's resources availability

Integrity
• the prevention of modification or destruction of a resource by an unauthorized entity or user

Authentication
• the process of establishment and validation of a claimed identity

Authorization
• the process of determining whether a validated entity can access a secured resource based on attributes, 

predicates or context

Auditing
• the property of logging sufficient system activities to reconstruct events (not applied to the MPSoC context - NA) 

Nonrepudiation
• the prevention of any participant denying his role in the interaction once it is completed (NA) 

2. Threat Model - Security principles
[Ramachandran 2002]
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Denial-of-Service - DoS  (compromises availability)
• disruption of the system by overloading resources
• a malicious application task generating packets with a high injection rate can produce this attack, overloading 

the communication infrastructure

Distributed Denial-of-Service - DDoS (compromises availability)
• similar to DoS, uses multiples tasks to attack and disrupt the system by overloading resources
• a malicious application running in distinct cores can coordinate an attack to a specific router overloading its 

communication capacity

Timing attack (side channel attack) (compromises confidentiality)
• explores the communication collision between the sensitive traffic and the attacker traffic
• the latency interference induced by malicious traffic can provide to the attacker some information about the 

timing, frequency, and volume of the secure communication

Spoofing  (compromises authorization and authentication)
• a malicious application successfully falsifies its identity to obtain unauthorized privileges 

2. Attacks that compromise the system (1/2)
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Hijacking (compromises authorization and authentication)
• an attempt to alter the system configuration to execute a set of abnormal tasks along with normal system 

operation (e.g., during the load of the operating system or an application) 

Man-in-the-Middle - MitM (compromises confidentiality, authorization and authentication)
• an attack where the attacker secretly relays and alters the communication between the external entity and the 

system
• enables the attacker to send malicious data or obtain secret information  

Hardware Trojans (compromises availability, authorization and authentication)
• a malicious modification of the system's hardware (e.g., inserted into the NoC) aiming to sniff and leak 

sensitive data

Trojan Horse and backdoor (compromises availability and confidentiality)
• the tampering of the task's source code during the admission of the application can insert malicious code

2. Attacks that compromise the system (2/2)
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2. Man-in-the-middle attack – an example

(a) Task TA communicates with task TB
(b) Malicious tasks (TM) initiates the attack
(c) TM has access to the communication flow
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3. Protecting App Admission 
The application admission corresponds to the object code transfer from an off-chip entity to the 
MPSoC

• Each actor (external entity and MPSoC) must confirm the other part's identity, and the integrity of the 
application must be verified to avoid the tampering of the application's object code

• Solutions to these issues exist for the Internet, computer networks, and software
• Few proposals in the many-core area 

Zero Knowledge Proof protocol [Khernane 2016] 
• lightweight authentication scheme for WBAN (Wireless Body Area Network) called  BANZKP
• protocol confirm the identity of the sensor nodes
• after the authentication success, an encryption mechanism provides the message privacy protection 

Elliptic-curve Diffie–Hellman - ECDH  
• system setup, registration, and authentication
• at the end of these steps each part have a common key 

(Ke) used in MAC generation and verification
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3. Protecting App Admission 

Integrity with PUF and MAC [Sepúlveda 2018]
• runtime mechanism based on MAC (Message Authentication Code) and PUF (Physical Unclonable Function) 

to provide memory integrity and authentication
• MAC uses SipHash algorithm
• mechanism have three stages: 

- Key generation (PUF)
- MAC initialization and application installation
- Operation
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4. Protecting App Execution

Protecting:

Communication
• firewalls
• routing scheme
• encryption
• temporal network partition
• packet validation

Computation
• logical  and  spatial  

isolation (clusters)
• ARM TrustZone (ATZ)

Comm. and Comp.
• secure  zones  - partition  

and  encryption
• secure  zones  - spatial  

isolation  and  encryption
• obfuscation
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4a. Protecting Communication
Firewall

• hardware barrier placed at the communication structure ports to control the input and output of an element
• tables to store the recognized trusted sources and a controller that allows the authorized traffic and blocks 

unauthorized traffic

Rajesh  et  al. (2015)
• runtime  latency  auditor,  called  RLAN,  

to  dynamically  monitor  the  on-chip 
resources availability and properly filter 
the malicious traffic

• packets traversing routes have spatial 
(source-target pairs) and temporal 
similarity (latency)

Hu et al. (2015)
• design time analysis of the traffic and 

the NoC architecture select the levels 
and position of the firewalls: 
(a) between a PE and a router
(b) between routers

Azad et al. (2018/2019)
• Firewall placed at the NI, with 

two tables: 
- initiator table, checks if the 

source has permission to 
send messages

- target table, which verifies if 
the message can enter the 
target unit

of current MPSoCs with different mapped applications and
they only implement a single NoC security level for the
entire system. On the other hand, works such as [3] take into
account the dynamic mapping of application tasks to NoC
nodes and dynamic reconfiguration of firewalls, or the run-
time reshaping of security zones (for isolating sensitive com-
munication) [10]. The work in [11] has introduced insertion of
multi-level firewalls into NoC-based systems to satisfy security
requirements. Despite the advantages the approach has, the
work in [11] has only focused on the placement of hardware
firewalls in application-specific NoCs. Moreover, the utilized
model does not address dynamic configuration of firewalls.
In the works such as [12]–[16], dynamic configuration of
firewalls is explored, where a Secure Manager (SM) is in
charge of (re-)configuring the firewalls and controlling the
recovery mechanism under a possible attack. In [15], a secure
hypervisor (or OS) is in charge of dynamic reconfiguration
of firewall rules. However, the impact of the location and
communication characteristics of the security manager on the
overall performance of the system is not explored.

III. MPSOC SECURITY

Isolation at MPSoCs can be enforced into two structures:
i) computation structure, by including secure scheduling tech-
niques, using exclusive data-path for sensitive applications or
by restricting the access of memory addresses that contain sen-
sitive information (memory isolation); and ii) communication
structure, at the router-level (avoiding communication colli-
sion) or at the network interface (enforcing the security policy
through firewalls). It should be noted that these techniques are
not exclusive, but they are complementary. A very common
approach is to use the memory isolation in combination with
firewalls.

Firewalls enforce the access control policy. These modules
regulate admission to the IP cores and the external memory
blocks by the different processes that are executed on the
MPSoC. Each of the tasks are able to be reallocated during
MPSoC run-time. This means that the contents that are stored
in the firewalls are changing.

Each application supported by the MPSoC is characterized
by different sets of security rules, called security policy.
The set of applications can be mapped dynamically at the
MPSoC. Therefore, there is not a single and static security
requirement, but a set of ever changing security policies that
must be satisfied. The challenge is to provide MPSoC security
that allows a trustworthy system that meets all the security
requirements of such applications. MPSoC can be attacked
via hardware/software.

IV. SECURITY INFRASTRUCTURE

The code injection attack includes malicious pieces of code
into the application to compromise the integrity or confiden-
tiality of the MPSoC. In order to avoid code injection attacks
SipHash-2-4 can be used [17] [18]. It is a fast and lightweight
Message Authentication Code (MAC) generator to authenti-
cate and guarantee the integrity of the packet. SipHash is
recommended for short inputs. Each authorized application has
a pre-shared key with the MPSoC which is used to generate
the MACs (ret MAC) for the different memory blocks. At the
security manager, before executing an application, the data
blocks are retrieved from the external memory and the MACs

Fig. 1. Proposed firewall architecture

(comp MACs) are computed. A match between ret MAC
and comp MAC guarantees that the original code was not
modified. In addition, as the key is only shared with the
application, the authentication can be also performed.

At the MPSoC, the security infrastructure in this work is
composed of a security manager and a set of security interfaces
that integrates a firewall. The security manager is a secure IP
core which is in charge of implementing the security policy
of the system. It generates the access control rules stored in
the firewalls, distributed into the MPSoC. Firewalls check the
information embedded into the packet and compare it with a
set of access rules. A match packet will be able to access
the requested resources. Otherwise, it is discarded and an
alarm is triggered. Our firewall is implemented as two tables:
i) initiator table, checking the rights of the communication
initiator (at the source node); and ii) target table, checking
the rights of the received packet at the destination node. Each
entry in initiator table contains the following information:
● Destination address: ID of allowed destinations for current

node.
● Base-Memory address: base address in the destination node

that can be accessed by current node.
● Memory address range: allowed memory range to be accessed

by the current node.
● Permission: contains the access rights of the current node to

the specified memory addresses in the destination node.
Similarly, the target table entries contain the following

information:
● Source address: ID of the allowed sources which can access

the current node.
● Base-Memory address: base address in the current node that

can be accessed by the source node.
● Memory address range: allowed memory range to be accessed

by the source node.
● Permission: contains the access rights of the source to the

specified memory addresses in the current node.
Figure 1 shows the block diagram of the proposed architec-

ture for the Network Interface (NI) firewalls (additional blocks
integrated to the baseline NI are highlighted in orange). The
security manager is in charge of issuing the reconfiguration
commands to the network interfaces. Upon receiving the
reconfiguration command from the security manager, the NI
checks its authenticity and rights, and initiates a reconfig-
uration process (storing new values in the firewall table).
SipHash [17] can be used for generating 64-bit MAC for such
short messages such as in [19] [18]. Once all the firewalls in
the network are configured, the system can start its normal
operation. The security manager can initiate a full or partial
dynamic reconfiguration of the firewalls during the system’s
operation.

The implementation of dynamic security has a strong impact
on the system performance. Thus, the exploration of the design

482
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4a. Protecting Communication
Routing Scheme
Sepúlveda et al. (2015)

• Threat model: SCA
• adaptive routing and random arbitration

- random arbitration - remove the temporal 
correlation of malicious injected traffic and 
memory access. 

- adaptive West-First routing method, to make turns 
to escape from blocking conditions

Fernandes et al. (2016)
• Create Secure Zones at design time
• Configure routing tables to avoid DoS and 

timing side channel attacks

S

D

S

D
(a) (b)

: Routing Path

: Segment

: Turn Restriction

: Router

: Link

: Security Zone 2

: Security Zone 1

Charles et al. (2020)
• Anonymous routing using virtual circuit 

numbers (VCN) 
• Two phases method

- Route Discovery - PE sends a packet to 
discover the route and distributes parameters 
among participants

- Data Transfer - the path set is used to transfer 
messages from S to D anonymously. 

A. Overview

ARNoC has two main phases as shown in Figure 2. When an
IP wants to communicate with another IP, it first completes
the “Route Discovery” phase which sends a packet to discover
the route and distributes some parameters among participants.
This is done using a three-way handshake between the sender
and the destination nodes. The handshake uses three (out of 4)
types of packets sent over the network with the fourth type
being used in the second phase. The four packet types are:

1) RI (Route Initiate) - flooded packet from sender S to
destination D to initialize the communication session.

2) RA (Route Accept) - packet sent from D to accept new
connection with S.

3) RC (Route Confirmation) - confirmation packet sent
from S to D to indicate successful route discovery.

4) DT (Data) - the data packet from S to D that is routed
anonymously through the NoC.

Fig. 2: Our proposed framework (ARNoC) consists of two
phases: route discovery and data transfer.

During the three-way handshake, each router along the routing
path is assigned with random nonces to represent preceding
and following routers. The second phase, “Data Transfer”,
uses these parameters to forward the message through the
route anonymously. Anonymous routing is achieved by using
the random nonces which act as virtual circuit numbers
(VCN). When transferring data packets, the intermediate
routers will only see the VCNs corresponding to the preceding
router and the following router which reveals no information
about the source or the destination.

TABLE I: Notations used to illustrate ARNoC

OPK(i)
S

one-time public key (OPK) used by S to uniquely
identify an RA packet

OSK(i)
S the private key corresponding to OPK(i)

S
ρ a random number generated by S
PKD the global public key of D
SKD the private key corresponding to PKD

TPK(i)
A temporary public key of node A

TSK(i)
A the private key corresponding to TPK(i)

A
KS−A symmetric key shared between S and A
υA a randomly generated nonce by node A
EK(M) a message M encrypted using the key K

The route discovered at the route discovery stage will remain
the same for the lifetime of a task (until the task execution is
complete), which is considered as one communication session.
In case of context switching and/or task migration, a new
communication session will start and the first phase will be
repeated before transferring data. Each IP in the SoC that uses
the NoC to communicate with other IPs follows the same
procedure. The next two sections describe these two phases
in detail. A list of notations used to illustrate the idea is listed
in Table I. The superscript “i” is used to indicate that the
parameter is changed for each communication session.

B. Route Discovery

The route discovery phase performs a three-way handshake
between the sender S and destination D. This includes broad-
casting the first packet - RI from S with the destination D,
getting a response (RA) from D acknowledging the reception
of RI, and finally, sending RC to complete route setup.
Figure 3 shows an illustrative example of parameters (using
only four nodes) shared and stored during the handshake. The
initial route initiate packet (RI) takes the form:

{RI ‖OPK(i)
S ‖ EPKD (OPK(i)

S ‖ ρ) ‖ TPK(i)
S } (1)

The first part of the message indicates the type of packet
being sent, RI in this case. OPK(i)

S refers to the one-time
public key associated with the sender node. This public key
together with its corresponding private key OSK(i)

S change
with each new communication session or RI . This change
allows for a particular communication session to be uniquely
identified by these keys, which are saved in its route request
table. ρ is a randomly generated number by the sender that is
concatenated with the OPK(i)

S and then encrypted with the
destination node’s public key PKD as a global trapdoor [11].
Since PKD is used to encrypt, only the destination is able to
open the trapdoor using SKD. Then the TPK(i)

S is attached
to show the temporary key of the forwarding node, which
is initially the sender. The next node, r1, to receive the RI
messages goes through a few basic steps. First, it checks for
the OPK(i)

S in its key mapping table, which would indicate a
duplicated message. Any duplicates are discarded at this step.
Next, r1 will attempt to decrypt the message and retrieve ρ.
Success would indicate that r1 was the intended recipient D.
If not, r1 replaces TPK(i)

S with its own temporary public key
TPK(i)

r1 and broadcasts:

{RI ‖OPK(i)
S ‖ EPKD (OPK(i)

S ‖ ρ) ‖ TPK(i)
r1 } (2)

r1 also logs OPK(i)
S and TPK(i)

S from the received message
and TSK(i)

r1 corresponding to TPK(i)
r1 in its key mapping

table. This information is used later when an RA message is
received from D. D will eventually receive the RI message
and will decrypt using SKD. This will allow D to retrieve
OPK(i)

S and ρ from EPKD (OPK(i)
S ‖ ρ). Then to verify

that RI has not been tampered with, D will compare the
plaintext OPK(i)

S and the recently decrypted OPK(i)
S . If they

are different, RI is simply discarded. Otherwise, D sends an
RA (route accept) message:

{RA ‖ E
TPK(i)

r2
(E

OPK(i)
S
(ρ ‖ υD ‖KS−D))} (3)

RA, like RI in the previous message, is there to indicate
message type. D generates a random nonce, υD, to serve
as a VCN and a randomly selected key KS−D to act as a
symmetric key between S and D. D stores υD and KS−D in
its key mapping table. It also makes an entry in its routing
table indexed by υD, the VCN. The concatenation of ρ, υD,
and KS−D is then encrypted with the OPK(i)

S , so that only
S can access that information. Then the message is encrypted
again by TPK(i)

r2 , r2’s temporary public key, with r2 being
the node that delivered RI to D. Once r2 receives the RA,
it decrypts it using its temporary private key, TSK(i)

r2 , and
follows the same steps as D. It generates its own nonce, υr2,
and shared symmetric key, KS−r2, to be shared with S. Both
the nonce and symmetric key are then concatenated to the

Design, Automation And Test in Europe (DATE 2020) 335

Authorized licensed use limited to: Pontificia Universidade Catolica do Rio Grande do Sul (PUC/RS). Downloaded on April 14,2021 at 17:58:35 UTC from IEEE Xplore.  Restrictions apply. 

Indrusiak et al. (2019)
• route randomization 
• varying the routes taken by sensitive traffic 

prevents the collision with malicious traffic 
making the SCA information extraction harder 
since the timing measures are not precise 
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4a. Protecting Communication

Encryption
Ancajas et al. (2014)

• Assumes HT
• Three-layer security mechanism 

- Data Scrambling, XOR cipher encryption (lightweight cryptography)
- Packet Certification, attaches an encrypted tag at the end of the 

packet - Node Obfuscation (NObf), decouples the source and destination 
nodes using task migration

Oliveira et al. (2018) / Santanta (2021)
• Protects against DoS, MitM

- spatial isolation of applications
- a dedicated network to send sensitive data
- filters to block malicious traffic (simple firewall)
- AES or lightweight cryptography

Zeferino et al. (2017)
• Use an AES block and a KDC (Key 

Distribution Center), adding authenticity 
and confidentiality in the message flow of 
the SoCIN NoC. 
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4a. Protecting Communication

Temporal network partitioning (TNP)
• explicit flow separation to avoid interference of low-priority flows in high priority flows
• mitigate DoS, timing side-channel attacks and information leakage 

Wassel et al. (2014)
• design time method to create domains of non-

interference between flows
• use of virtual channels, priority arbitration, called surf 

scheduling
• a packet waits in one dimension (X), after finishing the 

first dimension, the packet might experience another 
wait until it can be forwarded to the next dimension (Y).

• Drawback: increasing the number of domains also 
increases the number of virtual channels, increasing 
the router area and power consumption. 

Wang et al. (2012)
• design time priority-based arbitration 
• assign high-priority to low-security traffic, in such way 

that its behavior is not affected by high-security 
traffic.

• Virtual channels are statically allocated to each 
security domain to remove interference in buffers. 
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4a. Protecting Communication

Packet Validation

Boraten et al. (2016)
• runtime packet-security (P-Sec) method, 

protecting against SCA, DoS, HTs
• adopts two error detection schemes

- cyclic redundancy check (CRC) codes
- algebraic manipulation detection (AMD)

• Overhead: increases packet size

Fig. 1. The vulnerable links of compromised NoC protected from an ideal
attacker by a (k,m,r) AMD encoder in the proposed P-Sec encoding scheme.

Fig. 2. The packet structure and end-to-end encoding states for CRC-32 and
each (k,m,r) AMD encoding mode we evaluate in the network interface of
each core. Encoding can be decided on-demand and on per application basis.

In this model, the attacker has control of inserting raw input
y into the AMD encoder and thereby generating the error
vectors es1,es2, and es3 on the target link. The HT triggering
method for this model is negligible, as well is the method for
controlling input y. With knowledge of different combination
of inputs, the attacker can select error vectors e1,e2, and e3,
in an attempt to eventually determine the sequence of errors
required to mask codewords into another valid codeword. As
encrypted communication is transmitted in MPSoC, an attacker
may use this technique over time to obtain enough knowledge
to decipher an encryption key by observing how the encoders
and decoders react to a side channel attack. Such a side channel
attack could be power [7], timing [8] or fault injection attacks
[9]. In this paper, we limit our evaluation to fault injection
due to HTs where the point of attack takes place within the
network as opposed to other side channel attacks where the
focus is on the encoding process itself.

B. Packet confidence with algebraic manipulation and detec-
tion codes

In our design we propose the use of algebraic manipulation
detection (AMD) codes [10], [11] to boost protection of

applications transmitting sensitive data between cores. AMD
codes were originally proposed in [10], and has been evaluated
in memory structures [11], but to our knowledge have not been
studied to protect vulnerable links in NoCs. In a scenario with
an ideal attacker, traditional codes such as SECDED, JTEC-
QED, and CRC do not provide the robustness required to with-
stand such an attack as their error detection capabilities are low.
Including CRC because the probability of detection diminishes
with high fault rates. Strong AMD codes by definition cannot
be masked into another valid codeword [12] for any error vec-
tors es1, es2, es3, which is a unique advantage that traditional
error correction and detection codes do not have, making them
vulnerable to fault injection attacks. The redundant bits in an
AMD code are a function of f(x, y) shown in Figure 1 where y
is the input data, x is a random number of size m, and y = bm
where b is chosen to lengthen y to a specific bit width. In our
implementation for packet AMD encoding m is 17 bits and
y is 204 bits, therefore b is 12. This translates to the packet
formation as shown in Figure 2. The encoding function f(y, x)
is computed as f(y, x) = y1x

⊕
y2x2

⊕
...yixi

⊕
xb+3 and

πy = y1
⊕

y2
⊕

...yi
⊕

x. The complete AMD codeword
forms the following structure, C = (y,πy, f(x, y)). If b is
even the degree of the last term in f(y, x) is xb+2 instead of
xb+3.

For applications working with sensitive or encrypted data,
AMD encoding should be used. For all other non-critical
traffic, packets will be encoded with CRC-32 to maintain
minimal fault tolerance. The encoding used is designated in
the header of each packet, along with the source, destination,
packet type, and signature. The packet header for all traffic is
then separately encoded using an AMD (23,7,7) codeword.
With the packet header always protected, we can ensure a
packet is always decoded correctly at the destination and that
it is in fact at the correct destination. Any malicious or random
alteration to the destination of other fields of the header will
be detected. To prevent a valid header from being used on a
maliciously crafted packet, after decoding, the packet signature
adds another layer of validation that ensures any duplication
of the packet will be caught. In the performance evaluation
section we will highlight the advantages and disadvantages of
each, along with a third option to encoded flits instead of entire
packets to minimize additional overhead.

Figure 2, shows the modules required in the network
interface for P-Sec and the packet makeup for both encoding
structures. We also show the state diagram for encoding modes
in each network interface. Network interfaces in P-Sec by
default will encode packets with CRC-32 to maintain minimal
fault coverage. In normal operating environments (not under
attack) CRC is well capable of detecting faults in packets since
the rate of faults naturally occurring are low. For cores sending
sensitive data over the network, P-Sec is turned ON and they
switch from CRC to AMD mode to protect sensitive packets
from fault injection attacks.
C. Case Studies

In the network diagram of Figure 3, we highlight three
scenarios a compromised NoC may encounter. In the first
scenario, a source and destination are transmitting data across
compromised links. The links in this scenario could be com-
promised by a simple HTs aiming to corrupt data or side
channel attack. Since this traffic is not considered critical and

2016 Design, Automation & Test in Europe Conference & Exhibition (DATE) 1137
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4a. Protecting Communication – global view

Methods: 
- Firewalls (access control)
- TNP (avoid temporal sharing)
- Secure Zones (avoid flow sharing)

Prevent: 
- Access control attacks
- DoS
- Timing SCA
- Hardware trojans

Geaninne Lopes – mst PUCRS
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4b. Protecting Computation

Real et al. (2018)
• logical and spatial isolation of sensitive applications 

through the dynamic creation of secure zones (SZ) 
to mitigate DoS and cache SCA attacks at runtime

• hybrid architecture, with a 2D-Mesh NoC where each 
router is connected to a cluster with 4 processors, 1 
shared memory and 1 shared bus  

• only cluster resources are isolated by the SZ 
• if a task needs to communicate with a task in another 

cluster the message is sent through an insecure 
channel

The computation protection include mechanisms to avoid 
processors’ sharing between distinct applications
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4b. Protecting Computation

ARM TrustZone – ATZ (2018)
• isolation of applications in the same processor (spatial isolation)
• hardware support for the creation at runtime of Trusted 

Execution Environments (TEEs) 
• creates two virtual processors and two Memory Management 

Units, allowing to execute a secure and a non-secure application 
simultaneously

• drawback: in many-core systems applications running on 
different processors share resources such as the NoC/buses 
and memory

Methods: 
- Secure Zones à isolation

Ensures: 
- data integrity
- confidentiality
- access control
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4c. Protecting Comm. and Comp.

Isakovic et al. (2013)
• Secure zones: computation and communication protection using 

spatial isolation with encryption mechanisms
• architectural partitioning of the MPSoC resources at design 

time
• mechanisms:  secure microkernel secure channel infrastructure 

that includes cryptography and firewalls

TISS – Trusted Interface Subsystem
Fig. 2. Block diagram of Secure Communication Architecture

Fig. 3. Secure Channel Structure

returns the index of the corresponding key in the key table
managed by the Secure Kernel. If keys have to be exchanged
with some other entity, the Secure Kernel performs this action
in a secure and reliable manner.

B. Secure Channel

The Secure Channel is an abstract object composed of
a regular communication channel and a security protocol
implemented on the communication channel. A protocol is
defined as a series of steps, which involve two or more parties
with a goal of achieving certain task. The security protocol
uses cryptographic algorithms to solve a security related issue
on a communication channel. Which security mechanisms are
actually used in a security protocol is defined by requirements
of an application. This can be implemented differently from
application to application.

The basic structure of a secure channel is shown in Figure 3
and comprises following elements:

• Cryptographic algorithms which provide basic crypto-
graphic services

• Security protocols which extend the capabilities of the
cryptographic algorithms and provide security proper-
ties to communication channels

• A user access list to manage access rights to the
channels

• Key management system provides secure storage and
distribution of the keys used for various security
protocols and cryptographic algorithms.

Establishing a Secure Channel requires coordination and
connection of several basic services of the ACROSS service
model. The secure channels in ACROSS are unidirectional
single-cast channels based on symmetric encryption security
mechanisms. Here the procedure that instantiates a Secure
Channel in the ACROSS MPSoC:

1) Secure Channels are created by the application using
the related API

2) The API evokes the Secure Channel Provider which
opens a special storage holding unit for the channel.
Thus, Secure Channels are host by a Provider and the
Secure Kernel handles security key management.

3) Secure Channel Provider opens a single port on the
TTNoC for each channel, which is then used to
transmit data for the channel. The port configuration
data is static and shared among channel among parties
before compile.

4) A secure channel are used only for the off-chip
communication, therefore a gateway (IO component)
is instructed to establish communication with the
other device. This requires configuring ports on both
sides and the gateway to relay the messages.

C. Key Management

The key management defines the process of a key gener-
ation, key storage and a key distribution. Keys are generated
either during the pre-configuration phase or during runtime.
Each channel is provided with the single key which are man-
aged by the Secure Kernels. The Key management exists once
per physical device. Hence, it is implemented as a dedicated
system component. Access is facilitated only via the rigorously
specified interface at the TTNoC.

D. Limitations

Our approach defines the basic architectural elements to
design a secure real-time system within the framework of the
ACROSS architecture. It is agnostic to the actual resource
requirements for an implementation thereof. The execution
of a security protocol within our Secure Communication
Architecture has the same cost in terms of resources like
in a traditional solution, simply because the cryptographic
algorithms are implemented in the same way. What we propose
is that partitioning can help when allocating these resources.
Consequently, due to this allocation, performance gains can be
made through the parallel execution of tasks relevant for the
security architecture.

The architecture itself does not impose any limitations on
the real-time behaviour of the system. However, the designer
has to take increased Worst-Case Execution Times (WCETs)
through the cryptographic algorithms into account. Typically,
a security protocol consists of two phases, one phase for
negotiating a session key (asymmetric ciphers) and one phase
for bulk encryption (symmetric ciphers). The former can be
indeterministic, therefore we put it under the hood ind the key
management which has to ensure that cryptographic keys are
readily available when a real-time message has to be encrypted
and sent. This encryption/decryption operation will increase
the processing time of a message. Because the latter phase uses
symmetric algorithms whose WCET is mostly bound (if keys

����
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4c. Protecting Comm. and Comp.

Sepúlveda et al. (2017)
• Protects computation - spatial isolation through secure zoned

- non-continuous SZ, defined at runtime
• Protects communication - cryptography (DH and XOR)
• Two NoCs: 

- data NoC, used by the application data 
- service NoC, used to exchange the security control packets

• After mapping the application,  a key agreement protocol is 
executed between the mapped PEs using the service NoC. 

• The encryption/decryption is obtained XORing the message with 
the shared key

• Ensure data integrity, confidentiality and availability
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4c. Protecting Comm. and Comp.

Reinbrecht et al. (2020)
• Obfuscation technique
• 3 techniques to prevent timing attacks:

- blinding - changes the response time to have a constant value
- masking - insert delays on the responses, operating as a noise 

source
- dual communication strategy - use packet and circuit switching 

simultaneously (secure flows: packet switching)
• Blinding and masking: protects computation
• Dual communication strategy: protects communication

paper. Thereafter, we describe the proposed NoC architecture.
Finally, the protection mechanisms are described.

A. Motivation
The Network-on-Chip is a central component of an MPSoC

architecture which handles all communication between the
nodes. MPSoCs usually integrate security features such as
cryptographic hardware cores for supporting confidentiality
and authentication services. However, during the operation of
a cryptographic core (trusted element), the secret key may
passively be revealed through LSCA. In case an MPSoC
application secures data by using the embedded cryptographic
core, both plaintext and ciphertext information is exchanged
through the NoC. Depending on the type of security function,
part of the execution of the cryptographic task (e.g., an
AES encryption) will use the NoC to accesses some valuable
information stored in the main memory (e.g., S-Box data).
In summary, the NoC is part of critical operations in the
system, from memory accesses by the elements to specialized
service requests/responses. Therefore, this work proposes an
NoC architecture that affects the relation between nodes to
hide potential timing leakages. We achieve this by applying
blinding and masking countermeasures in the router. In ad-
dition, we adopt dual switching to avoid attackers infering
timing information. In the following subsections, we provide
more details.

B. Threat Model
Guard-NoC considers the following threat model:
• There are trusted and non-trusted nodes in the system.
• Trusted nodes run inside a secure zone and have their own

isolated local resources (similar to ARM Trust zone [9]).
IPs 8, 9, 12 and 13 are used as trusted nodes (see Fig. 1),
but in general any other mapping is possible.

• Sensitive applications are only executed on trusted nodes.
Oppositely, external applications can only run on non-
trusted nodes, as they may contain malicious intentions.

• The last level cache is shared between the trusted and
non-trusted nodes and is the gateway to the main memory
of the system. Our target platform has level 2 as last level.

• System monitors and debug information contain sensitive
and therefore can only be accessed by trusted nodes.

C. Hardware Architecture
Fig. 1 shows the MPSoC platform considered in this paper.

It consists of 16 nodes interconnected by a 4x4 grid of routers.
Of those nodes, 14 contain a RISC-V processor (RI5CY core
from Pulpino platform [31]), one shared L2 cache (node
IP 0) and one UART for external communication (node IP
3). The NoC configuration follows the description given in
subsection II-A, with the only difference that Guard-NoC
routers can handle both circuit and packet switching (i.e.,
dual switching). In addition, they include an extra component
responsible for the security of the nodes called Obfuscation
Function (see Fig. 2).

D. Protecting Nodes
The protection of the nodes is provided by the obfuscation

module block which is shown in more details in Fig. 2. It is a
dedicated hardware unit that is included between the network
interface and local input channel (IC local) of each router

Fig. 2: Obfuscation Module.

that obfuscates the timing. By altering the delay of pack-
ets, different timing behavior of cache memories, hardware
accelerators or even applications running in processors will
be observed by the attacker, making the attacks much harder.
The obfuscation module has two strategies, which are blinding
and the masking. Blinding focuses on mitigating the leakage
behavior, while masking aims to hide it by adding random
noise. Each strategy is described in more details next.

1) Blinding Strategy: The blinding strategy manipulates the
response time of the node and tries to make this constant.
We propose three blinding techniques referred to as average,
bucket [32], and worst-case.
Average Blinding: This technique averages the response time
of the previous four responses (See t1 till t4 in Fig. 2). This
blinding strategy is composed of three phases: i) Initialization:
during this phase, an incoming packet asks for a service
identified by signal valid o (i.e., valid o signal is high at local
output channel of the router). This operation triggers the start
of a counter and forward the request to the node. ii) Update:
the response packet is ready to transmit when the encryption
is completed, i.e., valid ip from network interface is high. The
value of the counter will be stored and a new average response
time will be calculated based on the last 4 services, which are
the last four encryptions for this node. iii) Wait+Release: When
the counter reaches the average time the packet is released to
the network and the counter is reset, with the exception when
the operation time is higher than the average.
Bucket Blinding: Bucket blinding was initially proposed by
Kopf et al. in [32], but only a theoretical model has been
presented. Our solution is the first practical implementation
of such strategy. It defines a set of fixed time responses and
selects one as actual response time. For example, if eight
buckets are defined, the time behavior will vary only between
these eight possibilities. The drawback of this method is that
designers must know in advance which applications will run
on the node to have meaningful bucket values.
Worst-case Blinding: This method uses the worst case timing
as a fixed response time. Each time an encryption takes
longer than the worst execution time, the network interface
will update this as the new worst-case time. For applications
where the worst and best case timings are close, it can be an
interesting alternative.

2) Masking Strategy: The masking countermeasure delays
the responses by a random amount of time and hence can be
seen a noise source. One of the best sources to achieve ran-
domness is to use True Random Number Generators [33]. Due
to its high cost, we rather propose the usage of pseudo-random
generators in hardware. These pseudo-random algorithms can
be implemented by a Linear Feedback Shift Register (LFSR).
An LFSR circuit is composed of a cyclic shift register and

���
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4d. Discussion
Communication 

• most works related to the security protect just the communication subsystem
• Several works adopt design time methods

ü Pros:  enable the adoption of sophisticated and robust algorithms
ü Cons:  design time methods are not applicable in dynamic workload scenarios.  

• The most common and intuitive approach to protect communication is encryption - provides data confidentiality 
but still expose the traffic to DoS and timing SCA attacks 

• Firewalls ensure access control to the communication system, avoiding DoS attacks and minimizing the 
possibility of data extraction by a malicious process

• TNP provide temporal and logical traffic isolation avoiding the interference on secure flows, enabling 
communication availability and timing SCA attacks protection

Computation 
• adopts temporal, logical or spatial isolation as main mechanism

Communication + Computation
• spatial isolation and encryption
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5. Protecting Ext. Communication
C. Reinbrecht et al. / Microprocessors and Microsystems 52 (2017) 556–565 561 

4.3. P + P Arrow technique 
P + P Arrow is an attack that aims to identify the used set of 

the shared cache at each access by the cryptographic algorithm. To 
accomplish that, the NoC timing attack needs to identify the sen- 
sitive information communicating. To decrease such difficulty, this 
technique targets bigger shared caches, where AES tables do not 
share sets. In AES algorithm, the pre-computed tables are accessed 
sequentially (T0, T1, T2 and then T3), which gives to attacker the 
possibility to probe the cache always in the fourth access (consid- 
ering bigger caches). Therefore, in such scenario, the successful rate 
of NoC timing attack (the ability to identify sensitive packets) have 
to be higher than 25% to implement the P + P Arrow. Our results 
are considered acceptable, where NoC timing attack can identify 
41% of all sensitive traffic. 

The successful rate of 41% implies that the last four access of 
the first round cannot be taken into account. The assumption that 
our attack can identify at least one access in four make not safe to 
assume that the last four accesses from all sixteen belong to the 
first round of the AES algorithm. This means that this technique 
avoids the last four access, being capable of revealing only 12 of 
16 bytes from the key. As a result, the last 4 bytes requires a post- 
processing brute-force execution. 

Another important issue about this technique is the collisions in 
reading the shared cache when attacker and victim IP want to ac- 
cess at the same time. The cryptographic task cannot read in cache 
during the probe, because it could invalidate valuable information. 
So, if the AES access is faster than the probe stage, the same at- 
tack needs to be performed several times. At each time, different 
segments of the memory will be checked. 

The P + P Arrow detailed operation can be observed in the 
flowchart presented in Fig. 4 (b). These actions take into account 
the fact that all tables are spread in different sets and that NoC 
timing attack can have a successful rate of 25%. 

As observed in Fig. 4 (b), the prime stage prepare the sets for 
the attack, but in P + P Arrow, it targets one table per attack. Then, 
after the request of encryption, the NoC timing attack is performed, 
and at each four access identified a probe stage is executed. In the 
case of AES accesses are faster than all probe stage, the attacker 
needs to remake the process to acquire all sets information. The 
quantity of repetition depends on the time required to probe all 
possible sets used by the target table. Finally, the probe sends the 
information to the host. 

In P + P Arrow, the Analysis stage follows the original concept of 
Osvik [7] , which correlates the set with the candidate byte of the 
key. We perform the first round analysis, where only the accesses 
during the first AES round are used for the scientific test. Since 
each set represents a group of bytes in the memory system, several 
bytes can be considered candidates. Then, the attack needs to be 
performed with different plaintexts to eliminate these possibilities. 
Experiments revealed that about 20 samples are enough to retrieve 
a key. However, this strategy only reduces the key search space, 
showing 12 bytes of the key. The last 4 bytes requires a brute force 
to be discovered, which means an effort of 2 32 . 
5. NoC protection 

The Gossip NoC is a security enhanced architecture able to pro- 
tect the MPSoC against timing attacks. It is composed by a traffic 
monitor and a counter-measure technique at each router, being a 
distributed security mechanism. The name gossip is proposed be- 
cause the traffic monitors generate alert messages to other routers, 
creating a gossip message . Besides, to avoid false-positives the 
router uses a reinforcement parameter, called gossip confidence , to 
decide when to accept the gossip message . If an attack is detected, 
the router changes the routing algorithm to the packets that wants 

Fig. 5. Gossip router microarchitecture: (1) Gossip in block; (2) Gossip logic; (3) 
Gossip generator. 
to go through the path under attack. Gossip NoC was presented in 
[16] . 

Gossip NoC is based on two protection strategies: i) Detection, 
and ii) Protection. The first one includes the bandwidth monitor- 
ing and an alert message (gossip) generation in the presence of 
abnormal behavior. The second one is triggered when any gossip 
message is received and which can modify the route of the packet 
from XY to YX. The alert messages reinforce the suspect of an at- 
tack, avoiding false-positives. If an attack is detected, the router 
changes the routing algorithm for the packets that follows the sen- 
sitive path. The usage of XY and YX routing algorithms together is 
guaranteed as deadlock and livelock free [19,20] . 

The gossip router microarchitecture is shown in Fig. 5 . It is 
based on a conventional NoC router composed of routing scheme 
(XY and YX), Round-Robin arbiter and FIFO memory. Additional 
three main components are integrated: 
• Gossip In Block: It controls the internal state of the gossip 

router according to the values of the input signals. When the 
number of gossip messages received from neighbor routers 
overcomes the threshold gossip confidence , an attack is con- 
firmed. As a result, the routing of the gossip switching is modi- 
fied. 

• Gossip switching: It commutes the incoming packets from an 
input to an output. Under attack, the traffic is commuted ac- 
cording to the YX algorithm. Otherwise, the XY route is imple- 
mented. 

• Gossip Generator: It monitors the traffic bandwidth. When it 
exceeds a protection bandwidth threshold, a signal indicating 
a possible attack is activated and transmitted to the Gossip In 
Block of all the other routers. 

6. Experiments and results 
In this section we present the experimental setup, the evalu- 

ation of the NoC Prime + Probe attack techniques, Firecracker and 
Arrow, and the Gossip NoC security efficacy, efficiency and cost. 
6.1. Experimental setup 

The MPSoC was implemented in an [21] FPGA. An ARM hard 
IP executes the AES cryptography. Other processing elements were 
modeled by means of synthesized traffic generators. The external 
communication IP used was the UART serial. The AES accesses the 
lookup tables from the shared cache of the MPSoC. It is a 16-way 

Reinbrecht et al. (2017)
• Mitigate SCA attacks to memories
• Gossip NoC combines two strategies to protect the MPSoC 

against timing SCA: 
- detection, which includes a bandwidth monitoring and a 

gossip message generation in the presence of an abnormal 
behavior that enables the second strategy

- protection, triggered when any gossip message is received 
and modify the routing (XY routing algorithm to the YX)
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5. Protecting Ext. Communication

Grammatikakis et al. (2015)
• firewall at the NI which, by checking the physical address against 

a set of rules, rejects untrusted CPU requests to the on-chip 
memory

• firewall has three modules:
- operating mode controller (OMC), that accepts, decodes and 

dispatches NoC firewall commands; 
- segment-level rule-checking (SLRC), processes incoming memory 

accesses and configuration commands;
- the interrupt unit (INTU) that accepts interrupt requests from the OMC 

and  SLRC modules and reports interrupt contexts to the CPU 

space. To perform exhaustive experimentation we selected
a controlled-environment, with only a few nodes, which al-
lowed us to examine all potential configurations by varying
selected parameters. Our aim is to assist the NoC architect
and researchers in making the proper design choices prior to
proceeding with the actual STNoC customization; in the near
future we will do this with the evaluation of MPSoCs with
more nodes and the design of relevant tools.

III. USE OF A VERSATILE EXPERIMENTAL FRAMEWORK

To evaluate the effect of system parameters we employed
a framework combining CPUs and shared memory, intercon-
nected with a network-on-chip topology, augmented with a
firewall placed at each network interface (NI) of the NoC
[1]. Within this framework we measure delivery times starting
from the time a packet enter the NI queue, and power
consumption at the network-layer.

A. Building-up the Framework

The framework combines ARM v7 CPU technology and
STNoC point-to-point interconnect. STNoC can be customized
according to given specifications to interconnect MPSoC com-
ponents, i.e. CPUs, memories, and peripherals [11]. From
the network point of view, each component is a node, and
information - instructions and data - is transmitted across the
network in STNoC formatted packets. At the STNoC interface,
prior to transmission, a packet is broken down in smaller units
called flits that in turn are released into the network.

To conduct experiments we described the above system in
the gem5 simulator [12], a platform widely used in computer
system architecture research, encompassing processor and
system-level microarchitecture. It is highly-configurable and
includes support for multiple ISA and diverse CPU models in-
cluding ARM, with detailed memory systems and interconnect
models. Within the gem5 environment, we created an STNoC-
like network model instance, which we time-annotated from
cycle-accurate design specifications of the STMicroelectronics
backbone architecture; it includes the STNoC router, the
network interface and a synchronous link. Also, we imple-
mented a gem5 transaction-level model of the NoC firewall
and integrated it in the network interfaces of STNoC. Then,
we time-annotated the NoC firewall model based on a cycle-
accurate design we implemented in HDL. More details on the
framework and firewall are beyond the scope of present work,
and can be found in [1], [2]. It should be noted that the firewall
adds an overhead of 5 cycles maximum in order to perform
rule checking; this overhead is taken into account within our
framework.

B. System Parameters

We explored parameters that can be customized, as we
are interested in studying the response of the system when
changing the parameter values. The link-width of the NoC in
combination with the size of the packet affects the amount of
flits into which the packet is segmented prior to transmitting it.
We kept both sizes constant, thus the amount of flits per packet

remained constant throughout our experiments. We varied the
number of nodes that are connected to the NoC, i.e. CPUs and
memories. We also have the capability to change the status of
the firewall (on/off); when it is activated it adds overhead,
but at the same time it relieves the network from malicious
content, which incurs unnecessary load. In order to evaluate
its use and examine our system’s behaviour we generated
malicious packets along with legal ones; we did the same in
[1], [2]. Finally, we varied the injection rate of the packets
generated by the CPUs.

IV. EXPERIMENTAL SCENARIOS

We experimented with different number of nodes connected
to the STNoC. Figure 1 illustrates the way the nodes are
interconnected for two cases; 4-nodes and 8-nodes. Present
work includes experiments with up to 32-nodes, however most
of them concern a 4-node setup. For each case we produced
different combinations with regard to the number of legal
(we also refer to them as safe) and malicious processes. We
even deployed scenarios in which almost all network traffic is
malicious. Although this constitutes an extreme situation it is
quite realistic; due to that a virus or malicious program can
replicate itself fast, there is no limit on the malicious traffic
that can be generated to memory. Recent DDoS attacks at
network gateways have reached bandwidths of over 300 Gbps
[13].

Fig. 1. We used different configurations to study the effect of security, and
performed experiments with up to 32-nodes. Case (a) corresponds to two
different configurations; either both CPUs or only one CPU can be active.

Table I has the parameters of the simulation framework.
We ran simulations with 1 CPU/2 Memories (actually 2 CPUs
but 1 is inactive), 2 CPUs/2 Memories, 4 CPUs/4 Memories,
8 CPUs/8 Memories, and 16 CPUs/16 Memories. We tested
different scenarios with a varying rate of safe vs. malicious
processes running in the CPUs; in Table I we represent this
as xSyM , where x is the number of safe processes and y
the number of malicious processes. The process requesting
access to memory is selected with a random policy, and it can
be either a “write” or “write-execute” request. A request is
performed to a random address, which belongs to a certain
pre-allocated rule-protected memory segment. We performed
the same experiments by enabling and then disabling the
NoC firewall. When enabled, the NoC firewall denies access
to every single request from malicious processes since all

1st Workshop on Security and Privacy in Cybermatics (SPiCy 2015)
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Few works in the literature concerned with IO accesses
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6. Security Methods Proposals

6.1 Lightweight security mechanisms

6.2 SDN – Software Defined Networking

6.3 OSZ – Opaque Secure Zones

ISCAS’17, ICECS’18, LASCAS’18 
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• dedicated network to send sensitive data
• spatial isolation of applications
• filters to block malicious traffic (simple firewall)
• AES or lightweight cryptography

`6.1 Lightweight security mechanisms

Dedicated network:
• loosely connected to the MPSOC
• serial Hamiltonian path that runs through all PEs
• small area footprint: 2 ports instead of 5 of a standard 

2D-mesh, no need to add input buffers 
• only the MP may inject data into it (root-of-trust)
• MP injects cryptographic keys and application/task 

identifiers

D&T 2021
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• dedicated network to send sensitive data
• spatial isolation of applications
• filters to block malicious traffic (simple firewall)
• AES or lightweight cryptography

`6.1 Lightweight security mechanisms

Spatial isolation of applications:
• new restriction in the task mapping: tasks belonging to

different applications cannot share the same processor
• restricting task mapping prevents malicious tasks from 

running on the same processor, thus preventing a 
malicious task from accessing sensitive data, ensuring 
security at the computation level 

D&T 2021
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`6.1 Lightweight security mechanisms

Filters to block malicious traffic:
• MP configures the filters during mapping
• OF (output filter) tags the packets entering the NoC

with the correct application identifier, dropping all other
packets
- prevents tasks from forging an App_ID, avoiding the

execution of attacks

• IF (input filter) admits of two packet types: packets that
match the App_ID or management packets
- IF discards all other packets.
- avoids attacks as DOS
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`6.1 Lightweight security mechanisms

AES or lightweight cryptography:
• crypto core – design choice
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full-duplex. The arbiter avoids deadlocks at the application 
level, which may occur when it is necessary to send and 
receive data for different tasks mapped in the same SP. 

Table 1 compares both encryption methods, adopting a 
128-bit key and a 128-bit block for cipher. AES presents a 
smaller latency compared to SIMON, while SIMON 
presents a smaller area and power. For comparison 
purposes, the NoC router (8-flit-buffer depth, 32-bit flit 
width, no virtual channels) requires 5,906 cells, and the 
Hrouter 1,229 cells (20% of the router area, without 
considering the crypto core). 

Table 1 - AES and SIMON comparison – 65 nm technology. 
 SIMON  AES 

Latency (clock cycles) 70 19 

Area (μm²) 22,371 105,316 

Cell Count 4,076 20,5634 

Power (μW) 16,033 399,233 

RESULTS	
Results evaluate the proposal in terms of the actuation 

of security mechanisms, performance overhead, and 
comparison with the state-of-the-art. 

Security	Mechanisms	

This section presents a scenario using: (i) spatial 
isolation of applications; (ii) HNoC; (iii) traffic blocking 
filter. This experiment considers a task running in a given 
PE, receiving packets from tasks belonging to the same 
application (Figure 3(a)), and the application being 
attacked by a malicious task (Figure 3(b)). 

The first four signals in Figure 3 corresponds to the 
interface between the NoC router and the Hrouter. The IF 
stores the first four flits, and the control flow signal 
(CreditIn) goes to zero, interrupting the packet reception. 
At this point, the Hrouter compares the received App_ID 
to the stored App_ID. 

 Figure 3(a) shows the Hrouter signals making the 
interface with the NI. This scenario corresponds to a 

correct App_ID reception. The following actions occur: 
(i) IF notifies the NI (RX=1) enabling the packet header 
consumption (DataIn bus); (ii) CreditIn goes to one, 
allowing payload consumption.  

Figure 3(b) corresponds to the reception of an incorrect 
App_ID. When App_ID does not match, the IF does not 
notify the NI a new packet (RX=0). This action 
corresponds to a virtual packet consumption, resulting in 
the discarding of packets with an incorrect App_ID. 

Latency	Evaluation	

This section evaluates the average applications' latency 
(time to execute an iteration) - Latavg, being a benchmark 
with a communication-intensive profile (prod_cons, 74% 
communication:26% computation), and a multimedia 
benchmark with a computation-intensive profile (MPEG 
decoder, 5% comm.:95% comp.). Experiments adopt a 3x3 
MPSoC, modelled at the RTL level, comparing the 
reference MPSoC with no security mechanism, against (i) 
SC1 (scenario 1) - insertion of the packet filters; (ii) SC2 - 
SC1 with AES cryptography; (iii) SC3 - SC1 with SIMON 
cryptography. Both applications run 50 iterations, and the 
Latavg computation discards the warm-up period (10 first 
iterations). 

Results show distinct behaviors, according to the 
application profile. For the prod_cons application, Latavg 
increased by 13.63% (SC1), 46.51% (SC2), and 256.14% 
(SC3). For the MPEG application, Latavg increased by 
0.1% (SC1), 2.55% (SC2), and 21.38% (SC3). The lower 
Latavg increase in MPEG is due to the higher computation-
communication rate, i.e., most of the time, the application 
decodes frames and does not transfer packets. Figure 4 
presents the Latavg graph for the prod_cons application. 
Other real benchmarks, as DTW (Dynamic Time 
Warping), presented comparable results: 2-4% in SC2, and 
18-24% in SC3. The overhead varies with the NoC traffic. 

The Latavg increased by 0.1% and 13.63% for the MPEG 
and prod_cons, respectively, using only the packet 
filtering mechanism, a small cost considering the increased 

 

 

Figure 3 - Waveform illustrating the operation of the IF blocking unwanted messages. 
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Ø Non-intrusiveness is the keyword of this work
Ø HNoC: is generic, with a small area footprint
Ø Software level: restrictions in the task mapping heuristic and 

distributing sensitive data to HNoC

Application is protected, but traffic shared in the NOC 
à DoS, SCA is possible
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`6.2 SDN – Software Defined Networking

What is SDN :
• Software Defined Networking (SDN): simplify network

management and reduce routers' cost
• Reduced hardware complexity
• Flexible management to support different objectives

Architecture
• MPN – multiple physical networks
• 1 PS subnet
• n SDN subnets – circuit switching
• SDN configures paths

IEEE Acess 2020

(a) MCSoC:  Cluster-based Manag. (b) Cluster Architecture

Legend:
NI = Network Interface
PS = Packet-Switching router
SR = SDN Router
M =  Manager
GM = Global Manager
INJ = Application Injector
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`6.2 SDN – Software Defined Networking
IEEE Acess 2020

SDN Router (SR)
¢ Simple forwarding unit

¢ Connects a given inport to a given 

outport

¢ Use Elastic-Buffers instead 

input buffers (low area overhead – 20% of PS) 

¢ Configuration interface 

¢ Network Interface (NI) programs the SR 

routers according to configuration packets 

sent by the SDN Controller
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`6.2 SDN – Software Defined Networking

Method:
• Disjoint SZ with circuit-switching communication

5 Steps
1. Initialization

• executes once, at system startup
• Elliptic Curve Diffie–Hellman Key Exchange (ECDH) 

protocol è Ke

2. Application Admission
• Request of a new application, authenticated by Ke

IEEE Acess 2020
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`6.2 SDN – Software Defined Networking

Steps
3. SDN-based secure task mapping

• mapping with spatial isolation 
• SDN controller must ensure the availability of CS paths
• complex protocol with security ensured at all steps

4. SDN connections establishment
• SDN controller configures the the SR using the PS 

subnet

5. Secure task loading
• MAC verification for each task

IEEE Acess 2020

(b)

ControllerController SlaveSlaveMMGMGMINJINJ

Initialize {ML}(a)

SSTM: SDN-based Secure_Task_Mapping()

Request MPN status
Reply

Request Secure SDN paths
Reply

Task Mapping Complete
Rnd ← Generate_PRN()

Km ← SIPHASH(Rnd)
T ← Km XOR Ke

Ke ← Km XOR T

Cluster_Selection()
Application Request

Task Allocation Complete {MAC = CMAC ?}Application Allocated

(c)

(e)

Km ← SIPHASH(Rnd)

Request SDN paths Searches and Configures
the PathsReply(d)

CMAC ← SIPHASH(code, Ke)

Release Task
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`6.2 SDN – Software Defined Networking

Originality
• communication and computation protected
• provide security to applications by dynamically establishing circuit switching using SDN 
• better system utilization due to non-continuous regions
• offers communication integrity, leading to data transmission without the overhead of encryption, arbitration, 

and routing required in PS NoCs
Avoided threats

• DoS attacks, are prevented due to the resources’ isolation at the application communication level
• timing attacks are prevented since no time inferences can be taken from packets in CS channels

Cost
• application admission latency due to the SDN execution for finding paths between communicating tasks, but it 

is negligible for the end-user (below 1 ms)
Open issues

• protection of the packet switching network  to  prevent  DoS  attacks
• definition of a method for safely communicate with peripherals

IEEE Acess 2020
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Creation time: runtime

Shape: continuous rectilinear

Communication sharing: avoided

Computation sharing: avoided 

Methods:  temporal-spatial isolation 
and rerouting

Multiple OZs coexist simultaneously

`6.3 OSZ - Opaque Secure Zones
ISVLSI 2019
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`6.3 OSZ - System Architecture 
ISVLSI 2019

NoC-based many-core system with peripheral support
PE

- 32 bits MIPS-like Processor
- DMNI module
- Local dual port memory
- Data NoC router
- Control NoC router
- Wrappers

Data NoC

- Duplicated physical channels
- Wormhole packet switch
- Support to XY and source routing
- Input buffer, 8-flit depth
- 16 bits flit length

Control NoC - BrNoC

- Broadcast as default transmission mode
- Small area footprint: centralized buffer using an 

8-entry CAM (content-addressable memory) memory
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`6.3 OSZ - General View of the Method
ISVLSI 2019

Method
- Secure Application admission (ECDH)
- Create the OSZ with wrappers
- Launch App
- Reroute packets outside OSZ
- Notify ended tasks to LMP (manager processor)
- Clear memories of PEs and open the OSZ

LMP
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APP 1
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`6.3 OSZ - General View of the Method
ISVLSI 2019

1

2
3

4

Secure IO 
communication

Advantages
- No need to encrypt the application data
- All attacks related to communication and computation sharing are 

avoided
- Small hardware cost:  brNoC + wrappers
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`6.3 OSZ - Opaque Secure Zones
ISVLSI 2019

Communication with peripherals: selective opening of access points
- Communication with peripherals uses master/slave approach
- API differentiate inter-task messages from I/O messages: IO_Send() or IO_Receive() – packets 

protected with a MAC
- Opened wrapper to send data: no security issue to app inside OSZ.  But threat to I/O message 

outside OSZ
- Opened wrapper to receive data: security issue

- I/O messages can be encrypted (confidentiality)
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`6.3 OSZ - Opaque Secure Zones
ISVLSI 2019

- OSZs: original procedure to mitigate resource sharing

• runtime execution with several SZs co-existing in parallel

• internal OSZ communication without cryptography, not penalizing the 
execution time of the secure application

- Robust method to enable OSZs to communicate with I/O devices

- Issues:

• Attacks from HTs

• Key exchange with peripherals (NI?)

• Standard NI with lightweight cryptography 
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