
Journal of Integrated Circuits and Systems, vol. 19, n. 3, 2024 1

Integration of Monitoring Mechanisms in Secure Network Interfaces for
Peripherals to Protect IO Communication in NoC-based Many-cores

Gustavo Comarú1 , Rafael Follmann Faccenda1 , Luciano Lores Caimi2 , Fernando Gehm Moraes1

1School of Technology, Pontifical Catholic University of Rio Grande do Sul – PUCRS – Porto Alegre, Brazil
2UFFS, Federal University of Fronteira Sul, Chapecó, Brazil

{gustavo.comaru, rafael.faccenda}@edu.pucrs.br, lcaimi@uffs.edu.br, fernando.moraes@pucrs.br

Abstract— Many-core systems have gained popularity due
to their high performance and parallelism. However, they
also present significant security challenges. One critical is-
sue that remains insufficiently addressed in current research
is protecting Input/Output (IO) communication within these
systems. This paper proposes a Secure Network Interface with
Peripherals (SNIP) design, incorporating security mechanisms
to safeguard communication between internal components in
many-core systems. The proposed SNIP makes an original con-
tribution by integrating security features into its network inter-
face design, thereby addressing a research gap in the commu-
nication between many-core systems and peripherals. Further-
more, the paper proposes a monitoring mechanism within the
SNIP to detect suspicious behavior during IO communication.
The SNIP design focuses on the trade-offs between security,
performance, and area overheads. Results demonstrate that
the SNIP effectively protects IO communication in many-core
systems from potential attacks while imposing minimal over-
head, and it enables system-level countermeasures through the
monitoring information provided. The proposed SNIP design
offers a promising solution to address the security challenges of
many-core systems, particularly in safeguarding IO communi-
cation.

Index Terms— Security, Monitoring, NoC-based Many-
cores, Network Interface, Peripherals, IO devices.

I. INTRODUCTION

The demand for embedded devices with reduced power
consumption and specific functionalities has increased the
utilization of many-core systems. A many-core system con-
sists of Processing Elements (PEs) interconnected by a com-
munication structure, such as Networks-on-Chip (NoCs). An
NoC employs routers and links to transmit data and control
messages between PEs.

The Network Interface (NI) in an NoC-based system acts
as the communication link between on-chip components,
such as processors, memory modules, and dedicated hard-
ware modules, and the NoC [1]. Its primary function is to
convert incoming and outgoing data into a format compati-
ble with the NoC infrastructure. To achieve this, the NI pro-
vides flow control, buffering, routing, and protocol conver-
sion, facilitating seamless communication within NoC-based
systems and enhancing their efficiency and scalability.

In addition to serving as a bridge between on-chip compo-
nents and the communication structure, the NI can also con-
nect input and output modules, such as accelerators or shared
memories, referred to herein as IO devices. These IO de-
vices often utilize standard protocols for data exchange. The

NI integrates these modules into the NoC infrastructure by
adapting to their requirements and ensuring proper data en-
coding and decoding (e.g., an IO device using the AXI proto-
col [2]). This process may involve protocol converters, spe-
cialized buffer management, and tailored Quality of Service
(QoS) policies to maintain high-performance data exchange
with IO devices. Furthermore, NIs provide configurable in-
terfaces that facilitate the integration of new hardware mod-
ules, promoting adaptability and extensibility in NoC-based
systems.

Allowing the connection of external modules to the sys-
tem via NoC introduces several security concerns, as third-
party intellectual property (3PIP) cores may originate from
untrustworthy sources. Therefore, incorporating security as
a fundamental requirement in the design of NIs is crucial to
protect against threats and ensure the integrity of communi-
cation between on-chip components and IO devices [3, 4].

Literature on NIs in NoC-based many-core systems pri-
marily focuses on enhancing the NIs that connect already
trusted PEs to the NoC [3, 5]. However, a gap exists in the
literature regarding the protection and monitoring of open
NoC ports that connect IO devices, which may not be fully
trusted. Proposals to secure communication with IO devices
are scarce, with most efforts concentrating on shared mem-
ory protection [6]. Conversely, several works present many-
core systems with IO devices without addressing security
concerns [7–9].

The goal of this work is twofold. First, to present the
design of an NI, named SNIP, for communication with IO
devices, integrating security mechanisms to safeguard com-
munication with internal components in many-core systems.
Second, propose a monitoring infrastructure that generates
warnings to a system manager, enabling system-level coun-
termeasures upon detecting an attack.

This paper extends the SBCCI’23 paper [10], “Secure Net-
work Interface for Protecting IO Communication in Many-
cores”, by incorporating the monitoring infrastructure into
the SNIP. The fulfillment of the second goal is original to
this paper. Results also include new attack campaigns to val-
idate the security mechanism.

The paper is structured as follows: related work in many-
core IO security (Section II.), the reference platform and se-
curity mechanisms (Section III.), threat model and counter-
measures (Section IV.), SNIP design (Section V.), attack de-
tection (Section VI.), results (Section VII.), and conclusion
(Section VIII.).

Digital Object Identifier 10.29292/jics.v19i3.907

https://orcid.org/0009-0008-8121-7813
https://orcid.org/0009-0005-9919-6369
https://orcid.org/0000-0003-2018-169X
https://orcid.org//0000-0001-6126-6847

2 COMARÚ et al.: Integration of Monitoring Mechanisms in Secure Network Interfaces to Protect IO Communication

II. RELATED WORK

Aghaei et al. [1] refer to the NI as the Network Adapter
(NA), noting that it directly affects system power, latency,
throughput, and area. The Authors review various NA archi-
tectures and evaluate the parameters influencing their design.
They also consider the security-aware design of communica-
tion architectures, such as NoCs, increasingly necessary, as
their complexity may introduce new vulnerabilities. At the
same time, the NoC itself can contribute to system security
by enabling the monitoring of system behavior and the de-
tection of specific attacks. In their view, the NA is ideally
positioned to analyze incoming traffic and discard malicious
requests.

Kapoor et al. [11] divide the PEs of a many-core system
into two categories: (i) secure cores, which store and pro-
cess secret information; (ii) non-secure cores, which may
carry viruses or Hardware Trojans (HT). The Authors pro-
pose an authentication method to protect the communication
between secure and non-secure cores. The secure core is-
sues a session key for each transaction. On the sending side,
the NI encrypts the packet using the session key and gener-
ates a message authentication code (MAC). On the receiving
side, the NI decrypts the message and asserts its authenticity
through the MAC. Despite the added security mechanisms,
encryption, and MAC increase communication latency by an
average of 23% and add a significant area overhead.

Baron et al. [12] analyze the vulnerabilities of the SoCIN
NoC-based system and propose mechanisms to protect the
NoC from attacks by malicious cores. The Authors consider
four attacks: (i) masquerade; (ii) DoS induced by an invalid
target; (iii) DoS issued by flooding the NoC; (iv) DoS in-
duced by a packet without a trailer. The Authors designed
a Security Wrapper (SEW), a hardware module inserted be-
tween the NI and the NoC router. The SEW module filters
malicious packets sent by an attacking core without impact-
ing the latency, with an area overhead of 4.1%.

Ahmed et al. [13] discuss a Remote Access Hardware Tro-
jan (RAHT) attack in which an NoC router is infected by
an HT that periodically sends traffic information to a mali-
cious IO device. This device analyses the leaked informa-
tion using a machine-learning algorithm to infer information
such as architectural details or the applications running on
the system. The Authors propose a security mechanism that
uses controlled random routing to confuse the external at-
tacker. Random routing decisions reduce the correlation be-
tween the collected traffic information and the system archi-
tecture and applications. The Authors presented other work
on this topic in [14], focusing on more complex traffic analy-
sis attacks that the remote threat could execute. Even though
the proposals offer a routing solution to the RAHT attack, it
does not prevent unauthorized communication between HT
and IO devices.

Restuccia et al. [15] propose the AKER framework, which
aims to prevent unauthorized access to shared resources in
a many-core. Hardware wrappers enforce the access con-
trol policy (which defines the allowed communication pairs)
between the cores and the interconnect; illegal transactions
are filtered before entering the network. These wrappers are
configured and managed by a centralized root of trust. The

Authors state that though this work targets bus-based sys-
tems, its methodology can be extended to NoC architeres
with some modifications. The Authors state that AKER has
a limited impact on performance while using minimal re-
sources.

Sankar et al. [16] propose the Sec-NoC, which utilizes
authenticated encryption in the NI to enhance confidential-
ity and integrity of communication, and a packet retransmis-
sion mechanism based on ACK-NACK. The NI checks the
packet integrity on the receiver side, and in case of failure, it
sends a NACK packet back. Since an attacker can target an
ACK or NACK packet, a timer can also trigger retransmis-
sion. This work aggregates the encryption and decryption
mechanisms and retransmission buffers inside the NI, at a
cost of 10% area overhead to a 16-core MPSoC and 1.3%
increase in packet latency.

The reviewed works highlight the security threats posed
by IO devices. Existing solutions primarily focus on protect-
ing the NoC [12] or introduce mechanisms that significantly
impact performance and system area [11, 16]. There is a lack
of mechanisms that effectively safeguard many-core systems
from malicious IO devices. This work addresses these gaps
by proposing SNIP, incorporating a lightweight authentica-
tion mechanism to protect communication between PEs and
IO devices against the attacks described in the threat model
section.

III. BASELINE PLATFORM WITH SECURITY
MECHANISMS

This work adopts as the reference architecture an NoC-
based many-core platform, with IO devices connected to the
borders of the NoC. Figure 1 presents a 4x4 system with four
peripherals connected at the north side of the NoC. The sys-
tem size and the position of the peripherals are defined at
design time. In the context of this work, we highlight five
elements:

PEPEPEMPE

PEPEPEPE

PEPEPEPE

PEPEPEPE

p

Peripherals: contains an SNIP and an
 IO device, which may be shared
 memories, hardware accelerators,
 communication interfaces

PE: Processing Element - contains a
 processor, network interface, local
 memory, and the NoC router

 p: path between the OSZ and a peripheral

AP: Access Point - opening in the OSZ
 boundary enabling communication with
 peripherals

OSZ: Secure Zone - an isolated region
 reserved to execute an application
 with security constraints

IO
SNIP

IO
SNIP

IO
SNIP

IO
SNIP

AP

Fig. 1: NoC-based many-core and terminology adopted in this work
(adapted from [10]).

• Opaque Secure Zone (OSZ [17]) – a region that executes
an application with security requirements, blocking the
traffic from other applications. The spatial isolation pre-
vents attacks from other flows or tasks.

• Access Point (AP [18]) – opening in an OSZ border that
controls the entry and exit of packets.

• Path p – the path between the AP and the SNIP. The path
is defined by source routing (SR).

Journal of Integrated Circuits and Systems, vol. 19, n. 3, 2024 3

• Secure Network Interface with Peripherals (SNIP) - our
proposal to secure the communication between the IO de-
vice with the application with security requirements.

• System Manager PE (MPE) - processing element reserved
to execute management operations, such as application al-
location and mapping, PE and SNIP configuration.

A. IO Communication

Packet exchange between IO devices and applications is
based on the host-device model, where the PE acts as the host
and the SNIPs function as the devices. Thus, communication
is always initiated by the host (PE), and the device (SNIP)
must send a response packet to confirm the operation.

To receive data from an IO device, the task sends an
IO READ packet, and waits for an IO DELIVERY packet
with the requested data. To send data to the IO device,
the task transmits an IO WRITE packet and waits for an
IO ACK to confirm the operation’s success.

Regarding security, packets carry a key checked both in
the PE and the SNIP. The PEs can manage the keys after
receiving the generation parameters from the MPE during
the application deployment. However, the SNIP depends on
MPE commands to handle the keys correctly. The first com-
mand is the IO CONFIG, which enables the SNIP to interact
with a specific application, informing the corresponding key
generation parameters and application identifier. In addition,
the MPE sends IO RENEW commands periodically to re-
new the keys, enhancing key strength.

IV. THREAT MODEL AND COUNTERMEASURES

The section initially presents the Threat Model (Section
IV.A.), describing the potential attacks from malicious ap-
plications and peripherals. It highlights the risks of unautho-
rized access, data corruption, and system overloads, estab-
lishing the need for effective countermeasures. The Counter-
measures subsection (Section IV.B.) then presents the strate-
gies the SNIP employs to mitigate these risks.

A. Threat Model

This section discusses the harmful behaviors in IO com-
munication that this work aims to protect the system against.
We assume that the hardware implementing the NoC-based
many-core system is secure. Threats may arise from appli-
cation tasks (software) or IO devices connected to the SNIP.
Thus, attacks can be initiated by a malicious application
(MalApp) or a malicious IO device (MalPeriph).

If a MalApp is loaded into the system and has access to
create custom packets, it can perform the following attacks:

• DoS (flooding). Occurs when the MalApp sends a high
volume of invalid packets to the IO device, generating ex-
cessive traffic and harming access to it.

• DoS (configuration). Occurs when the MalApp forges
configuration packets (IO CONFIG), filling the SNIP with
invalid application requests, rendering it incapable of ac-
cepting new legitimate applications.

• Spoofing. The MalApp accesses an IO device without
authorization, stealing or corrupting sensitive data.

A MalPeriph may perform the following attacks:

• DoS. A MalPeriph may attempt to send more data than
requested, generating oversized packets that can overload
the communication infrastructure and system components.

• Information leakage. A MalPeriph sends messages to
a malicious target, leaking sensitive information.

• Spoofing. A MalPeriph attempts to access a sensitive
application by sending forged packets.

B. Countermeasures

To protect the IO communication against the threats previ-
ously described, the SNIP may execute three main counter-
measures: (i) authentication; (ii) packet discard; (iii) warn-
ing generation.

The SNIP employs the IO Authentication protocol, based
on [19], to enforce authentication and authorization princi-
ples. The protocol begins with the MPE sending a command
to the SNIP (IO CONFIG), specifying the applications au-
thorized to interact with the IO device. Additionally, the
SNIP must verify packet authenticity, send packets with the
correct authentication fields, and perform key derivation. An
important feature of this protocol is that the SNIP only com-
municates with authorized applications using a fixed source-
routing path set by the MPE. As a result, the IO device is
prevented from sending messages to unauthorized applica-
tions or using forged paths.

The Packet Discard mechanism is a countermeasure that
focuses on quickly rejecting and eliminating packets that fail
authentication, removing them from the NoC, and reinforc-
ing the principle of availability.

Both aforementioned countermeasures are applied imme-
diately upon detecting malicious actions to neutralize threats
without delay. However, due to this automatic response,
the MPE remains unaware of suspicious behavior on the
SNIPs. Therefore, the third key countermeasure of the SNIP
is Warning Generation, which notifies the MPE whenever
a security anomaly is detected at the SNIP.

The SNIP issues four types of warnings: (i) Failed authen-
tication, triggered when an incoming packet fails authenti-
cation; (ii) Write on a full table, indicating that the SNIP re-
ceived an IO CONFIG request, but the table has no available
space; (iii) Row overwrite, reporting that a slot in the SNIP
table for an authenticated application was replaced; and (iv)
Abnormal peripheral, signaling that the peripheral is not ad-
hering to the correct communication protocol.

V. SNIP ARCHITECTURE

The SNIP has seven main modules, as illustrated in Fig-
ure 2: (i-ii) Packet Handler and Packet Builder, enable si-
multaneous communication to and from the NoC.; (iii) Ap-
plication Table (ApT), stores sensitive data to enable com-
munication with the applications; (iv-v) FIFO buffers hold
data sent to or received from the IO device until consump-
tion; (vi) Key Generator produces and updates authentica-
tion keys; (vii) Warning Manager detects suspicious behav-
ior and sends packets to the MPE. The next subsections detail
these components, except for the buffers.

4 COMARÚ et al.: Integration of Monitoring Mechanisms in Secure Network Interfaces to Protect IO Communication

Packet
Handler

Packet
Builder

Application
Table

Output
Buffer

Input
Buffer

IO Device

NoC Router

answer request

r/w r

SNIP

Key
Generatorkeys

params

warning params

Warning
Manager

w1, w2, w3

w4.a

warning req

w4.b

Fig. 2 : SNIP architecture and interfaces (adapted from [10]).

This work addresses the security of communication be-
tween PEs and peripherals. Figure 2 would have an addi-
tional module between the SNIP and the IO device, responsi-
ble for adapting the chosen protocol (e.g., AXI stream) to the
protocol used by the SNIP, which in the current implementa-
tion is data and address-oriented. To support more complex
protocols, such as AXI stream, a Network Adapter module
would need to be introduced between the SNIP and the pe-
ripheral. While we do not explore IO device protocols in
detail, attack scenarios consider attempts to insert malicious
data into the input buffer.

A. Packet Handler

The SNIP acts as a slave to the system since it waits for
incoming packets to define its action. The Packet Handler is
responsible for receiving packets from the NoC and carrying
out the appropriate response. It executes all the decision-
making, acting as a manager to the other components.

Upon receiving a packet, the Packet Handler analyzes its
service code, which refers to the function of the packet. Ta-
ble I displays the services the SNIP supports. The SNIP dis-
cards any received packet whose appID that is not in ApT.

The packet handling process is divided into phases, con-
trolled by an FSM, depicted in Figure 3. Every packet begins
with two header flits (target and payload size) followed by
the message header and, if present, payload flits.

PARSE
HEADER

GEN
KEYS

FINISH
RX ANSW

RECV
DATA

APP
INFO

WAIT
TABLE

IO_RENEW

IO
_C

ONFIG

IO
_C

LEAR

IO_WRITE

IO_READ

IO_CONFIG

IO_WRITE
IO_READ

Unknown service
or k0 already defined

Authentication fails
or Application Table
with no space

Fig. 3 : Abstract FSM controlling the Packet Handler [10].

Table I. Services supported by the SNIP [10].

Service code Packet
Source Function

IO INIT Manager PE
Packet received at system startup
with the initialization key – k0

IO CONFIG Manager PE
Configure a line of the ApT with
{appID, path, k1, k2, status}

IO RENEW Manager PE
Renew the appID keys {k1, k2}
receiving parameters {n, p}

UNBLOCK
WARNINGS

Manager PE
Enable the SNIP to send warning
packets

IO CLEAR Manager PE
Clear and deallocate the ApT row
indexed by appID

IO WRITE Application
Write data into an IO device
Application waits an IO ACK from
SNIP

IO READ Application
Request data from an IO device
Application waits an
IO DELIVER packet

Each phase in Figure 3 execute the following actions:

• PARSE HEADER: reads and stores relevant flits, such as
servicecode, appID, and other parameters, into registers.
All services from Table I, except IO INIT, trigger the tran-
sition to the WAIT TABLE phase. Unknown services lead
to the FINISH RX phase, where the packet is discarded.

• WAIT TABLE: the FSM searches for a free row in ApT
for IO CONFIG or checks for a matching appID using
authentication. Packets are discarded if authentication fails
or no space is available in ApT.

• APP INFO: handles IO CONFIG and IO CLEAR ser-
vices. For IO CONFIG, it writes {appID, path} into the
row, while IO CLEAR releases the row.

• GEN KEYS: waits for the Key Generator to produce
{k1, k2}, which are written into the ApT row.

• RECV DATA: processes IO WRITE and IO READ ser-
vices by transmitting the packet’s payload to the Output
Buffer. For IO WRITE, the payload contains data for the
IO device; for IO READ, the payload contains the address
and the number of flits to be received.

• FINISH RX: remaining flits are discarded, including pack-
ets with unknown services or unauthenticated applications.

• ANSW: completes IO WRITE and IO READ transactions.
For IO WRITE, an IO ACK is sent to the application.
For IO READ, the Packet Handler requests the Packet
Builder to send a message back to the application with
data from the Input Buffer, which was populated during
the RECV DATA phase.

B. Application Table – ApT

The SNIP uses the ApT to allow authorized applications
to access the IO device connected to the SNIP. Each line of
the ApT has the following fields: appID: application iden-
tifier; path: path between the SNIP and the application AP;
k1 and k2: authentication keys, used to certify the authentic-
ity of packets; status: it may assume free, pending, and used
values.

Note that the ApT authenticates applications and not tasks.
This “application granularity” reduces the ApT size and thus
silicon area compared to a table with “task granularity”.

Journal of Integrated Circuits and Systems, vol. 19, n. 3, 2024 5

The ApT has two interfaces, enabling the SNIP to send
and receive packets simultaneously. The primary interface
(read-write) is connected to the Packet Handler, and the
secondary interface (read-only) is connected to the Packet
Builder.

As in the Packet Handler module, an FSM controls the
access to the ApT. The main phases of the FSM include:

• FETCH NEW: started by an IO CONFIG packet. This
phase searches for a row with free status; if no row is free,
the FSM searches for a row with a pending status. If there
is a match (free or pending), the FSM returns the row to
the Packet Handler. When a row is configured, its status
is set to pending, and changes to used only after the first
transaction with the application. This procedure avoids at-
tacks that try to fill the ApT by flooding the SNIP with
IO CONFIG packets.

• FETCH: started by an IO RENEW or IO CLEAR packet.
This phase retrieves appID using the authentication
method [19]. The FSM searches for a row with an appID
that matches the retrieved one, returning it to the Packet
Handler.

• FETCH AP: corresponds to the packet authentication pro-
cess. The FSM searches for a row in the ApT that success-
fully authenticates the packet.

• READY and FAILED: notify the Packet Handler the row to
be written or signalize an invalid row, respectively.

C. Key Generator

The Key Generator is responsible for creating and updat-
ing the keys used in the Authentication Protocol. It gener-
ates two keys, {k1, k2}, using a Linear-Feedback Shift Reg-
ister (LFSR), which acts as a pseudo-random key genera-
tor. The key size is a design time parameter, in our case
we use 16-bit keys. While LFSRs are not the most robust
method for generating pseudo-random numbers, they offer a
distributed and area-efficient solution for generating authen-
tication keys. For the IO CONFIG service, the LFSR uses
appID as the seed, producing k1 after n rounds and k2 af-
ter an additional p rounds. For the IO RENEW service, new
keys are generated using k2 as the seed, following the same
procedure. The generated {k1, k2} keys are stored in the
ApT row indexed by appID, with n and p being randomly
generated for each IO CONFIG and IO RENEW service.

D. Packet Builder

The Packet Builder assembles and sends packets to the ap-
plications. These packets can be either IO DELIVERY mes-
sages with the data requested from the IO device, or IO ACK
to acknowledge data from the application. Once the Packet
Handler receives a valid packet from an application, it uses
the Answer Request (Figure 2) interface to notify the Packet
Builder to send an answer. The parameters specifying the
packet to be sent are appID, messageType, and requestSize.

Upon receiving a request, the Packet Builder registers the
parameters, raises a busy signal, and generates the packet.
The information required to build the packet header, such
as the authentication keys and the source-routing path, is re-
trieved from the ApT through the secondary interface. If the

outgoing packet is an IO DELIVERY, data sent by the IO de-
vice is retrieved from the Input Buffer and sent in the packet
payload.

Since only one request can be handled at a time, if another
request needs to be issued while the Packet Builder is busy,
the Packet Handler stays blocked until the completion of the
current request.

E. Warning Manager

The Warning Manager module is responsible for detecting
suspicious behavior and generating warning packets to send
to the MPE.

As depicted on Figure 2, SNIP components alert the Warn-
ing Manager through specific warning signals (w1, w2, w3,
w4.a, w4.b) when irregularities occur. The Warning Manager
collects relevant data via the Warning Parameters interface
and issues a Warning Request to the Packet Builder, which
assembles and sends the warning packet into the NoC.

The four types of warnings the SNIP can detect are:

W1 Failed authentication. Issued when an incoming
packet fails authentication, indicating that a malicious
agent is attempting unauthorized access using incorrect
keys.

W2 Write on a full table. Triggered when an IO CONFIG
request is made, but the table is full. This suggests a
malicious attempt to configure the SNIP, as the MPE
should not exceed the table’s capacity.

W3 Overwritten row. Occurs when a pending table row
is overwritten by a new IO CONFIG request. This may
result in a legitimate application losing access to the pe-
ripheral, indicating a potential malicious configuration
attempt.

W4 Abnormal peripheral. Detected when a peripheral
does not follow the correct communication protocol.
This includes cases where (i) the peripheral attempts
to write data while access control is disabled, or (ii) it
writes more flits than requested by an IO READ opera-
tion.

The ApT is responsible for detecting the W1, W2, and W3
warnings. The Input Buffer identifies the first trigger for the
W4 warning, related to an access control breach, while the
Packet Builder detects the second trigger, which involves the
reception of excessive flits.

Figure 4 illustrates the structure of the Warning Manager,
which consists of four interfaces:

1. Anomaly Detection: includes the warning signals (w1,
w2, w3, and w4) that other components use to signal a
security anomaly.

2. Warning Parameters: collects diagnostic information
from other components, which is later included in the
warning packet.

3. Warning Request: communicates with the Packet Builder
to request the sending of a warning packet; it comprises
the warning req signal, a warning ack, and the necessary
parameters for packet assembly.

6 COMARÚ et al.: Integration of Monitoring Mechanisms in Secure Network Interfaces to Protect IO Communication

Control Signals

Warning Parameters

Anomaly Detection Warning Request

unblock_warnings

Warning Manager

 Packet Source

 F1 (first authentication flit)

 F2 (second authentication flit)

 Overwritten Index

warning_req

warning_ack

warning_param.type

warning_param.source

warning_param.f1

warning_param.f2

warning_param.index

incoming_packet_source

incoming_f1

table_index

incoming_f2

FSM

w1 w1_reg
set to '1'

 w2_reg
set to '1'

 w3_reg
set to '1'

 w4_reg
set to '1'

w2

w3

w4.a

w4.b

OR

Fig. 4 Warning manager internal blocks and external interfaces.

4. Control Signals: contains the unblock warnings signal,
which is triggered by the Packet Handler to clear any
blocked warnings.

Anomaly Detection signals are used to identify security
threats, remaining active as long as the threat persists. How-
ever, to prevent multiple warnings from being sent for the
same anomaly, warnings are triggered only when a rising
edge is detected on the signal. Each Anomaly Detection sig-
nal is, therefore, filtered by an edge detector.

For each signal, there is a corresponding register (w1 reg,
w2 reg, w3 reg, w4 reg). When a rising edge is detected, the
appropriate register is activated, and the Warning Parameters
(Packet Source, {F1,F2}, Overwritten Index from Figure 4)
are stored in registers. The Warning Manager FSM then re-
quests the Packet Builder to send a warning packet.

The FSM transitions to one of four states, each handling
a different warning type based on the active register. In the
corresponding state, the Warning Manager raises the warn-
ing req signal and sends the relevant parameters. Once the
Packet Builder acknowledges with the warning ack signal,
the FSM returns to idle and resets the warning register.

After a warning is processed, the register is deactivated,
and the Warning Manager waits for the next anomaly. Since
there is only one set of parameter registers shared by all
warning types, only one warning can be sent at a time, mini-
mizing area overhead.

To prevent excessive warning packets from flooding the
NoC, each warning type has a limit on how many times it
can be sent, which is defined at design time. This is par-
ticularly important for w4, as a malicious peripheral could
flood the network. Once a warning type reaches its limit, it
is blocked, and further detections are ignored until the MPE
sends a UNBLOCK WARNINGS packet to the SNIP.

F. Warning structure

When the SNIP detects a suspicious behavior, the Packet
Builder sends a warning message to the MPE. These warning
packets follow the format shown in Figure 5:

The packet header (yellow) contains routing information
for reaching the MPE, which can use either XY routing or a
source-routing path. These fields are configured by the MPE
during the SNIP initialization via the IO INIT packet, mak-
ing it possible to reconfigure the path to the MPE whenever
the SNIP is reset.

The Packet Size and Service Code fields (in blue) are used
by the PE to correctly receive and handle the packet.

Packet Header

Routing Header

Packet Size

Service Code

Warning Code

Peripheral ID

Incoming Source

Incoming F1 / F2

Overwritten Row

--

--

--

--

1

2

3

4

5

6

7

8

9

10

11

12

13

Routing information to reach the MPE

Length of the packet

Packet service ID (IO_WARNING_SERVICE)

Indicates the warning type (w1, w2, w3 or w4)

Indicates which SNIP is sending the warning

Source of the packet that generated the warning

F1/F2 fields of the packet that generated the warning

Table index of the overwritten row

Blank

Blank

Blank

Blank

Fig. 5 : Structure of the warning packet sent by the SNIP.

The purple fields are used to identify the warning: Warn-
ing Code defines the type of the warning, while Peripheral
ID specifies which SNIP sent it.

The red fields provide information to help the MPE assess
the attack and apply appropriate countermeasures. These in-
clude the Source of the packet that triggered the warning
and its authentication flits {F1,F2}. If a row in the ApT was
overwritten, the index of the Overwritten Row is included.

VI. ATTACK DETECTION

Based on the warnings received from the SNIP, the MPE
can identify ongoing attacks targeting the SNIP and their re-
spective warning profiles:
Unrequested peripheral data: if a peripheral sends unre-
quested messages or violates the communication protocol,
the SNIP issues a w4 warning. This may indicate malicious
intent (e.g., data leakage) or a peripheral not following cor-
rectly the communication protocol. The MPE can flag the
peripheral as suspicious and monitor for further evidence be-
fore deploying countermeasures.
Peripheral DoS: the peripheral tries to flood the NoC by
writing excessive data to the SNIP. In this case, the SNIP
sends several w4 messages to the MPE, which will result in
blocking the w4 warning. The MPE can request to unblock
the warnings through a UNBLOCK WARNINGS packet. If
this continues to happen, then it is clear the peripheral is at-
tempting to flood the NoC (DoS attack).
Read/write spoofing: if a malicious application attempts to
access a peripheral by forging the {F1,F2} authentication
flits, the SNIP will fail to authenticate the packet and trig-
ger a w1 warning. The malicious application will receive no
response from the SNIP.
Configuration spoofing: a malicious entity, other than the
MPE, sends a fake IO CONFIG packet to the SNIP, attempt-
ing to configure a row in the ApT table to gain unauthorized
access. This attack is not immediately detected, leaving the
row in a pending state. Since the attacker lacks knowledge
of the keys generated by the Key Generation process, any at-
tempt to access the SNIP will trigger a w1 warning. If the
MPE configures additional applications in the ApT table, the
malicious row will eventually be overwritten, resulting in a
w3 warning.

Journal of Integrated Circuits and Systems, vol. 19, n. 3, 2024 7

IO Transaction

IO
 L

at
en

cy
 (c

lo
ck

 c
yc

le
s)

0

50

100

150

200

250

10 20 30 40 50

Baseline DoS Task A

IO Transaction

IO
 L

at
en

cy
 (c

lo
ck

 c
yc

le
s)

0

100

200

300

400

10 20 30 40 50

Baseline DoS Task B

IO Transaction

IO
 L

at
en

cy
 (c

lo
ck

 c
yc

le
s)

0

100

200

300

400

20 40 60 80 100

Baseline DoS Task F

Fig. 6 : IO latency values for three tasks from synthetic app: Task A, Task B, and Task F.

Configuration flooding: since there is no mechanism to
verify the authenticity of IO CONFIG packets, an attacker
could attempt a DoS attack by filling the ApT rows with
invalid applications. While the pending status mechanism
prevents the table from being fully filled, a legitimate appli-
cation might lose access to the SNIP. This attack results in a
stream of w3 warnings to the MPE as malicious entries over-
write valid ones, along with a w1 warning for each failed
read/write operation attempted by the overwritten legitimate
application.

By monitoring these warnings, the MPE can detect the oc-
currence of different attacks in the SNIPs, thus being able to
deploy effective countermeasures and resume proper system
behavior.

VII. RESULTS

This section presents the SNIP behavior against attacks
and its resulting area cost. The system is modeled at the
RTL level (VHDL and SystemC), allowing clock cycle ac-
curacy. The simulated scenarios have applications running
on an OSZ and malicious applications and malicious periph-
erals generating attacks.

A. Execution Time

The first evaluation assesses the impact of a DoS flooding
attack on the total execution time of six applications, com-
monly used in the many-core research community [20, 21]:

• Dijkstra - 6 tasks (3x2 OSZ), 1 IO: computes the short-
est path between two points in a graph represented by an
adjacency matrix;

• DTW (Dynamic Time Warping) – 6 tasks (3x2 OSZ), 1
IO: given a set of reference templates, the application de-
termines which one best matches an unknown pattern;

• Fixed - 14 tasks (4x4 OSZ), 3 IOs: image authentication
based on spectral analysis;

• MPEG - 5 tasks (3x2 OSZ), 1 IO: decodes patterns for
video information;

• Synthetic - 6 tasks (3x2 OSZ), 2 IOs: an application graph
with fork and join tasks.

• VOPD (Video Object Plane Decoder) – 12 tasks (4x3
OSZ), 3 IOs: simulates the interaction between hardware
modules of a Video Object Plane (VOP) encoder.

The OSZ shape is defined at runtime, being the smallest
rectangle that encloses the application tasks, considering one
task for PE and respecting the system dimensions. The SNIP
configuration in every scenario is the same: 16-bit key size
and 4-slot ApT.

These applications are evaluated under two scenarios:
baseline (no attack) and DoS (injection rate: 50% of one
NoC link bandwidth). Table II presents the execution time in
milliseconds.

Table II.: Execution time of applications while the IO device is under a DoS
attack (ms@100MHz).

Application System Baseline DoS OverheadSize 50% bandwidth
Dijkstra 4x4 7.5432 7.5436 0.01%
DTW 4x4 8.3467 8.3530 0.08%
Fixed 5x5 5.5585 5.5590 0.01%

MPEG 4x4 14.4426 14.4430 0.003%
Synthetic 4x4 7.0030 7.2066 2.91%

VOPD 5x5 4.0659 4.0676 0.04%

The overhead values presented in Table II are below 0.1%,
except for the synthetic application. For DoS attacks, the
SNIP’s fast packet discard mechanism is crucial in reducing
contention on the NoC, helping mitigate significant impacts
on IO communication latency. Additionally, the round-robin
arbitration algorithm, used by the NoC router, ensures that
malicious traffic does not dominate a given link.

8 COMARÚ et al.: Integration of Monitoring Mechanisms in Secure Network Interfaces to Protect IO Communication

The synthetic application showed higher overhead due to
its IO-intensive profile, where any disruption in IO latency
directly affects execution time. Figure 6 highlights three
tasks from the synthetic application (A, B, and F) that ex-
change packets with the IO device during the DoS attack.
Task A and Task B perform 50 IO transactions each, while
Task F performs 100.

In all cases, the latency values remain identical for both
the Baseline and DoS scenarios until a specific iteration (16
for Task A and Task B, and 20 for Task F). After this point,
the attack begins, and IO communication is impacted by the
malicious traffic competing for the same link, leading to in-
creased latency in the DoS scenario.

B. Security Analysis

This section presents two attack scenarios and demon-
strates how the Secure Manager in the MPE can use the in-
formation provided by the Warning Manager to implement
countermeasures and protect the system.

Scenario 1: IO device under DoS from MalApp

Figure 7(a) depicts the first scenario, where a secure ap-
plication (AppSec) communicates with two IO devices (IO1
and IO2). Additionally, a malicious application (MalApp)
is running on PE X3Y2. At a given moment, Figure 7(b),
MalApp begins injecting malicious packets into the NoC
at a specified Injection Rate (Irate). Although these pack-
ets contain valid fields, the authentication keys are invalid,
prompting the SNIP to send w1 warnings to the MPE, re-
porting the invalid access attempts (indicated by the orange
arrow in Figure 7(b)). Upon receiving these warnings, the
MPE checks the source of the malicious packet (from field
7 of the warning packet) and applies a countermeasure. In
this case, the MPE terminates the application running on PE
X3Y2 (Figure 7(c)).

Fig. 7 : Scenario 1: MalApp causing flooding DoS to IO2.

Since the MPE receives failed authentication warnings im-
mediately when the DoS campaign begins, only a few mali-
cious packets reach the SNIP before MalApp is terminated.
As a result, the execution time of the secure application re-
mains unaffected.

The focus of this scenario is not the countermeasure itself
but rather the importance of the warning generation mecha-
nism and how it enables the MPE to make system-level deci-
sions. This scenario serves as a starting point, and the threats
can be expanded, along with the complexity of the counter-
measures, as needed.

Scenario 2: MalPeriph attempting to inject data

Figure 8(a) shows the same AppSec running in the sys-
tem and communicating with two IO devices, IO1 and IO2.
In this scenario, however, IO1 is a malicious peripheral
(MalPeriph). Additionally, the scenario includes a third
peripheral, IO3, which is not utilized at the start of the exe-
cution.

Fig. 8: Attack scenario 2: MalPeriph attempting to inject unrequested
data into the NoC.

After the 20th iteration, the MalPeriph begins injecting
extra data into the system. As depicted in Figure 8(b), the
SNIP detects this behavior and sends a w1 warning to the
MPE. In response, the MPE initiates a process to switch the
IO device. Following the orange arrows in Figure 8(c), the
MPE configures IO3 to be used by the application and in-
forms AppSec that future IO transactions with device IO1
should be rerouted to IO3. Finally, Figure 8(d) illustrates the
IO communication after implementing the countermeasure.

The execution time for each iteration is shown in Fig-
ure 9, comparing the synthetic application’s normal execu-
tion (Baseline) with the scenario involving the attack and
countermeasure (Attack). Up to iteration 20, the iteration
times show minimal variation, following the same pattern in
both cases. However, from iteration 21 to 26, the Attack sce-
nario takes longer to complete due to the overhead of switch-
ing to the new IO device. The average increase in execution
time for iterations 21 to 26 is 7.21%. This overhead includes
the time required to calculate new paths to IO3 and the ad-
ditional key renewal necessary to update the keys after the
attack.

C. Area Evaluation

Each processing element (PE) has two routers (data and
control routers), a processor, local memory, and a network
interface.

The data NoC is a wormhole packet-switched network-on-
chip (NoC) that does not use virtual channels with two key

Journal of Integrated Circuits and Systems, vol. 19, n. 3, 2024 9

Iteration

Ti
m

e
(m

s)

0,00

0,25

0,50

0,75

1,00

10 20 30 40 50

Baseline Attack

Fig. 9: Synthetic application iteration execution time for Baseline and At-
tack scenarios (ms@100MHz).

features: (i) two physical channels acting as separate NoCs,
allowing fully adaptive routing; (ii) area overhead minimiza-
tion by using a 16-bit flit size. This NoC supports both the
default XY routing algorithm and source routing (SR), where
the packet header specifies required turns to avoid faulty
paths or bypass an OSZ.

The control NoC [22], named BrNoC, is a lightweight
NoC in which each packet consists of a single flit. In the
default broadcast mode, packets are sent to all PEs, enabling
path establishment from a source PE to a target PE even in
the presence of faults or HTs in the data NoC. Unicast trans-
mission is also supported, allowing path creation between
source and target PEs using a backtracking approach. For
security reasons, access to the control NoC is restricted to
the operating system (OS), thereby preventing malicious ap-
plications from using it.

We synthesized the SNIP (ApT with 4 rows, and in-
put/output buffers for 16 depth 16-bit flits size), the Data
Router (16-bit flits size and 8-flit depth input buffers), and
the Control Router (CAM size with 8 rows) for a 28 nm FD-
SOI process from ST Microelectronics. Table III presents
the synthesis results.

Table III.: Synthesis results for the SNIP, Data Router, and Control Router
- 28nm FDSOI - CADENCE GENUS 21.12-s068 1.

Synthesis results SNIP Data Router Control Router
Cell Area (µm2) 12,449 15,019 4,657
Net Area (µm2) 3,775 5,000 2,090
Total Area (µm2) 16,224 20,019 6,747
Cell Instance Count 5,852 7,776 3,203
Timing slack@500 MHz (ps) 263 136 29
Total estimated power (mW) 5.844 7.463 2.697

Routers represent no more than 20% of the PE area (in
[23], the NoC represents 7.7% of the PE area). Table III
demonstrates that the SNIP has a low area consumption, rep-
resenting 82.3% of the data router area. The number of rows
of the ApT directly impacts the area overhead. According
to the expected workload, it may be necessary to increase
the ApT to make each peripheral available to more applica-
tions simultaneously. Also, a small additional area must be
considered in a complete implementation, corresponding to
converting the protocol used in the input and output buffers
to the selected protocol.

Three of the related works presented in this paper showed
the area overhead of their implementation of security: in the
NI (Kapoor el al. [11]), in the router (Baron et al. [12])
and entire system size (Sankar et al. [16]). All of these ap-
proaches present solutions with scalability associated to the
number of PEs in the platform. In our solution, the overhead
scales only with the number of IO devices in the system.
Therefore, once defined the number of SNIPs, the number of
PEs does not increase this proposal area overhead.

VIII. CONCLUSION

The proposed SNIP design presents a promising approach
to addressing security challenges in many-core systems,
specifically protecting IO communication. The SNIP in-
tegrates security mechanisms that safeguard communica-
tion between internal components in many-core systems and
bridges a research gap regarding the communication between
many-core systems and peripherals. These security mecha-
nisms encompass: (i) host-device communication API, (ii)
application authentication, (iii) lightweight packet authen-
tication, (iv) frequent key renewal. The security evalua-
tion involved applications with different profiles, demon-
strating the SNIP effectiveness in thwarting attacks such
as Denial of Service (DoS) and unauthorized access from
MalPeriph, applying local (packet discarding, authentica-
tion) and system-level countermeasures (change peripheral
and terminate application) based on reported suspicious be-
havior. The costs are minimal IO iteration latency over-
head (7.21%) and area impact (equivalent to 82.3% of a data
router).

During the evaluation, none of the applications presented
an increase on the packet latency during an IO transaction
caused by path congestion on the AP. Since the utilized
benchmark only has applications that exchange packets with
up to 3 IO devices, one future research is the inclusion of
more IO intensive applications as benchmark to investigate
the possibility of path congestion due to the AP.

Other future research directions include: (i) developing a
range of distinct modules to establish the interface between
the SNIP and IO devices; (ii) creating a high-level protocol
that analyzes the warnings information to detect more com-
plex attacks, such as Distributed DoS (DDoS), and develop
improved countermeasures for prevention or mitigation; (iii)
dynamically modify paths to the Access Point (AP) through
randomization; (iv) evaluate the robustness of the proposed
method when multiple applications simultaneously access
the same SNIP.

ACKNOWLEDGEMENTS

This work was financed in part by CAPES (Finance Code
001), CNPq (grants 309605/2020-2 and 407829/2022-9),
and FAPERGS (grants 21/2551-0002047-4 and 23/2551-
0002200-1).

REFERENCES

[1] B. Aghaei, M. Reshadi, M. Masdari, S. Sajadi, M. Hos-
seinzadeh, and A. Darwesh, “Network adapter archi-
tectures in network on chip: comprehensive literature
review,” Cluster Computing, pp. 321–346, 2020, https:
//doi.org/10.1007/s10586-019-02924-2.

https://doi.org/10.1007/s10586-019-02924-2
https://doi.org/10.1007/s10586-019-02924-2

10 COMARÚ et al.: Integration of Monitoring Mechanisms in Secure Network Interfaces to Protect IO Communication

[2] ARM, “AMBA® AXITM and ACETM Protocol Spec-
ification,” February 2013, https://developer.arm.com/
documentation/ihi0022/e/.

[3] S. Charles and P. Mishra, “Securing Network-on-Chip
Using Incremental Cryptography,” in ISVLSI, 2020, pp.
168–175, https://doi.org/10.1109/ISVLSI49217.2020.
00039.

[4] ——, “A Survey of Network-on-Chip Security Attacks
and Countermeasures,” ACM Comput. Surv, vol. 54,
no. 5, pp. 101:1–101:36, 2022, https://doi.org/10.1145/
3450964.

[5] J. Sepúlveda, A. Zankl, D. Flórez, and G. Sigl, “To-
wards protected mpsoc communication for informa-
tion protection against a malicious noc,” in ICCS,
2017, pp. 1103–1112, https://doi.org/10.1016/j.procs.
2017.05.139.

[6] C. Reinbrecht, A. Susin, L. Bossuet, and J. Sepúlveda,
“Gossip NoC - Avoiding Timing Side-Channel Attacks
through Traffic Management,” in ISVLSI, 2016, pp.
601–606, https://doi.org/10.1109/ISVLSI.2016.25.

[7] C. Lee, J. Lee, D. Koo, C. Kim, J. Bang, E.-K. Byun,
and H. Eom, “Towards enhanced I/O performance of
a highly integrated many-core processor by empirical
analysis,” Cluster Computing, pp. 1–13, 2021, https:
//doi.org/10.1007/s10586-021-03288-2.

[8] Z. Jiang, K. Yang, Y. Ma, N. Fisher, N. C. Audsley,
and Z. Dong, “I/O-GUARD: Hardware/Software Co-
Design for I/O Virtualization with Guaranteed Real-
time Performance,” in DAC, 2021, pp. 1159–1164,
https://doi.org/110.1109/DAC18074.2021.9586156.

[9] S. Zhao, Z. Jiang, X. Dai, I. Bate, I. Habli, and
W. Chang, “Timing-Accurate General-Purpose I/O for
Multi- and Many-Core Systems: Scheduling and Hard-
ware Support,” in DAC, 2020, pp. 1–6, https://doi.org/
10.1109/DAC18072.2020.9218686.

[10] G. Comarú, R. F. Faccenda, L. L. Caimi, and F. G.
Moraes, “Secure Network Interface for Protecting IO
Communication in Many-cores,” in SBCCI. IEEE,
2023, pp. 1–6, https://doi.org/10.1109/SBCCI60457.
2023.10261655.

[11] H. K. Kapoor, G. B. Rao, S. Arshi, and G. Trivedi,
“A Security Framework for NoC Using Authenticated
Encryption and Session Keys,” Circuits Syst Signal
Process, vol. 32, no. 6, pp. 2605–2622, 2013, https:
//doi.org/10.1007/s00034-013-9568-5.

[12] S. Baron, M. S. Wangham, and C. A. Zeferino, “Se-
curity mechanisms to improve the availability of a
Network-on-Chip,” in ICECS, 2013, pp. 609–612,
https://doi.org/10.1109/ICECS.2013.6815488.

[13] M. M. Ahmed, A. Dhavlley, N. Mansoorz, and S. M. P.
Dinakarraoy, “What Can a Remote Access Hard-
ware Trojan do to a Network-on-Chip,” in ISCAS,
2021, pp. 1–5, https://doi.org/10.1109/ISCAS51556.
2021.9401297.

[14] A. Dhavlle, M. M. Ahmed, N. Mansoor, K. Basu,
A. Ganguly, and S. M. P. Dinakarrao, “Defense against
on-chip trojans enabling traffic analysis attacks based
on machine learning and data augmentation,” IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, no. 12, pp. 4681–4694, 2023,
https://doi.org/10.1109/TCAD.2023.3278618.

[15] F. Restuccia, A. Meza, and R. Kastner, “Aker: A
Design and Verification Framework for Safe and Se-
cure SoC Access Control,” in ICCAD, 2021, pp. 1–9,
https://doi.org/10.1109/ICCAD51958.2021.9643538.

[16] S. Sankar, R. Gupta, J. Jose, and S. Nandi, “Sec-noc:
A lightweight secure communication system for on-
chip interconnects,” IEEE Embedded Systems Letters,
vol. 16, no. 2, pp. 214–217, 2024, https://doi.org/10.
1109/LES.2023.3333561.

[17] L. L. Caimi and F. Moraes, “Security in Many-Core
SoCs Leveraged by Opaque Secure Zones,” in ISVLSI,
2019, pp. 471–476, https://doi.org/10.1109/ISVLSI.
2019.00091.

[18] R. F. Faccenda, G. Comarú, L. L. Caimi, and F. G.
Moraes, “SeMAP – A Method to Secure the Com-
munication in NoC-based Many Cores,” IEEE Design
& Test, vol. preprint, pp. 1–7, 2023, 10.1109/MDAT.
2023.3277813.

[19] R. F. Faccenda, G. Comarú, L. L. Caimi, and F. G.
Moraes, “Lightweight Authentication for Secure IO
Communication in NoC-based Many-cores,” in ISCAS,
2023, pp. 1–5, https://doi.org/10.1109/ISCAS46773.
2023.10181962.

[20] W. N. Costa, L. P. Lima, and O. A. de Lima Junior,
“Extracting Packet Dependence from NoC Simulation
Traces Using Association Rule Mining,” Analog Inte-
grated Circuits and Signal Processing, vol. 106, no. 1,
pp. 235–247, 2021, https://doi.org/10.1109/sbcci.2018.
8533244.

[21] S. Kashi, A. Patooghy, D. Rahmati, and M. Fazeli,
“An Energy Efficient Synthesis Flow for Application
Specific SoC Design,” Integration, the VLSI Journal,
vol. 81, pp. 331–341, 2021, https://doi.org/10.1016/j.
vlsi.2021.08.005.

[22] E. Wachter, L. L. Caimi, V. Fochi, D. Munhoz, and
F. G. Moraes, “BrNoC: A broadcast NoC for con-
trol messages in many-core systems,” Microelectronics
Journal, vol. 68, pp. 69 – 77, 2017, https://doi.org/10.
1016/j.mejo.2017.08.010.

[23] A. Rovinski and others Mishra, “Evaluating Celerity:
A 16-nm 695 Giga-RISC-V Instructions/s Manycore
Processor With Synthesizable PLL,” IEEE Solid-State
Circuits Letters, vol. 2, no. 12, pp. 289–292, 20119,
https://doi.org/10.1109/LSSC.2019.2953847.

https://developer.arm.com/documentation/ihi0022/e/
https://developer.arm.com/documentation/ihi0022/e/
https://doi.org/10.1109/ISVLSI49217.2020.00039
https://doi.org/10.1109/ISVLSI49217.2020.00039
https://doi.org/10.1145/3450964
https://doi.org/10.1145/3450964
https://doi.org/10.1016/j.procs.2017.05.139
https://doi.org/10.1016/j.procs.2017.05.139
https://doi.org/10.1109/ISVLSI.2016.25
https://doi.org/10.1007/s10586-021-03288-2
https://doi.org/10.1007/s10586-021-03288-2
https://doi.org/110.1109/DAC18074.2021.9586156
https://doi.org/10.1109/DAC18072.2020.9218686
https://doi.org/10.1109/DAC18072.2020.9218686
https://doi.org/10.1109/SBCCI60457.2023.10261655
https://doi.org/10.1109/SBCCI60457.2023.10261655
https://doi.org/10.1007/s00034-013-9568-5
https://doi.org/10.1007/s00034-013-9568-5
https://doi.org/10.1109/ICECS.2013.6815488
https://doi.org/10.1109/ISCAS51556.2021.9401297
https://doi.org/10.1109/ISCAS51556.2021.9401297
https://doi.org/10.1109/TCAD.2023.3278618
https://doi.org/10.1109/ICCAD51958.2021.9643538
https://doi.org/10.1109/LES.2023.3333561
https://doi.org/10.1109/LES.2023.3333561
https://doi.org/10.1109/ISVLSI.2019.00091
https://doi.org/10.1109/ISVLSI.2019.00091
10.1109/MDAT.2023.3277813
10.1109/MDAT.2023.3277813
https://doi.org/10.1109/ISCAS46773.2023.10181962
https://doi.org/10.1109/ISCAS46773.2023.10181962
https://doi.org/10.1109/sbcci.2018.8533244
https://doi.org/10.1109/sbcci.2018.8533244
https://doi.org/10.1016/j.vlsi.2021.08.005
https://doi.org/10.1016/j.vlsi.2021.08.005
https://doi.org/10.1016/j.mejo.2017.08.010
https://doi.org/10.1016/j.mejo.2017.08.010
https://doi.org/10.1109/LSSC.2019.2953847

	Introduction
	Related Work
	Baseline Platform with Security Mechanisms
	IO Communication

	Threat Model and Countermeasures
	Threat Model
	Countermeasures

	SNIP Architecture
	Packet Handler
	Application Table – ApT
	Key Generator
	Packet Builder
	Warning Manager
	Warning structure

	Attack detection
	Results
	Execution Time
	Security Analysis
	Area Evaluation

	Conclusion
	Acknowledgements

