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Abstract 
The use of pre-designed and pre-verified complex 

hardware modules, also called IP cores, is an important 
part of the effort to design and implement complex 
systems. However, many aspects of IP core manipulation 
are still to be developed. This paper presents an approach 
to solve problems related to the dynamic interconnection 
of hard IP cores inside VLSI reconfigurable devices. The 
approach targets system-on-a-chip designs built in a 
single large FPGA. The paper proposes a communication 
interface that allows IP cores replacement during FPGA 
normal operation. The same interface also allows the 
communication among distinct IP cores to take place. 

1. Introduction 
IP cores are complex pre-designed and pre-verified 

hardware modules today considered as key components in 
the development of system-on-a-chip (SoC) designs. 
According to a recent ITRS report [1], by 2012, IP cores 
will constitute 90% of the area in state of the art 
integrated circuits. Table 1 shows the main features of 
cores in general, according to well-established 
classification proposals found in the literature [2][3]. 

Table 1 – Different core types characterization. 
Core Type 

Criterion Hard core Firm core Soft core 

Structure Pre-defined 
organization 

Source code and 
netlist, technology 
independent. 

Behavioral source 
code, technology 
independent. 

Modeling Modeled as a 
library component. 

Synthesizable 
logic blocks. 

Synthesizable with 
several 
technologies. 

Flexibility 
Cannot be 
modified by the 
designer. 

Possibility to 
customize some 
parameters. 

The user can 
modify the design. 

Timing 
Closure Timing ensured. 

Critical paths have 
timing fixed by 
constraints. 

Timing not 
guaranteed. 

Intellectual 
Property 
Protection 

Strong. Usually 
corresponds to a 
layout. 

Average Weak. Source 
code. 

Example 
FPGA Bitstream, 
CIF or GDS2 file 
for IC layout. 

EDIF VHDL, VERILOG 

 

Current system design techniques use to employ or 
integrate IP cores before logical or physical synthesis. For 
ASIC designs, this corresponds to the normal design flow. 
However, for FPGAs a different scenario is possible: 
dynamic hard IP core insertion and removal. This idea 
allows inserting a hardware module into an FPGA 
according to application requirements, at execution time. 

For instance, consider the situation where an FPGA 
board connects to a host computer and a new piece of 
hardware may be necessary to speed up the processing in 
a graphic application. A reconfiguration controller can 
download this piece of hardware (a hard IP core) through 
the Internet and use it to reconfigure the FPGA, which 
will then present this new functionality. 

Another example could be the yet to be precisely 
defined concept of dynamic co-design. The hardware 
generated by a co-design tool requires an FPGA with 
sufficient area to implement all the application modules. 
Using the proposed approach (hard IP core reuse), the co-
design tool can generate small modules, loading them 
according to a schedule. This approach is similar to the 
virtual memory concept, found in traditional operating 
systems, and is usually called hardware virtualization [4]. 

To achieve hard IP core reuse some requirements have 
to be fulfilled: (i) FPGAs allowing partial and dynamic 
reconfiguration must be available; (ii) floorplanning tools 
to determine IP cores position in the IC are needed; (iii) 
software for partial bitstream generation must exist; (iv) 
software for partial bitstream download are necessary; (v) 
a core communication interface needs to be provided; (vi) 
input/output pin virtualization must be enabled. 
Requirements (i) to (iii) can be satisfied with existing 
devices and tools. To the Authors knowledge, works 
fulfilling requirements (iv) to (vi) are very scarce or 
simply do not exist. 

The core communication interface is a critical 
problem, since it must allow dynamic insertion and 
removal of cores without system operation interruption. 
This interface is a fixed module in the FPGA, with three 
main functions: bus arbitration, communication between 
modules, and pin input/output virtualization.  

This rest of this paper has the following structure. 
Section 2 presents the requirements for hard IP core reuse. 
Section 3 details the main contribution of this work, the 
communication interface. Section 4 presents preliminary 
implementation results. Finally, Section 5 draws some 
conclusions and directions for future work. 

2. Requirements for hard IP core reuse 
Research in reconfigurable computing emphasizes 

mostly the use of coarse grain reconfigurable arrays with 
datapath widths greater than 1 bit. Fine-grained 



 

 

architectures, like commercial FPGAs, are much less 
efficient with large routing area overhead and poor 
routability [5]. 

In spite of this fact, our goal is to investigate the 
feasibility of implementing reconfigurable computing 
systems into commercial FPGAs, since such devices are 
more widely available than coarse-grain reconfigurable 
devices. The reconfiguration granularity of the proposed 
approach is an important point, and it classifies as coarse-
grain, since it achieves reconfiguration with hard IP cores. 

The next sections detail each requirement discussed in 
the Introduction. 

2.1. FPGA support to partial reconfiguration 

Examples of available FPGA devices allowing partial 
and dynamic reconfiguration are Xilinx Virtex [6] and 
Atmel At40k [7]. Selection of the target for this work 
felled on the Xilinx Virtex FPGAs because of facilities 
such as satisfactory CAD tools, sufficient gate counting at 
affordable costs, and diversity of prototyping boards 
available. 

The main components of Virtex devices are [6]: 
Configurable Logic Blocks (CLBs), Input/Output Blocks 
(IOBs), RAM blocks, clock resources, and programmable 
routing. Each CLB has two slices, named ‘S0’ and ‘S1’. 
Each slice contains two LUTs, named ‘F’ and ‘G’, two 
flip-flops and carry resources. Each CLB has also local 
routing resources, connected to the general routing matrix 
(GRM). A peripheral routing ring, called VersaRing, 
allows additional routing to I/O blocks (IOBs). This 
FPGA has dedicated RAM memory blocks (BRAMs), 
each one with 4096 bits, and 4 to 8 DLL circuits for clock 
distribution and skew minimization. Figure 1 shows an 
abstraction of the Virtex FPGA internal reconfiguration 
architecture. 
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Figure 1 - Virtex FPGA example of internal 

reconfiguration architecture (for the XCV300 device). 
 

The Virtex configuration memory is organized as a bi-
dimensional array of bits [8]. A single column of bits is a 
frame. One frame corresponds to one atomic unit for 

reconfiguration, i.e., the smallest portion readable from 
(or writeable to) the deice configuration memory. Sets of 
consecutive frames compose CLB, Select Block RAM, 
IOB, and Clock columns. As observed in Figure 1, 48 
frames configure a CLB column. 

The Virtex device is partially reconfigurable, since 
frames can be read or written individually. Note that it is 
not possible to configure a single CLB, since the frames 
belonging to a given CLB are common to all other CLBs 
in the same column. Therefore, if a modification to a 
single CLB is required, all frames belonging to the same 
column must be read, by performing an operation called 
readback. Next, the required modification is inserted over 
the read frames. In practice, this feature makes the 
structure of a Virtex device a single-dimension array of 
columns for reconfiguration purposes. 

2.1.1. Element Addressing 
To partially reconfigure a device it is necessary to 

address individual elements inside the configuration file, 
also called bitstream. The following equations define how 
to address bits inside LUTs [8], the main FPGA logic 
resource available for reconfiguration: 
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MNA = lut_bit + wd – slice * ( 2*lut_bit + 17) 
fm_bit_idx = 3 + 18*CLBROW - FG + RW*32 
fm_st_wd = FL * (8 + (MJA-1)*48 +MNA) + 
RW*FL 
fm_wd = abs( fm_bit_idx /32)  
fm_wd_bit_idx = 31 + 32*fm_wd - fm_bit_idx 

 
The terms in these equations are defined as follows: 

• MJA - Major Address: represents the column address. 
Chipcol is the number of columns available in the 
device.  

• MNA - Minor Address: identifies in which frame the 
lut_bit is placed. MNA assumes values between 0 
and 47. “wd” is the number of bits per word (32) and 
“slice” is the slice number. 

• fm_bit_idx – frame bit index: indicates the start 
position of the CLB being addressed. Constant 18 
multiplies CLBrow because each CLB requires 18 bits 
per frame. “FG” is equal to 1 if the desired bit is in a 
G-Lut, and 0 if it is in an F-Lut. “RW” is equal to 0 
when writing data to the FPGA and 1 when reading 
data from the FPGA (read-back operation). 

• fm_st_wd – frame starting word in the bitstream (file 



 

 

containing 32-bit words). “FL” designates the frame 
length, i.e., the number of 32-bit words needed to 
store a complete frame. “8” is the number of clock 
columns. 

• fm_wd – indicates, in the bitstream, which word 
contains a given desired bit. 

• fm_wd_bit_idx – designates the bit inside fm_word 
containing some desired information. 

 
For example, suppose a need arise to change the 14th 

bit of an F-LUT, placed at slice 0 of row 1 column 1 
(R1C1.S0.F), using the device XCV100, which has 
Chipcols=30, FL=14 (Figure 2). Applying the above 
equations, it is possible to obtain: MJA=30, MNA=46, 
fm_bit_idx=21, fm_st_wd= 20.244, fm_wd=0, 
fm_wd_bit_idx=10. These results mean that the 10th bit 
(fm_wd_bit_idx) of the bitstream word 20.244 (fm_st_wd 
+ f_wd) is the location of the desired bit. Thus, changing 
this bit and recomputing the bitstream CRC, it is possible 
to reconfigure the FPGA. 

 
Figure 2 - Locating bit 14 from an F-LUT for a given 

CLB. 

2.2. Availability of floorplanning tools 

Partial reconfiguration is only possible if the IP cores 
to insert do not overlap the existing cores inside the 
FPGA. So, it is required to produce placement restrictions 
to use during physical synthesis.  

Example of such a tool is the Xilinx floorplanner [9], 
a graphical tool that allows the designer to control IP 
cores position and shape in a FPGA using “drag and 
drop” facilities. Figure 3 displays an example of 
screenshot for this tool. 

A browser displaying the design hierarchy allows the 
designer to restrict the position of each core component. 
Detailed placement and routing execute typically after the 
floorplanning step. 

The Xilinx floorplanning tool allows constraining 
logic blocks, memory blocks, I/O blocks, and tristate 
buffers. This tool does not allow constraining detailed 

routing. As a result, after routing some wires may fall 
outside the delimited area, overlapping area reserved for 
other cores. Several iterations between floorplanning and 
routing, and even manual user operations in the routing 
tool are required to solve this problem. 

 

 

Core with a restricted area 

Design hierarchy 

 
Figure 3 - Xilinx floorplanning interface. 

2.3. Partial bitstream generation 

Tools provided by FPGA vendors do not generate 
partial bitstreams. JBits [10] is a toolbox of Java classes 
provided by Xilinx to manipulate an abstract view of the 
Virtex FPGA configuration architecture. 

Without using JBits, the reconfiguration tools 
developer has to deal with a huge set of details, such as 
frame, slice, and CLB addressing [8]. JBits operates with 
bitstreams generated by Xilinx tools as well as bitstreams 
read from the hardware by readback operations.  

Figure 4 shows examples of JBits methods to read and 
write to LUTs.  

 

WRITTING VALUES IN LUTS
SLICE 0 F LUT: jbits.set(row, column, LUT.SLICE0_F, value)

SLICE 0 G LUT: jbits.set(row, column, LUT.SLICE0_G, value)

SLICE 1 F LUT: jbits.set(row, column, LUT.SLICE1_F, value)

SLICE 1 G LUT: jbits.set(row, column, LUT.SLICE1_G, value)

READING VALUES FROM LUTS
SLICE0 FLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_F)

SLICE0 GLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_G)

SLICE0 FLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE0_F)

SLICE0 GLUT: int[] returnVal = jbits.get(row, column, LUT.SLICE1_G)  
Figure 4- Example of JBits method call. 

 
The value parameter is a 16-bit string specifying the 

function implemented by the LUT. For partial bitstream 
generation, complete columns are extracted from a 
complete bitstream, and written to a new file. This is not a 
simple task, since all configuration registers values 



 

 

present in the bitstream have to be recomputed, new 
bitstream CRCs must be generated, and columns do not 
have a continuous addressing scheme. Even frames are in 
the left half of the FPGA device, while odd frames are in 
the right half of it. 

2.4. IP core communication interface 

In the early stages of SoC development, cores are 
designed with different interfaces and communication 
protocols. Some standard interfaces, such as Wishbone 
[11], AMBA [12] and CoreConnect [13], were created to 
increase core reuse. These interfaces are used during the 
design phase of the SoC, for ASIC and FPGA flows. 
After the SoC implementation, it is not possible to 
connect a new core to the system. 

As our goal is to dynamically insert cores into an 
operating FPGA, a different mechanism must be created. 
Section 3 details this communication interface. 

2.5. I/O pins virtualization  

I/O pins virtualization means that cores exchange data 
only with the communication interface and the real off-
chip communication is a function assigned to the 
interface. 

3. Communication interface 
Figure 5 outlines the basic idea to achieve 

communication between synthesized cores. A fixed 
module, named controller, is initially downloaded into the 
FPGA. Functional cores, named slave cores, are 
downloaded at run time. 

 

controller

slave
core

overlapped
area

virtual pins

Figure 5 - Communication interface with one tristate 
buffer layer. Tristate control signals are not shown. 

 
The controller is responsible for the communication 

with the external world (I/O pins of the device) and for 
the communication with slave cores. In other words, slave 
cores communicate with the external world only through 
the controller (I/O pins virtualization). Each slave core 
communicates with the controller through virtual pins. 
Virtual pins are in fact tristate buffers, having the position 
defined by the floorplanning tool. The overlapping of 

virtual pins creates the interconnection between slave 
cores and the controller. 

The interface proposed in Figure 5 is not feasible due 
to restrictions imposed by the FPGA architecture. Such 
restrictions are: 
• Each CLB contains LUTs, flip-flops, tristate buffers, 

and routing resources. It is not possible to restrain the 
CLB usage only to tristate buffers and routing. 
Therefore, overlapping slave cores over the controller 
could destroy some of the controller functions. 

• Each CLB contains only 2 tristate buffers. The 
reduced number of buffers limits the IP core 
communication width. In addition, the buffers routing 
wires share common hex lines [6], restricting the 
routing tool. Due to this limitation, adoption of a 
serial bus (using 1-bit data lines) is the choice here. 

In order to overcome these limitations, a 
communication interface with two tristate buffer layers 
with common routing wires is implemented. Figure 6 
shows this solution. One buffer layer belongs to the 
controller and another buffer layer belongs to the slave IP 
cores. 

 
 

Slave 
Core 

Controller 

Core buffer 
layer 

Common 
routing wires 

Controller 
buffer layer 

External world 
connection 

Slave 
Core 

Slave 
Core 

 
Figure 6 - Communication interface with two tristate 

buffer layers and a common routing wire. 
 

In order to have common routing wires, the controller 
is synthesized by using dummy cores, which contain the 
buffers that will belong to the slave IP cores. The same 
procedure works for the slave IP cores synthesis, which 
include a dummy controller. Dummy cores are also 
important to avoid floating signals in the communication 
interface. 

3.1. Controller implementation 

Figure 7 illustrates the 3-module controller structure: 
• Communication bus, connecting the slave cores; 
• Arbiter, granting the data line to a given slave core; 
• Master core, responsible for the communication with 

the external world. 
The communication bus has the following signals: 



 

 

reset (global), clock (global), individual request and grant 
lines for each slave core, and a bi-directional data line 
(global). Each slave core communicates with the bus 
through six tristate buffers, connected to the following 
signals: clock, reset, request, grant, datain and dataout. 
Datain and dataout are connected together to the data 
line. The 1-bit serial data line transports a 40-bit word 
packet, containing an 8-bit core address and a 32-bit data 
word. A simple protocol is employed, using a starting bit 
to indicate the transmission of a new word. 
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Figure 7 - Controller modules: master core, arbiter 

and communication bus. 
The arbiter continuously reads the request lines, in a 

serial fashion. When a request line is active the arbiter 
grants the data line to the slave core requesting data for 40 
clock cycles. After these 40 clock cycles, the arbiter starts 
reading the request line of the next core. In this way, it is 
possible to serve all cores, even those with lower priority. 

The implementation of the master core depends on the 
functions and I/O requirements of the slave IP cores. 

3.2. Send and receive modules 

Slave cores contain the hardware implementing the 
function specified by the user (hw-core), plus send and 
receive modules. Figure 8 illustrates this structure. 

When the hw-core wants to send data to another core, 
it activates the ‘disp’ line and puts a 40-bit word in the 
‘word_in’ port. The send module activates the ‘request’ 
signal, and waits for the assertion of the ‘grant’ signal. 
When this happens, the available 40-bit word is stored by 
the send module, and put serially into the dataOut port. 
After 40 clock cycles the ‘grantC’ is asserted, signaling to 
the hw-core that the send module is ready to send a new 
word. Neither buffering mechanism nor time-out controls 
were implemented in this first version of the send module. 

The receive module constantly reads the data line. The 
8 bits following the start bit are compared against the 
address of the receive module (unique for each slave 
core). If the address does not match the module address, 
the module ignores the remaining 32 bits. If the data is 

addressed to the slave core, the receive module sends the 
data to the hw-core 32 clock cycles after address 
matching, asserting the ‘disp’ line during one clock cycle. 
 

disp  grantC   word_in 

clock     SEND 

request    grant  dataOut 

40 

word_out             disp 

      RECEIVE    clock 

dataIn                     

32 

HW-CORE – module wrapped with send/receive 
modules 

SLAVE CORE 

communication bus 

 

Figure 8 - Send and receive modules. 

3.3. Case study 

The implementation of a simple case study application 
validated the communication interface. Tree modules 
compose this application, as illustrated in Figure 7: (1) 
controller (2) slave1; (3) slave2.  

The function of each slave core is very simple. First,  
it receives two 32-bit words. Then it executes an 
arithmetic operation over these (slave1 executes addition 
and slave2 subtraction), sending of the result to the master 
core. After that, it waits for two new words. 

The master core has three internal registers acting as 
data memory, and a program memory holding the 
operations. Virtex LUTRAMs, a small memory resource 
available inside Virtex FPGAs, implement the program 
memory. Specialized reconfiguration tools define the 
program memory contents. The actions specified in the 
program memory can be register initialization or 
arithmetic operation between two registers. The target 
register (T) is always the same. Example of operations 
stored in LUTRAM can be A=8, B=7, T=A+B, T=T+A, 
etc. A special code is used to indicate the last operation. 
When an arithmetic operation is found, the arithmetic 
operation is translated to the slave IP core address. The 
master core merges this address to the first register value, 
sending the 40-bit package to the communication bus. The 
procedure repeats for the second operator. After sending 
the two operators, the master core waits the response from 
the target core, storing the received value into the ‘T’ 
register. Then, it sends the result of each operation to the 
external world, which shows it in an 8-digit display. 

4. Preliminary results 
This section presents preliminary results, including 

the communication interface functional validation, the 
generation of the partial bitstream, and an implemented 



 

 

tool for partial IP cores manipulation. 

4.1. Functional validation 

Module description occurred in the VHDL language, 
and simulation employed the Active-HDL simulator, from 
Aldec [14]. Figure 9 illustrates the system operation, 
using the case study presented in Section 3.3. The 
numbers highlighted in Figure 9 represent events with the 
following meaning: 
1. Initially, the data line is in steady state (logic 1).  
2. The master core asserts its internal send signal 

(connected to ‘disp’ in Figure 8), indicating it has 
data available to transfer.  

3. The master send module asserts the request signal, 
and waits for the grant signal.  

4. The grant signal is sent to the master send module.  
5. Data transmission starts, the first ‘0’ corresponds to 

the start bit.  
6. Receive modules detect start, initiating data storage. 
7. After 8 clock cycles, all receive modules compare the 

stored byte to their respective internal address. If they 
match, the receive module continues to store the 
arriving bits. If they do not match, the receive module 
waits 32 clock cycles to read again the data line. 

8. 40 clock cycles after the starting bit, a new 32-bit 
word is available. 

9. The slave1 receive module signs an available word to 
the hw-core. 

10. At the end of the first transmission, the master send 
signal is still in logic ‘1’, indicating that it wants to 
send the second operator. A new request is sent to the 
arbiter and operations 4 to 9 are repeated. 

Events 13-14 indicate data transmission from slave1 
to the master core (result of the arithmetic operation). The 
master core, in event 17, receives the sent data. 

After the system functional validation, the next step is 
to prototype it. The prototyping board Virtual Workbench 
[15], with a Virtex XCV300, was used. In the experiment 
the communication bus has three “sockets” (set of tristate 
buffers to slave core connections), and the application has 
two slave cores. 

Two bitstreams were created. The first bitstream 
contains the controller and two slave cores. Floating 
signals induced by unused tristate buffers in the third 
socket made the system instable. 

In the second bitstream, a dummy core was connected 
to the empty socket to avoid floating signals, mainly in 
the request and dataOut lines. 

As several independent modules compose this system, 
it is important a careful design of the FSMs initialization 
and avoiding high-impedance values to occur in the data 
line is mandatory. 

The system worked correctly in the prototyping board, 
showing that the communication interface with tristate 
buffers can be used in Virtex devices to interconnect hard 
IP cores. 
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Figure 9 - Functional simulation of the communication interface. 

 
4.2. Partial bitstream generation 

The next step is to generate an individual bitstream 
for each module. The floorplanning tool is used to restrict 
the physical position of each module. As mentioned 
before, the synthesis of each slave IP core includes a 
dummy controller and the synthesis of the controller 
includes dummy cores, to ensure the common routing 

wires. 
The main difficulties to generate these bitstreams are: 

• Placement of the tristate buffers in fixed positions. 
Due to the scarcity of wire resources, the routing 
often fails. 



 

 

• The logical synthesis tool can eliminate tristate 
buffers connected to the FPGA outputs. Constraints 
inserted in the design solve this problem. 

• The routing associates clock signals with global 
clock lines. Constraints applied to the routing tool 
avoid the use of such resources. 

• It is hard to ensure that the routing will be 
constrained to the reserved module area. 

• Ensure the same routing between tristate buffer 
layers is hard. This is the critical restriction. The 
routing needs to be manually executed between 
signals belonging to the communication interface, 
after all other signals are automatically routed. 

Complete bitstreams are created, one for each 

module. Figure 10 shows the routing between the two 
buffer layers and the frontier between the controller and 
an IP core. 

Dedicated tools were implemented to extract a partial 
bitstream from complete bitstreams as described in 
Section 2.3. This was mandatory, since the employed 
tools do not generate partial bitstreams. 

4.3. Core unifier tool 

The last step is to insert the slave core into the 
controller core, achieving partial and dynamic 
reconfiguration. 

 

Core buffers 

Controller buffers 

Routing between buffer layers 

Area limit for core insertion 

 
Figure 10 – Routing between buffers in the frontier between an IP core and the controller. 

 
A tool to insert or remove cores in a FPGA, named 

core unifier was developed in the context of this work, 
and is used in this step. The tool works as follows. First, 
a master bitstream file, corresponding to the controller 
core, is opened. Then, one or more bitstreams files 
containing slave cores to be inserted into the master 
bitstream are opened. The user selects the area 
corresponding to the core, and all FPGA components 
inside this area are inserted into the master bitstream. 
Lastly, the tool creates a partial bitstream, containing the 
modified area. Partial reconfiguration is then executed, 
inserting a new core into the FPGA.  Figure 11 illustrates 
this procedure. 

The Virtex address equations described in Section 
2.1.1. are the basis for the development of the core 
unifier tool. This tool provides a structured form to 
interconnect cores, together with the possibility to 
dynamically replace cores in the FPGA.  
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Figure 11 - Bitstream merging procedure. 



 

 

 
Figure 12 presents the main window of the core 

unifier tool. This window has a 48x32 grid, representing 
all CLBs of a Virtex XCV300 device and it is different 
for distinct devices. Light and dark gray squares 
represent CLBs not used (default values). Red squares 
represent CLBs used by the master bitstream. Squares 
with different colors (e.g. yellow) represent inserted 
cores. Visualization of LUT values is possible using an 
auxiliary window, selecting the CLB with the mouse. 

 

 
Figure 12 – Core unifier main window. 

The user can insert new cores into the master 
bitstream, a feature that adds flexibility to the tool, 
allowing dynamic insertion and/or removal of IP cores. 

This tool permits to implement virtual hardware, in a 
similar manner as dealing with virtual memory. The user 
may have several hard cores stored in memory. As a 
function of some execution scheduling, these may be 
partially downloaded into the FPGA. 

The tool creates complete and partial bitstreams. 
Complete bitstream download with core insertion was 
achieved successfully, however partial bitstream fails due 
to the lack of partial download tools. Another observed 
problem relates to routing. Even with correct common 
routing wires, sometimes the core insertion fails. A new 
tool is under development to solve routing problems. 

5. Conclusions and future work 
The main contribution of this work is the presented 

method to reuse hard IP cores in FPGAs. The 
requirements to achieve partial and dynamic IP core 
reuse were presented and a communication interface was 
proposed and described. The communication interface is 
functional, validated through simulation and prototyping. 
A tool to merge independent bitstreams and to create 
partial bitstreams was developed and described.  

This work shows that it is possible to implement 

virtual hardware with commercial FPGA devices. The 
main obstacles to develop automatic tools are the internal 
architecture of these devices, which is quite difficult to 
use for partial reconfiguration, requiring complex manual 
operations (manual placement and manual routing). 
Intellectual IP core distribution of hard IP cores through 
the Internet is also possible, since the communication 
interface standardize the input/output protocol. 

As suggestions for future work it is possible to 
enumerate: (i) to extend the bus structure to more bit 
lines and different bus arbitration schemes; (ii) to 
develop tools to automate the manual steps mentioned 
above; (iii) to develop core relocation techniques. 
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