Programa de Pós-Graduação em Ciência da Computação – PPGCC-PUCRS

Vulnerabilities and Security in NoC-based Many-cores

FERNANDO GEHM MORAES fernando.moraes@pucrs.br

Outline

- 1. Introduction
- 2. Threat Model
- 3. Protecting App Admission
- 4. Protecting App Execution
- 5. Protecting IO
- 6. Security Methods Proposals | Part ||

1. Introduction – many-core systems

Computational systems tend towards parallel architectures with multiprocessor on chip systems – MPSoCs

UltraSparc T5 (2013)

Esperanto ML Chip - 1,100 RISC-V Cores (2020)

1. Introduction – many-core systems

NoC-based many-core SoCs enable

- high connectivity
- massive parallelism
- simultaneous executions of several applications

Increase and continuous adoption in electronic systems

 IoT, ML, autonomous-car systems, hardware accelerators, cell phones, ...

Tile GX- Tilera (100 cores) → Mellanox → Nvidia bought Mellanox in 2019 - 6.9 bi

1. Introduction – the security problem (hw)

Resource sharing during the application execution

- shared computation: cores and memory
- shared communication: NoC links and routers

Access peripherals (M) without expose application data

1. Introduction – Application's Execution Phases

Application admission

- object code/data transfer from an off-chip entity to the MPSoC
- system must trust on the entity transmitting the application
- the integrity of the application/data must be verified to avoid the insertion of malicious code

Execution time

- malicious attacker may have access to sensitive computation or communication data
- computation (cores) and communication (NoC) must be protected

Communication with external devices

 unauthorized access to instructions and data in shared memory and peripherals can compromise the applications' execution

2. Threat Model - Security principles

[Ramachandran 2002]

Confidentiality

• the property of non-disclosure of information to unauthorized processes, entities or users

Availability

• the protection of resources from threats that might impact any of the system's resources availability

Integrity

the prevention of modification or destruction of a resource by an unauthorized entity or user

Authentication

the process of establishment and validation of a claimed identity

Authorization

the process of determining whether a validated entity can access a secured resource based on attributes,
 predicates or context

Auditing

• the property of logging sufficient system activities to reconstruct events (not applied to the MPSoC context - NA)

Nonrepudiation

• the prevention of any participant denying his role in the interaction once it is completed (NA)

2. Attacks that compromise the system (1/2)

Denial-of-Service - DoS (compromises availability)

- disruption of the system by overloading resources
- a malicious application task generating packets with a high injection rate can produce this attack, overloading the communication infrastructure

Distributed Denial-of-Service - DDoS (compromises availability)

- similar to DoS, uses multiples tasks to attack and disrupt the system by overloading resources
- a malicious application running in distinct cores can coordinate an attack to a specific router overloading its communication capacity

Timing attack (side channel attack) (compromises confidentiality)

- explores the communication collision between the sensitive traffic and the attacker traffic
- the latency interference induced by malicious traffic can provide to the attacker some information about the timing, frequency, and volume of the secure communication

Spoofing (compromises authorization and authentication)

a malicious application successfully falsifies its identity to obtain unauthorized privileges

2. Attacks that compromise the system (2/2)

Hijacking (compromises **authorization** and **authentication**)

• an attempt to alter the system configuration to execute a set of abnormal tasks along with normal system operation (e.g., during the load of the operating system or an application)

Man-in-the-Middle - MitM (compromises confidentiality, authorization and authentication)

- an attack where the attacker secretly relays and alters the communication between the external entity and the system
- enables the attacker to send malicious data or obtain secret information.

Hardware Trojans (compromises availability, authorization and authentication)

 a malicious modification of the system's hardware (e.g., inserted into the NoC) aiming to sniff and leak sensitive data

Trojan Horse and backdoor (compromises availability and confidentiality)

the tampering of the task's source code during the admission of the application can insert malicious code

2. Man-in-the-middle attack – an example

- (a) Task T_A communicates with task T_B
- (b) Malicious tasks (T_M) initiates the attack
- (c) T_M has access to the communication flow

3. Protecting App Admission

The application admission corresponds to the object code transfer from an off-chip entity to the MPSoC

- Each actor (external entity and MPSoC) must confirm the other part's identity, and the integrity of the application must be verified to avoid the tampering of the application's object code
- Solutions to these issues exist for the Internet, computer networks, and software
- Few proposals in the many-core area

Zero Knowledge Proof protocol [Khernane 2016]

- lightweight authentication scheme for WBAN (Wireless Body Area Network) called BANZKP
- protocol confirm the identity of the sensor nodes
- after the authentication success, an encryption mechanism provides the message privacy protection

Elliptic-curve Diffie-Hellman - ECDH

- system setup, registration, and authentication
- at the end of these steps each part have a common key
 (Ke) used in MAC generation and verification

3. Protecting App Admission

Integrity with PUF and MAC [Sepúlveda 2018]

- runtime mechanism based on MAC (Message Authentication Code) and PUF (Physical Unclonable Function)
 to provide memory integrity and authentication
- MAC uses SipHash algorithm
- mechanism have three stages:
 - Key generation (PUF)
 - MAC initialization and application installation
 - Operation

4. Protecting App Execution

Protecting:

Communication	Computation	Comm. and Comp.
 firewalls routing scheme encryption temporal network partition 	 logical and spatial isolation (clusters) ARM TrustZone (ATZ) 	 secure zones - partition and encryption secure zones - spatial isolation and encryption
 packet validation 		obfuscation

Communication

- firewalls
- routing scheme
- encryption
- temporal network partition
- packet validation

Firewall

- hardware barrier placed at the communication structure ports to control the input and output of an element
- tables to store the recognized trusted sources and a controller that allows the authorized traffic and blocks unauthorized traffic

Rajesh et al. (2015)

- runtime latency auditor, called RLAN, to dynamically monitor the on-chip resources availability and properly filter the malicious traffic
- packets traversing routes have spatial (source-target pairs) and temporal similarity (latency)

Hu et al. (2015)

- design time analysis of the traffic and the NoC architecture select the levels and position of the firewalls:
 - (a) between a PE and a router
 - (b) between routers

n PE_n 8 Router 9 R R F 1 Firewall l=1 12 R R F 10 Firewall l=2 11 14 15 6 Firewall l=3 20 R R F 10 O.CPU 1.DDR 2.GraphicsAccel 3.VideoDec 4.SRAM1 5.SRAM2 6.DisplayControl 7.Display 8.DSP 9.SRAM3 10.Audio 11.Radio(2G) 12.Radio(3G) 13.DMA 14.SDMMCDMA 15.SDMMCSlave 16.SPISlave 17.VideoEnc 18.CameraInterface 19.CameraSensor 20.USBDMA 21.USBSlave 22.WifiDMA 23.WifiSlave 24.DMA(3G)

Azad et al. (2018/2019)

- Firewall placed at the NI, with two tables:
 - initiator table, checks if the source has permission to send messages
 - target table, which verifies if the message can enter the target unit

Communication

- firewalls
- routing scheme
- encryption
- temporal network partition
- packet validation

Routing Scheme

Sepúlveda et al. (2015)

- Threat model: SCA
- adaptive routing and random arbitration
 - random arbitration remove the <u>temporal</u> <u>correlation</u> of malicious injected traffic and memory access.
 - adaptive West-First routing method, to make turns to escape from blocking conditions

Fernandes et al. (2016)

- Create Secure Zones at <u>design time</u>
- Configure routing tables to avoid DoS and timing side channel attacks

Charles et al. (2020)

- Anonymous routing using virtual circuit numbers (VCN)
- Two phases method
 - Route Discovery PE sends a packet to discover the route and distributes parameters among participants
 - Data Transfer the path set is used to transfer messages from S to D anonymously.

Indrusiak et al. (2019)

- route randomization
- varying the routes taken by sensitive traffic prevents the collision with malicious traffic making the SCA information extraction harder since the timing measures are not precise

Communication

- firewalls
- routing scheme
- encryption
- temporal network partition
- packet validation

Ancajas et al. (2014)

- Assumes HT
- Three-layer security mechanism
 - **Data Scrambling,** XOR cipher encryption (lightweight cryptography)
 - Packet Certification, attaches an encrypted tag at the end of the packet
 - Node Obfuscation (NObf), decouples the source and destination nodes using task migration

Zeferino et al. (2017)

 Use an AES block and a KDC (Key Distribution Center), adding authenticity and confidentiality in the message flow of the SoCIN NoC.

Oliveira et al. (2018) / Santanta (2021)

- Protects against DoS, MitM
 - spatial isolation of applications
 - a dedicated network to send sensitive data
 - filters to block malicious traffic (simple firewall)
 - AES or <u>lightweight cryptography</u>

Dedicated NoC (in red)

Filter with AES (in red)

Encryption drawbacks: crypto core area / latency to encrypt/decrypt

Communication

- firewalls
- routing scheme
- encryption
- temporal network partition
- packet validation

- explicit flow separation to avoid interference of low-priority flows in high priority flows
- mitigate DoS, timing side-channel attacks and information leakage

Wassel et al. (2014)

- design time method to create domains of noninterference between flows
- use of <u>virtual channels</u>, <u>priority arbitration</u>, called **surf** scheduling
- a packet waits in one dimension (X), after finishing the first dimension, the packet might experience another wait until it can be forwarded to the next dimension (Y).
- Drawback: increasing the number of domains also increases the number of virtual channels, increasing the router area and power consumption.

Wang et al. (2012)

- design time priority-based arbitration
- assign high-priority to low-security traffic, in such way that its behavior is not affected by high-security traffic.
- Virtual channels are statically allocated to each security domain to remove interference in buffers.

Packet Validation

Boraten et al. (2016)

- runtime packet-security (P-Sec) method, protecting against SCA, DoS, HTs
- adopts two error detection schemes
 - cyclic redundancy check (CRC) codes
 - algebraic manipulation detection (AMD)
- Overhead: increases packet size

Communication

- firewalls
- routing scheme
- encryption
- temporal network partition
- packet validation

4a. Protecting Communication – global view

Methods:

- Firewalls (access control)
- TNP (avoid temporal sharing)
- Secure Zones (avoid flow sharing)

Prevent:

- Access control attacks
- DoS
- Timing SCA
- Hardware trojans

4b. Protecting Computation

Computation

ARM <u>TrustZone</u> (ATZ)

The computation protection include mechanisms to avoid processors' sharing between distinct applications

Real et al. (2018)

- logical and spatial isolation of sensitive applications through the dynamic creation of secure zones (SZ) to mitigate DoS and cache SCA attacks at runtime
- hybrid architecture, with a 2D-Mesh NoC where each router is connected to a cluster with 4 processors, 1 shared memory and 1 shared bus
- only cluster resources are isolated by the SZ
- if a task needs to communicate with a task in another cluster the message is sent through an insecure channel

4b. Protecting Computation

Computation

logical and spatial isolation (clusters)

• ARM <u>TrustZone</u> (ATZ)

ARM TrustZone – ATZ (2018)

- isolation of applications in the same processor (spatial isolation)
- hardware support for the creation at runtime of Trusted
 Execution Environments (TEEs)
- creates two virtual processors and two Memory Management Units, allowing to execute a secure and a non-secure application simultaneously
- drawback: in many-core systems applications running on different processors share resources such as the NoC/buses and memory

Methods:

- Secure Zones -> isolation

Ensures:

- data integrity
- confidentiality
- access control

4c. Protecting Comm. and Comp.

- secure Zones partition and encryption
- PUCRS
- secure Zones spatial isolation and encryption
- obfuscation

Isakovic et al. (2013)

- Secure zones: computation and communication protection using spatial isolation with encryption mechanisms
- architectural partitioning of the MPSoC resources at design time
- mechanisms: secure microkernel secure channel infrastructure that includes cryptography and firewalls

TISS – Trusted Interface Subsystem

4c. Protecting Comm. and Comp.

Comm. and Comp.

- secure Zones partition and encryption
- PUCRS
- secure Zones spatial isolation and encryption
- obfuscation

Sepúlveda et al. (2017)

- Protects computation spatial isolation through secure zoned
 - non-continuous SZ, defined at runtime
- Protects communication cryptography (DH and XOR)
- Two NoCs:
 - data NoC, used by the application data
 - service NoC, used to exchange the security control packets
- After mapping the application, a key agreement protocol is executed between the mapped PEs using the service NoC.
- The encryption/decryption is obtained XORing the message with the shared key
- Ensure data integrity, confidentiality and availability

4c. Protecting Comm. and Comp.

Comm. and Comp.

- secure Zones partition and encryption
- ition (
- secure Zones spatial isolation and encryption
- obfuscation

Reinbrecht et al. (2020)

- Obfuscation technique
- 3 techniques to prevent timing attacks:
 - blinding changes the response time to have a constant value
 - masking insert delays on the responses, operating as a noise source
 - dual communication strategy use packet and circuit switching simultaneously (secure flows: packet switching)
- Blinding and masking: protects computation
- Dual communication strategy: protects communication

4d. Discussion

Communication

- most works related to the security protect just the communication subsystem
- Several works adopt design time methods
 - ✓ Pros: enable the adoption of sophisticated and robust algorithms
 - ✓ Cons: design time methods are not applicable in dynamic workload scenarios.
- The most common and intuitive approach to protect communication is **encryption** provides data confidentiality but still expose the traffic to DoS and timing SCA attacks
- Firewalls ensure access control to the communication system, avoiding DoS attacks and minimizing the possibility of data extraction by a malicious process
- TNP provide temporal and logical traffic isolation avoiding the interference on secure flows, enabling communication availability and timing SCA attacks protection

Computation

adopts temporal, logical or spatial isolation as main mechanism

Communication + Computation

spatial isolation and encryption

Reinbrecht et al. (2017)

- Mitigate SCA attacks to memories
- Gossip NoC combines two strategies to protect the MPSoC against timing SCA:
 - detection, which includes a bandwidth monitoring and a gossip message generation in the presence of an abnormal behavior that enables the second strategy
 - protection, triggered when any gossip message is received and modify the routing (XY routing algorithm to the YX)

Fig. 5. *Gossip router* microarchitecture: (1) Gossip in block; (2) Gossip logic; (3) Gossip generator.

Grammatikakis et al. (2015)

- firewall at the NI which, by checking the physical address against a set of rules, rejects untrusted CPU requests to the on-chip memory
- firewall has three modules:
 - operating mode controller (OMC), that accepts, decodes and dispatches NoC firewall commands;
 - segment-level rule-checking (SLRC), processes incoming memory accesses and configuration commands;
 - the interrupt unit (INTU) that accepts interrupt requests from the OMC and SLRC modules and reports interrupt contexts to the CPU

6. Security Methods Proposals

6.1 Lightweight security mechanisms

Security Vulnerabilities and Countermeasures in MPSoCs SANTANA, Anderson; MEDINA, Henrique; MORAES, Fernando Gehm. IEEE Design & Test, January 2021.

6.2 SDN – Software Defined Networking

SDN-Based Secure Application Admission and Execution for Many-Cores RUARO, Marcelo; CAIMI, Luciano; MORAES, Fernando Gehm IEEE Access, v.8, pp. 177296-177306, September 2020.

6.3 OSZ – Opaque Secure Zones

Security in Many-Core SoCs Leveraged by Opaque Secure Zones CAIMI, Luciano; MORAES, Fernando Gehm In: ISVLSI, 2019, pp. 471-476.

ISCAS'17, ICECS'18, LASCAS'18

D&T 2021

- dedicated network to send sensitive data
- spatial isolation of applications
- filters to block malicious traffic (simple firewall)
- AES or lightweight cryptography

Dedicated network:

- loosely connected to the MPSOC
- serial Hamiltonian path that runs through all PEs
- small area footprint: 2 ports instead of 5 of a standard
 2D-mesh, no need to add input buffers
- only the MP may inject data into it (root-of-trust)
- MP injects cryptographic keys and application/task identifiers

D&T 2021

- dedicated network to send sensitive data
- spatial isolation of applications
- filters to block malicious traffic (simple firewall)
- AES or lightweight cryptography

Spatial isolation of applications:

- new restriction in the task mapping: <u>tasks belonging to</u> <u>different applications cannot share the same processor</u>
- restricting task mapping prevents malicious tasks from running on the same processor, thus preventing a malicious task from accessing sensitive data, ensuring security at the computation level

D&T 2021

Filters to block malicious traffic:

- MP configures the filters during mapping
- OF (output filter) tags the packets entering the NoC with the correct application identifier, dropping all other packets
 - prevents tasks from forging an App_ID, avoiding the execution of attacks
- IF (input filter) admits of two packet types: packets that match the App_ID or management packets
 - IF discards all other packets.
 - avoids attacks as DOS

D&T 2021

AES or lightweight cryptography:

crypto core – design choice

Table 1 - AES and SIMON comparison – 65 nm technology.

	SIMON	AES
Latency (clock cycles)	70	19
Area (µm²)	22,371	105,316
Cell Count	4,076	20,5634
Power (µW)	16,033	399,233

Evaluating the Cost to Cipher the NoC Communication
OLIVEIRA, Bruno; REUSCH, Rafael; MEDINA, Henrique; MORAES, Fernando Gehm
in: LASCAS, 2018

- Non-intrusiveness is the keyword of this work
- HNoC: is generic, with a small area footprint
- Software level: restrictions in the task mapping heuristic and distributing sensitive data to HNoC

Application is protected, but traffic shared in the NOC → DoS, SCA is possible

6.2 SDN - Software Defined Networking

IEEE Acess 2020

What is SDN:

 Software Defined Networking (SDN): simplify network management and reduce routers' cost

Integration 38 (1), 69-93

- Reduced hardware complexity
- Flexible management to support different objectives

Architecture

- MPN multiple physical networks
- 1 PS subnet
- *n* SDN subnets circuit switching
- SDN configures paths

HERMES: an infrastructure for low area overhead packet-switching networks on chip F Moraes, N Calazans, A Mello, L Möller, L Ost

6.2 SDN – Software Defined Networking

IEEE Acess 2020

SDN Router (SR)

- Simple forwarding unit
- Connects a given inport to a given outport
- Use Elastic-Buffers instead
 input buffers (low area overhead 20% of PS)
- Configuration interface
- Network Interface (NI) programs the SR routers according to configuration packets sent by the SDN Controller

6.2 SDN - Software Defined Networking

IEEE Acess 2020

Method:

Disjoint SZ with circuit-switching communication

5 Steps

1. Initialization

- executes once, at system startup
- Elliptic Curve Diffie

 Hellman Key Exchange (ECDH)

 protocol → K_e

2. Application Admission

Request of a new application, authenticated by K_e

6.2 SDN - Software Defined Networking

IEEE Acess 2020

Steps

3. SDN-based secure task mapping

- mapping with spatial isolation
- SDN controller must ensure the availability of CS paths
- complex protocol with security ensured at all steps

4. SDN connections establishment

SDN controller configures the the SR using the PS subnet

5. Secure task loading

MAC verification for each task

6.2 SDN – Software Defined Networking

IEEE Acess 2020

Originality

- communication and computation protected
- provide security to applications by dynamically establishing circuit switching using SDN
- better system utilization due to non-continuous regions
- offers communication integrity, leading to data transmission <u>without the overhead of encryption</u>, arbitration,
 and routing required in PS NoCs

Avoided threats

- DoS attacks, are prevented due to the resources' isolation at the application communication level
- timing attacks are prevented since no time inferences can be taken from packets in CS channels

Cost

 application admission latency due to the SDN execution for finding paths between communicating tasks, but it is negligible for the end-user (below 1 ms)

Open issues

- protection of the <u>packet switching</u> network to prevent DoS attacks
- definition of a method for safely communicate with peripherals

6.3 OSZ - Opaque Secure Zones

ISVLSI 2019

Creation time: runtime

Shape: continuous rectilinear

Communication sharing: avoided

Computation sharing: avoided

Methods: temporal-spatial isolation and rerouting

Multiple OZs coexist simultaneously

6.3 OSZ - System Architecture

ISVLSI 2019

NoC-based many-core system with peripheral support

PE

- 32 bits MIPS-like Processor
- DMNI module
- Local dual port memory
- Data NoC router
- Control NoC router
- Wrappers

Data NoC

- Duplicated physical channels
- Wormhole packet switch
- Support to XY and source routing
- Input buffer, 8-flit depth
- 16 bits flit length

Control NoC - BrNoC

- Broadcast as default transmission mode
- Small area footprint: centralized buffer using an 8-entry CAM (content-addressable memory) memory

BrNoC: a Broadcast NoC for Control Messages in Many-core Systems
WACHTER, Eduardo; CAIMI, Luciano; FOCHI, Vinicius; MUNHOZ, Daniel; MORAES, Fernando Gehm
Microelectronics Journal, Volume 68, October 2017, Pages 69–77.

6.3 OSZ - General View of the Method

ISVLSI 2019

Method

- Secure Application admission (ECDH)
- Create the OSZ with wrappers
- Launch App
- Reroute packets outside OSZ
- Notify ended tasks to LMP (manager processor)
- Clear memories of PEs and open the OSZ

6.3 OSZ - General View of the Method

ISVLSI 2019

Advantages

- No need to encrypt the application data
- All attacks related to communication and computation sharing are avoided
- Small hardware cost: brNoC + wrappers

6.3 OSZ - Opaque Secure Zones

ISVLSI 2019

Communication with peripherals: selective opening of access points

- Communication with peripherals uses master/slave approach
- API differentiate inter-task messages from I/O messages: IO_Send() or IO_Receive() packets protected with a MAC
- Opened wrapper to send data: no security issue to app inside OSZ. But threat to I/O message outside OSZ
- Opened wrapper to receive data: security issue
- I/O messages can be encrypted (confidentiality)

6.3 OSZ - Opaque Secure Zones

ISVLSI 2019

- OSZs: original procedure to mitigate resource sharing
 - runtime execution with several SZs co-existing in parallel
 - internal OSZ communication without cryptography, not penalizing the execution time of the secure application
- Robust method to enable OSZs to communicate with I/O devices

Open-source NoC-based Many-Core for Evaluating Hardware Trojan Detection Methods

- Issues:
 - WEBER, Iaçanã; MARCHEZAN, Geaninne; CAIMI, LUCIANO L.; MARCON, CESAR A.; MORAES, Fernando Gehm **Attacks from HTs** In: ISCAS, 2020

 - Key exchange with peripherals (NI?)
 - Standard NI with lightweight cryptography

microeletrônica
sistemas embarcados
arquitetura de microprocessadores embarcados
NoCs
NoCs
many-cores
Segurança
IoT
circuitos e sistemas assíncronos/GALS
aplicações em telecomunicações

Thanks!

Fernando Gehm Moraes fernando.moraes@pucrs.br https://www.inf.pucrs.br/moraes

