
ESCOLA POLITÉCNICA
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

MESTRADO EM CIÊNCIA DA COMPUTAÇÃO

NICOLAS SILVA MOURA

ACCELERATION OF AEAD ALGORITHMS FOR
RESOURCE-CONSTRAINED EMBEDDED DEVICES

Porto Alegre
2024

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
SCHOOL OF TECHNOLOGY

COMPUTER SCIENCE GRADUATE PROGRAM

ACCELERATION OF AEAD
ALGORITHMS FOR

RESOURCE-CONSTRAINED
EMBEDDED DEVICES

NICOLAS SILVA MOURA

Master Thesis submitted to the Pontifical
Catholic University of Rio Grande do Sul
in partial fulfillment of the requirements
for the degree of Master in Computer
Science.

Advisor: Prof. Dr. Fernando Gehm Moraes
Co-Advisor: Prof. Dr. Rafael Fraga Garibotti

Porto Alegre
2024

Ficha Catalográfica

M929a Moura Nicolas Silva

Acceleration ofAEAD Algorithms for Resource-Constrained Embedded
Devices /Nicolas Silva Moura. — 2024.

58.
Dissertação (Mestrado) — Programa de Pós-Graduação em

Ciência da Computação, PUCRS.

Orientador: Prof. Dr. Fernando Gehm Moraes.
Coorientador: Prof. Dr. Rafael Fraga Garibotti.

1. Lightweight Cryptography. 2. Ascon. 3. RISC-V. 4. Hardware
Acceleration. I. Moraes, Fernando Gehm. II. Garibotti, Rafael Fraga.
III. . IV. Título.

Elaborada pelo Sistema de Geração Automática de Ficha Catalográfica da PUCRS
com os dados fornecidos pelo(a) autor(a).

Bibliotecária responsável: Clarissa Jesinska Selbach CRB-1012051

NICOLAS SILVA MOURA

ACCELERATION OF AEAD ALGORITHMS FOR
RESOURCE-CONSTRAINED EMBEDDED

DEVICES

This Master Thesis has been submitted in
partial fulfillment of the requirements for the
degree of Master in Computer Science, of
the Computer Science Graduate Program,
School of Technology of the Pontifical
Catholic University of Rio Grande do Sul

Sanctioned on March 20, 2024.

COMMITTEE MEMBERS:

Prof. Dr. Rafael Iankowski Soares (PPGC/UFPel)

Prof. Dr. Avelino Zorzo (PPGCC/PUCRS)

Prof. Dr. Rafael Fraga Garibotti (Vector Trading- Co-Advisor)

Prof. Dr. Fernando Gehm Moraes (PPGCC/PUCRS - Advisor)

ACELERAÇÃO DE ALGORITMOS AEAD PARA DISPOSITIVOS
EMBARCADOS COM RECURSOS LIMITADOS

RESUMO

A quantidade de informações sensíveis e dados processados em dispositivos IoT está cons-
tantemente aumentando. Como resultado, a segurança tornou-se uma preocupação crucial.
Embora a criptografia de dados seja necessária, os custos que os algoritmos de criptografia
tipicamente requerem para proteger os dados raramente são toleráveis em dispositivos em-
barcados de baixo custo. Isso levou ao surgimento de um novo ramo de pesquisa chamado
Criptografia Leve (LWC), que visa introduzir algoritmos que proporcionem níveis aceitáveis
de segurança enquanto consomem o mínimo de recursos possível. Devido à crescente re-
levância deste campo e às muitas propostas divergentes, o National Institute of Standards
and Technology (NIST) lançou uma competição para selecionar um algoritmo LWC para
padronizá-lo, de forma semelhante ao que foi feito anteriormente para o AES. Em fevereiro
de 2023, o algoritmo Ascon foi anunciado como o vencedor da competição, e espera-se
que seja padronizado pelo NIST em 2024. Este trabalho apresenta uma avaliação com-
parativa entre três algoritmos de criptografia autenticada com dados associados (AEAD),
Ascon, AES-128 no modo CCM e ChaCha20-Poly1305, no contexto de um processador
RISC-V de baixa complexidade, considerando o algoritmo executando em software e com
extensões do conjunto de instruções (ISEs), comparando seu desempenho e compromis-
sos em uma tecnologia FDSOI de 28nm da ST Microelectronics. Os resultados apresentam
uma avaliação abrangente de PPA (Potência, Desempenho e Área) para os três algoritmos
AEAD, mostrando um ganho de desempenho de 95,1%, 60,3% e 5,2%, juntamente com um
aumento na eficiência energética de 94,2%, 65,6% e 17,2%, para AES, Ascon e ChaCha20-
Poly1305, respectivamente. O custo em área foi até 9%. Tais resultados demonstram que
dispositivos com recursos limitados que criptografam um alto volume de mensagens se be-
neficiam significativamente da aceleração de hardware.

Palavras-Chave: Criptografia leve, Ascon, RISC-V, aceleração de hardware.

ACCELERATION OF AEAD ALGORITHMS FOR
RESOURCE-CONSTRAINED EMBEDDED DEVICES

ABSTRACT

The amount of sensitive information and data processed on IoT devices constantly increases.
As a result, security has become a crucial concern. Although data encryption is necessary,
the large overheads that encryption algorithms typically require to protect data are rarely
tolerable on low-end devices. This has led to the emergence of a new branch of research
called Lightweight Cryptography (LWC), which aims to introduce new algorithms that pro-
vide acceptable levels of security while consuming as few resources as possible. Due to
the growing relevance of this field and the many divergent proposals, the National Institute
of Standards and Technology (NIST) launched a competition to select an LWC algorithm to
standardize similarly to that previously done for the Advanced Encryption Standard (AES).
In February 2023, the Ascon algorithm was announced as the competition winner, and it is
expected to be standardized by NIST in 2024. This work presents a comparative evaluation
between three authenticated encryption algorithms with associated data (AEAD), namely,
Ascon, AES-128 in CCM mode, and ChaCha20-Poly1305 in the context of a low-complexity
RISC-V processor, considering the algorithm executing in software and with instruction set
extensions (ISEs), comparing their performance and trade-offs in a 28nm FDSOI technology
from ST Microelectronics. The results present a comprehensive evaluation of PPA (Power,
Performance and Area) for the three AEAD algorithms, showing a performance gain of
95.1%, 60.3%, and 5.2%, along with an increase in energy efficiency of 94.2%, 65.6%,
and 17.2%, for AES, Ascon, and ChaCha20-Poly1305, respectively. The area overheads
were observed to be up to 9%. Such results demonstrate that devices with limited resources
that encrypt a high message volume benefit significantly from hardware acceleration.

Keywords: Lightweight Cryptography, Ascon, RISC-V, Hardware Acceleration.

LIST OF FIGURES

Figure 2.1 – RISC-V Ibex Architecture. 20

Figure 2.2 – AEAD top-level architecture. 22

Figure 2.3 – Ascon’s modes of operation [Dobraunig et al., 2021]. 24

Figure 2.4 – Initialization Vector and initial state S. 24

Figure 2.5 – The CCM mode of operation. 26

Figure 2.6 – ChaCha quarter-round function. 26

Figure 4.1 – Register words of the 320-bit state S and operations pC, pS, and pL

[Dobraunig et al., 2021]. 33

Figure 4.2 – Ascon State on 32-bit Register Processors. 33

Figure 4.3 – Ascon 5-bit S-box S as a lookup table [Dobraunig et al., 2021]. 34

Figure 4.4 – Ascon substitution layer and linear diffusion layer [Dobraunig et al.,
2021]. 34

Figure 4.5 – Zip, Unzip and Pack instructions (Source: the Author). 36

Figure 4.6 – Xascon Instruction definition. 37

Figure 4.7 – Ascon Core Interface (Source: [Ascon, 2022b]). 40

Figure 4.8 – zip instruction specification . 42

Figure 4.9 – Ibex ID/EX pipeline stage datapath with XAscon functional unit (Source:
the Author). 43

Figure 5.1 – Memory usage for AES-128 in CCM mode and Ascon. 49

Figure 5.2 – Energy Consumption Evaluation - Zigbee - left, IPv6 - right 50

LIST OF TABLES

Table 2.1 – Instructions of the RV32I processor and the M extension. 16

Table 2.2 – RISC-V cryptography ISEs [Marshall, 2021]. 17

Table 2.3 – Zbkb - Bitmanip instructions for Cryptography. 18

Table 2.4 – Zbkb - NIST Suite: AES Encryption. 18

Table 2.5 – Ibex Instruction Set Extensions [Ibex, 2023a]. 19

Table 2.6 – Notation used for Ascon’s interface, mode, and permutation. 23

Table 3.1 – Related works on Cryptography Extension and Assessment. 31

Table 4.1 – Constant cr table. 34

Table 4.2 – Ascon Core interface signals . 41

Table 5.1 – Lightweight performance figures on IBEX base (128-bit message) . . . 45

Table 5.2 – Ascon performance figures. 46

Table 5.3 – AEAD performance figures – software execution. 46

Table 5.4 – AEAD performance figures – hardware acceleration. 47

Table 5.5 – Associated Data & Plaintext Performance (smaller is better). 47

Table 5.6 – Core operation profiling – (Clock cycles, Instr. retired), CPI. 47

Table 5.7 – Synthesis results for baseline and extended Ibex cores. 48

Table 5.8 – Raw results for memory consumption . 48

Table 5.9 – Raw results for energy consumption for IPv6 scenario. 49

Table 5.10 – Synthesis results for Ascon Core . 51

Table 5.11 – Summary of the results related to the evaluated AEAD algorithms
(IPV6 scenario). 51

LIST OF CODES

Code 4.1 – Assembly of Ascon 5-bit S-box using the RISC-V assembly with Zbkb. 35
sbox_asm_zbkb.S . 35
Code 4.2 – Code with Zbkb instructions to rotate words larger than the processor

word (e.g., 64-bit words in 32-bit processor). This example assumes a 16-bit
word in an 8-bit processor. 36

Code 4.3 – ascon.sigma.lo rd, rs1, rs2, imm. 38
Code 4.4 – ascon.sigma.hi rd, rs1, rs2, imm. 38

LIST OF ACRONYMS

LWC – Lightweight cryptography

NIST – National Institute of Standards and Technology

AEAD – Authenticated Encryption with Associated Data

AES – Advanced Encryption Standard

IoT – Internet of Things

IoE – Internet of Energy

TLS – Transport Layer Security

DTLS – Datagram Transport Layer Security

ISE – Instruction Set Extensions

ISA – Instruction Set Architecture

SIMD – Single Instruction Multiple Data

CSR – Control and Status Registers

LUT – Look-Up Table

CBC – Cipher-block chaining

CTR – Counter mode

GCM – Galois/Counter Mode

CCM – Counter with Cipher Block Chaining Message Authentication Code

CPU – Central Processing Unit

GPU – Graphics Processing Unit

ECDSA – Elliptic Curve Digital Signature Algorithm

PPA – Power-Performance-Area

FPGA – Field-programmable gate array

SPN – Substitution-Permutation-Network

S-Box – Substitution-Box

GCC – GNU Compiler Collection

CONTENTS

1 INTRODUCTION . 12

1.1 MOTIVATION . 13

1.2 OBJECTIVES . 13

1.3 CONTRIBUTION . 14

1.4 METHODOLOGY . 14

1.5 DOCUMENT ORGANIZATION . 15

2 FUNDAMENTAL CONCEPTS . 16

2.1 RISC-V ARCHITECTURE . 16

2.1.1 RISC-V INSTRUCTION SET EXTENSIONS - ISE . 17

2.1.2 RISC-V IBEX . 19

2.1.3 IBEX SECURITY . 20

2.2 INTRODUCTION TO AEAD . 21

2.2.1 ASCON ALGORITHM . 22

2.2.2 AES-128 CCM . 25

2.2.3 CHACHA20-POLY1305 . 26

2.3 HARDWARE ACCELERATION . 27

3 RELATED WORK . 28

3.1 ASSESSMENTS ON LWC ALGORITHMS . 28

3.2 CRYPTOGRAPHY EXTENSION IN RISC-V ISA . 29

3.3 RELATED WORK SUMMARY . 30

4 AEAD HARDWARE ACCELERATION . 32

4.1 RISC-V ZBKB . 32

4.1.1 ZBKB EXTENSION AND RELATIONSHIP WITH ASCON 32

4.2 RISC-V ISE XASCON . 37

4.3 RISC-V ZKNE . 38

4.4 ASCON CRYPTO-CORE . 40

4.5 IMPLEMENTATION . 41

4.5.1 CHANGES FOR ZBKB . 41

4.5.2 CHANGES FOR XASCON . 42

4.5.3 CHANGES FOR ASCON CORE . 43

5 RESULTS . 44

5.1 ASSESSMENT OF LWCS . 44

5.2 ASCON PERFORMANCE EVALUATION . 45

5.3 ASSESSMENT OF AUTHENTICATED ENCRYPTION WITH ASSOCIATED DATA
ALGORITHMS . 46

5.3.1 MEMORY USAGE EVALUATION . 48

5.3.2 ENERGY CONSUMPTION EVALUATION . 49

5.4 ASCON CORE . 50

5.5 FINAL REMARKS . 51

6 CONCLUSION AND FUTURE WORKS . 52

6.1 FUTURE WORK . 53

REFERENCES . 54

12

1. INTRODUCTION

The Internet of Things (IoT) era brought a proliferation of edge devices into our
lives, ranging from simple sensor-based devices in home automation to high-end systems
embedded in autonomous vehicles [Guo et al., 2016]. The growing use of IoT edge devices
is due to their improved computing performance and memory resources, combined with low
power consumption [da Rocha et al., 2022]. However, the widespread presence of con-
nected devices, as envisaged by the IoT, raises security concerns that must be addressed in
the design of the underlying system. IoT end devices are likely to exchange sensitive data.
Thus, adopted communication mechanisms must guarantee certain security levels, aiming
to avoid, e.g., data corruption, use by nonauthorized entities, and denial of service, to name
a few existing threats.

Secure communication has become a fundamental requirement due to the expo-
nential growth of low-power embedded systems. These applications have no high computing
power and memory capacity and are often battery-powered or use energy harvesting. Au-
thenticated Encryption with Associated Data (AEAD) ensures confidentiality and authenticity
of sensitive data. Some low-power applications use AES-128 [NIST, 2001a] with the Counter
with Cipher Block Chaining-Message Authentication Code (CCM) operation mode [NIST,
2007] and ChaCha20-Poly1305 [Nir and Langley, 2015] as the AEAD algorithms of choice.
These algorithms are supported in many Internet protocols, notably TLS [Rescorla, 2018]
and DTLS [Rescorla et al., 2022].

Given the difficulty of processing standard cryptography algorithms in low-power
embedded applications, a new strand of algorithms, currently known as lightweight cryptog-
raphy algorithms, emerged in recent years. The main problem faced was the many different
applications available, some with more memory and less processing and others with more
memory and less energy limitation. To solve this issue, the National Institute of Standards
and Technology (NIST) organized a competition to standardize an LWC algorithm. In Febru-
ary 2023, they announced that Ascon won the LWC competition.

Hardware acceleration via Instruction Set Extensions (ISEs) can improve the
performance, memory footprint, and energy efficiency of encryption, which brings benefits
to restricted embedded applications, such as (i) sharing of generic resources between com-
ponents such as register file and RAM interface; (ii) trivial data transfer between processor
components, avoiding unnecessary memory accesses; (iii) reduces system complexity, for
example, avoiding external buses and interrupt controllers.

This work evaluates acceleration methods for three AEAD algorithms, namely As-
con, AES-128 in CCM mode and ChaCha20-Poly1305. The work compares the effect of
acceleration on different algorithms in the context of the low-complexity IBEX RISC-V core.
The evaluations consider software and hardware implementations, accelerations with ISEs

13

(Zbkb, Zkne, Xascon), and also an acceleration with an external Ascon core loosely cou-
pled to RISC-V. The main focus of this work is on the Ascon algorithm, which was recently
standardized.

1.1 Motivation

The primary motivation for this MSc dissertation is to explore the field of lightweight
cryptography by evaluating the newly standardized Ascon algorithm. Furthermore, this work
offers the opportunity to investigate the performance of this algorithm against different hard-
ware acceleration approaches and assess the most relevant aspects of each implementa-
tion. Once the algorithm has been standardized, the next generation of constrained devices
will benefit from this research, which presents methods for improving efficiency while using
fewer resources.

1.2 Objectives

This work has two strategic objectives. The first objective is to evaluate and com-
pare acceleration methods for the Ascon algorithm using the RISC-V Ibex environment. The
second objective is to compare these results with two other AEAD algorithms (AES-128 in
CCM mode and ChaCha20-Poly1305).

Specific objectives are as follows:

1. Profile a software-only implementation of the Ascon, AES-128 in CCM mode, and
ChaCha20-Poly1305 algorithms running on an unmodified Ibex RISC-V core to es-
tablish a baseline for the metrics to be used for comparison among different implemen-
tations;

2. Modify the Ibex RISC-V core by incorporating the Zbkb, Zkne and Xascon extensions,
which contains specific bit manipulation operations that are particularly relevant to
cryptographic algorithms;

3. Evaluate a hardware-only Ascon implementation to establish a reference for energy
efficiency and area cost;

4. Quantitatively evaluate the effectiveness of the implementations of hardware accelera-
tions using various metrics, such as performance, memory consumption, cycles spent
for the algorithm, die area, and power consumption.

14

1.3 Contribution

The main contribution of this work is to provide a RISC-V processor (IBEX) ex-
tended with specialized instruction for cryptography, targeting the Ascon, AES-128 in CCM
mode, and ChaCha20-Poly1305 algorithm. The Zbkb, Zkne, and Xascon ISEs have toolchain
support through a modified GCC. Note that the proposed extensions can be applied to other
AEAD algorithms and are not restricted to the ones evaluated in this work.

1.4 Methodology

This work started by selecting an open-source RISC-V distribution. The chosen
processor was IBEX [Zurich and of Bologna, 2017] due to its simplified architecture, specif-
ically designed for embedded devices. Subsequently, after configuring the simulation envi-
ronment, a thorough validation process confirmed the correct functionality of the entire setup.
Following this validation, the Zbkb extension [Marshall, 2021], a bit manipulation extension
derived from the scalar cryptography extension, was incorporated. These additional instruc-
tions facilitate the acceleration of the Ascon permutation by employing the zip and unzip
instructions to execute rotations in blocks of 64-bit data on Ibex, which inherently operates
on 32-bit data. This extension can also be used in ChaCha20-Poly1305.

After integrating Zbkb, specific instructions were introduced to the RISC-V architec-
ture, XAscon ISE, and GCC underwent modifications to facilitate XAscon acceleration. The
next step involved incorporating the AXI Lite communication protocol into IBEX to establish
communication between the processor and the dedicated Ascon hardware block provided
by the Ascon team.

The extension Zkne was also implemented to accelerate AES-128 in CCM mode
with the instructions aes32esmi and aes32esi to compare results with Ascon and ChaCha20-
Poly1305.

Throughout these modifications, a system of flags was implemented to parame-
terize IBEX, enhancing the ease of evaluating different approaches, particularly regarding
hardware synthesis. This approach ensures a comprehensive comparison of the area and
performance between the baseline and extended processor configurations.

This study compares various implementations of the AEAD algorithms:

1. Evaluation of a software implementation provided by the Ascon team [Ascon, 2022a],
written in the C language and executed on the Ibex base processor without any exten-
sions. It is essential to note that this implementation is a reference for the Ascon team.

15

Repeat this step for AES-128 in CCM mode and ChaCha20-Poly1305 using algorithms
from the Tinycrypt library [Intel, 2017].

2. Evaluation of the accelerated Ascon version using the Zbkb extension and the bit in-
terleaving technique [Ascon, 2022a]. To achieve this, the Ibex processor is modified
accordingly. Repeat the evaluation for ChaCha20-Poly1305 and compare the acceler-
ation reached by both algorithms.

3. Evaluation of the accelerated Ascon using the specific instructions XAscon.

4. Evaluation of AES-128 in CCM mode using the Zkne extension.

5. Evaluation of the hardware implementation provided by the Ascon team, as docu-
mented in [Ascon, 2022b].

These implementations enable the exploration of the design space associated with
AEAD algorithms. Moreover, all implementations utilize the post-synthesis netlist, ensur-
ing fair performance and energy evaluation. Instruction profiling was conducted using the
performance counters available in the processor.

1.5 Document organization

This manuscript is organized as follows:

• Chapter 2 describes background knowledge related to the RISC-V architecture, hard-
ware acceleration, and AEAD concepts required to follow this work.

• Chapter 3 presents the state-of-the-art of hardware accelerator involving RISC-V, and
LWC and AEAD cryptography.

• Chapter 4 describes the core of this work, describing all implementation aspects for
Zbkb, Zkne, XAscon, and the crypto-core;

• Chapter 5 presents results for all implementations, discussing the obtained results;

• Chapter 6 concludes this work, pointing out directions for future work.

16

2. FUNDAMENTAL CONCEPTS

This Chapter introduces concepts required for understanding this work. Section 2.1
covers concepts related to RISC-V. Section 2.2 presents the concept of AEAD encryption
and the three algorithms mentioned in this work. Section 2.3 overviews hardware accelera-
tion concepts.

2.1 RISC-V Architecture

RISC-V is an open-source ISA (Instruction set architecture) [RISC-V, 2019], initially
developed at the University of Berkeley to provide an architecture designed to follow the
principles of simplicity, flexibility, and extensibility, making it suitable for the largest number
of applications. To achieve these features, RISC-V was developed with a basic set of in-
structions and optional extensions to be added depending on the target application. RISC-V
ISA has three ratified versions: RVWMO, RV32I, and RV64I. The last two have some speci-
ficities, but the main difference is the register size, which is 32 and 64 bits. The RVWMO
version targets multiprocessed systems, which are out of the scope of this work. Table 2.1
shows the standard ISA instructions and the M extension.

Table 2.1 – Instructions of the RV32I processor and the M extension.
Instruction Class Opcodes
LOAD LB, LH, LW, LBU, LHU, FLW
STORE SB, SH, SW, FSW
IMM LUI, AUIPC, SLTI, SLTIU, XORI, ORI, ANDI, SLLI, SRLI, SRAI
REG SLL, SLT, SLTU, XOR, SRL, SRA, OR, AND
ADDSUB ADD, ADDI, SUB
BRANCH BEQ, BNE, BLT, BGE, BLTU, BGEU
JUMP JAL, JALR

MULT (M extension) MUL, MULH, MULHSU, MULHU
DIV (M extension) DIV, DIVU, REM, REMU

Several RISC-V processors are proposed in the literature, and some implemen-
tations are publicly available, offering a spectrum of functionalities ranging from simple
microcontroller-oriented designs to highly complex multi-core superscalar processors op-
timized for performance. Among the options considered for this study are:

• Rocket core [Alliance, 2023], a scalar processor featuring a 5-stage pipeline. It in-
cludes a core with a complete Arithmetic Logic Unit (ALU) and an optional Floating-
Point Unit (FPU). The Rocket core incorporates a Memory Management Unit (MMU)

17

supporting page-based virtual memory and a data cache. It also supports RISC-V
machine, supervisor, and user privilege levels. The Rocket core is the Rocket Chip
System on Chip (SoC) processor.

• The OpenHW Group CORE-V CV32E40P [OpenHWGroup, 2023], a 32-bit RISC-V
processor with 4 pipeline stages. It supports the multiplication and division (M) and
compressed instructions (C) extensions, with the option to include the F extension and
the Zfinx extension for performing floating-point operations in integer registers. Ad-
ditionally, the CV32E40P processor can incorporate custom extensions like hardware
loops, Single Instruction Multiple Data (SIMD) operations, and fixed-point arithmetic.

• Finally, the processor selected for this study is the Ibex [Zurich and of Bologna, 2017]
processor. Ibex is a 32-bit RISC-V core implemented in SystemVerilog with a 2-stage
pipeline. Highly parameterized, Ibex can be tailored for various embedded applica-
tions. It supports both the integer (RV32I) and embedded (RV32E) instruction sets
and includes extensions for integer (I), compressed instructions (C), bit manipulation
(B), multiplication and division (M).

2.1.1 RISC-V Instruction Set Extensions - ISE

The base RISC-V ISA provides a minimum set of instructions for the operation of
the processor (Table 2.1). ISEs refer to a set of additional instructions to the base RISC-V
ISA, which are used to provide additional resources depending on the needs of the design.
Table 2.2 presents the RISC-V cryptography ISEs.

Table 2.2 – RISC-V cryptography ISEs [Marshall, 2021].
Sub Extension Description
Zbkb Bit-manipulation for cryptography
Zbkc Carry-less multiply instructions
Zbkx Crossbar permutation instructions
Zknd NIST Suite: AES Decryption
Zkne NIST Suite: AES Encryption
Zknh NIST Suite: Hash Function Instructions
Zksed ShangMi Suite: SM4 Block Cipher Instructions
Zksh ShangMi Suite: SM3 Hash Function Instructions
Zkr Entropy Source Extension
Zkn NIST Algorithm Suite
Zks ShangMi Algorithm Suite
Zk Standard scalar cryptography extension
Zkt Data Independent Execution Latency

18

In this work, two ISEs are used, namely Zbkb, which refers to the bit manipulation
subset, and Zkne, which refers to the subset dedicated to AES encryption, both subsets of
the RISC-V encryption extension.

The URL https://five-embeddev.com/riscv-bitmanip/draft/bitmanip.html presents a
detailed list all instructions for the Zba, Zbb, Zbc, Zbs, and Zbkb extensions. For exam-
ple, this URL mentions for the “zip” instruction: “This instruction is useful for implementing
the SHA3 cryptographic hash function on a 32-bit architecture, as it implements the bit-
interleaving operation used to speed up the 64-bit rotations directly ”.

Table 2.3 presents the list of instructions for the Zbkb set added in this work. With
the implementation of these instructions, the compiler can generate and send these instruc-
tions to the processor. Table 2.4 presents the list of instructions from the Zkne set. With
these instructions is possible to accelerate the AES-128 algorithm and compare it with the
acceleration of Ascon to obtain a fair comparison.

Table 2.3 – Zbkb - Bitmanip instructions for Cryptography.
Instruction Class Opcodes
ror Rotate right (Register)
rol Rotate left (Register)
rori Rotate right (Immediate)
andn AND with inverted operand
orn OR with inverted operand
xnor Exclusive NOR
pack Pack low halves of registers
packh Pack low bytes of registers
brev8 Reverse bits in bytes
rev8 Byte-reverse register

zip
Scatters the odd and even bits of a source word into the high and low
halves of a destination word.

unzip
gathers bits from the high and low halves of the source word into
odd/even bit positions in the destination word.

Table 2.4 – Zbkb - NIST Suite: AES Encryption.
Instruction Class Opcodes
aes32esi AES final round encryption (RV32)
aes32esmi AES middle round encryption (RV32)
aes64es AES encryption final round instruction (RV64)
aes64esm AES encryption middle round instruction (RV64)
aes64ks1i AES Key Schedule Instruction 1 (RV64)
aes64ks2 AES Key Schedule Instruction 2 (RV64)

https://five-embeddev.com/riscv-bitmanip/draft/bitmanip.html

19

2.1.2 RISC-V Ibex

Ibex, as described in [Zurich and of Bologna, 2017], was designed for embedded
systems, focusing on low power consumption. The extensions Ibex supports are outlined
in Table 2.5. Ibex also integrates performance counters, encompassing M-Mode (Machine
mode) and U-Mode (User mode). It aligns with the RISC-V Privileged specification by incor-
porating Control and Status Registers (CSRs). Furthermore, Ibex offers parameterization
capabilities, enabling the selection of extensions to synthesize the processor with minimal
area utilization.

Table 2.5 – Ibex Instruction Set Extensions [Ibex, 2023a].
Extension Configurability

C: Compressed Instructions always enabled

M: Integer Multiplication and Division optional

B: Bit-Manipulation Instructions optional

Zicsr: Control and Status Register Instructions always enabled

Zifencei: Instruction-Fetch Fence (Fence instruction order device
I/O and memory accesses) always enabled

Smepmp: PMP (Physical Memory Protection) Enhancements for
memory access and execution prevention on machine mode

always enabled in
configurations with PMP

In Table 2.5, the “configurability” column means whether the extension is obliga-
tory or optional. Certain extensions are recommended to always be enabled to ensure a
correct synthesis, while others, such as M, can be added or omitted according to design
requirements. These extensions can be activated via flags before the synthesis, which is
beneficial in managing the extensions and associated blocks. The Zicsr is always enabled,
as it is responsible for handling interruptions. Figure 2.1 presents the Ibex architecture [Ibex,
2023a].

Ibex implements extra features (when the SecureIbex parameter is set) to support
security-critical applications. All features are runtime configurable via bits in the cpuctrl cus-
tom CSR. For example, bits [19:16] in this CSR specifies the number of dummy instructions
inserted every n instructions where n is a range set based on the value written to this reg-
ister, where: 0x0 = 1-4, 0x1 = 1-8, 0x3 = 1-16, 0x7 = 1-32, 0xF = 1-64. The purpose of
inserting dummy instructions is to avoid side-channel attacks (SCAs). Section 2.1.3 details
these security features.

Ibex incorporates CSR performance counters. These can be accessed to provide
the values associated with each counter. Chapter 5 displays the event selectors used to
monitor these performance counters. Evaluating the algorithm and creating the instruction
profile for Ascon was possible using these performance counters. By default, performance

20

Ibex Core

PMP Check

D
ata M

em
ory Interface

ICache

Prefetch
Buffer

PC PM
P C

heck

Imm

Reg

PC

Fwd

LSU

WritebackInstruction Fetch Decode and Execute

Instruction M
em

ory Interface

Register File

Optional feature

ALU

Mult/Div

debug_req_i

CSRs

Decoder

Compressed Instruction

Decoder

Controller

Firefox file:///Users/moraes/Library/Mobile%20Documents/com~apple~Clo...

1 of 1 19/02/24, 11:29

Figure 2.1 – RISC-V Ibex Architecture.

counters are activated after reset but can be enabled by software. This can be used to
gather results from a specific function within the software implementation. This strategy was
employed in the Ascon_Permut function to isolate and record the results from this portion of
the code.

2.1.3 Ibex Security

The work does not focus on evaluating vulnerabilities to attacks. We consider that
the published and used extensions have already been carried out in this previous analysis,
and no new vulnerabilities were added respecting the implementation models. Source code
of algorithms made available by the creators themselves or from standard libraries were also
used.

Another point to highlight is the security part of the Ibex itself. ibex has a security
system that implements a set of features when the SecureIbex [Ibex, 2023b] parameter is
defined as follows:

• Data Independent Timing: This feature ensures that the execution time and energy
consumption of all instructions remain independent of the input data. This feature
makes it challenging for potential attackers to infer sensitive data through observations
of power dissipation or by exploiting timing-based attacks.

21

• Dummy Instruction Insertion. This corresponds to inserting dummy instructions at
random intervals within the execution pipeline. The objective is to thwart attempts
by attackers to discern the executed code and to inhibit precisely timed fault injection
attacks. These instructions have no functional impact on the code being executed.

• Bus Integrity Checking. Instruction memory channels are equipped with signals to
verify the integrity of the bus. This validation process is conducted in relation to the
provided check bit.

• Register File ECC (Error Correction Code). This functionality involves performing an
ECC check on all reads from the register file. It serves to detect fault injection attacks.
Notably, the ECC does not correct detected errors but instead triggers an internal alert
upon detection.

Ibex has three alert outputs for signaling security issues. The internal major alert
indicates a critical security issue from which the core cannot recover, which was detected
internally. The bus major alert indicates a critical security issue from which the core cannot
recover, which was detected on incoming bus data. The minor alert indicates potential
security issues that a system can monitor over time.

2.2 Introduction to AEAD

AEAD (Authenticated Encryption with Associated Data) algorithms are designed
to offer both confidentiality and authentication for a given plaintext P while also providing
authentication (but not necessarily confidentiality) for associated data A. An example use
case for AEAD is in network packets, where headers (A) are visible to routers while the
payloads remain private. In addition to A and P, the AEAD process E (Equation (2.1))
requires a key K and a unique nonce N. These additional values are utilized to initialize the
algorithm’s state. In the case of Ascon, this initialization also involves a static initialization
vector IV , while in AES-CCM mode, the message length determines the value of CTR0. The
outputs of the AEAD process are the ciphertext C and an authentication tag T . Figure 2.2
presents the AEAD flow.

E(K , N, A, P) = (C, T) (2.1)

Common AEAD algorithms include AES-GCM (Galois/Counter Mode), AES-CCM
(Counter with CBC-MAC), and ChaCha20-Poly1305. These algorithms are widely used in
various security protocols, such as TLS (Transport layer Security), to secure Internet com-
munication.

22

Figure 2.2 – AEAD top-level architecture.

Similar to Cheng et al. [Cheng et al., 2022], this work focuses on Ascon-128 AEAD.
This decision is based on the frequent evaluation of Ascon-128 in the existing literature,
which enables a comprehensive comparison of results. To implement AEAD, several param-
eters must be specified, such as the key length, denoted as k ≤ 160 bits; the size of the data
block (also referred to as the rate and symbolized by r); and the internal round numbers a
and b, which are required for the permutation operation. The encryption algorithm receives
a secret key (K), a plaintext (P) of arbitrary length, a 128-bit nonce (N), and associated data
(A) of arbitrary length as inputs. The encryption process generates an output ciphertext (C),
whose length mirrors is the same of the plaintext, alongside a 128-bit authentication tag (T).
Equation (2.2) presents this process.

εk ,r ,a,b(K , N, A, P) = (C, T) (2.2)

For the decryption process, Equation (2.3), the inputs include the key (K), nonce
(N), associated data (A), ciphertext (C), and authentication tag (T). If the authentication tag
passes verification, the output is the corresponding plaintext. If a discrepancy is detected in
the tag authentication, an error symbol (⊥) is returned.

Dk ,r ,a,b(K , N, A, C, T) = (P,⊥) (2.3)

2.2.1 Ascon Algorithm

Prior to 2023, in the context of IoT and constrained embedded systems, it was
imperative to evaluate various LWC solutions to align with product requirements. In February
2023, NIST endorsed Ascon [Dobraunig et al., 2021] as a robust defense mechanism for
data generated by small devices, publishing a standard that recommends this algorithm.
Ascon is specifically engineered to safeguard information produced and transmitted by the
Internet of Things (IoT), encompassing an array of sensors and actuators. According to
NIST, this algorithm is deemed suitable for most IoT devices, thereby removing the need to
select a new algorithm for each project.

23

Ascon encompasses three main branches: Ascon-128 and Ascon-128a, which
constitute standard processes consisting of authenticated ciphers, and a novel variant known
as Ascon-80pq, designed to enhance resistance against post-quantum computers. Addition-
ally, there are Ascon-Hash and Ascon-HashA variants.

For this work, the focus is on Ascon-128, as it is the most commonly used func-
tion, and readily available implementations can be found. Table 2.6 outlines the notation
employed for Ascon’s interface, mode, and permutation:

Table 2.6 – Notation used for Ascon’s interface, mode, and permutation.
Variable Meaning

i index i of state bits

K Secret key K, K <= 160 bits

N, T 128-bit Nonce N and tag T

P, C, A Plaintext P, ciphertext C, associated data A (in r-bit blocks Pi, Ci, Ai)

M, H Message M, hash value H (in r-bit blocks Mi, Hi)

⊥ Error, verification of authenticated ciphertext failed

S The 320-bit state S of the sponge construction

Sr, Sc The r-bit rate and c-bit capacity part of the state S

The encryption process for Ascon uses a duplex-sponge-based mode operation1

and can be split into four steps, represented in Figure 2.3:

• Initialization, where the state is initialized with the key and nonce;

• Associated Data processing, where the state is updated with the associated blocks
Ai ;

• Plaintext processing, which injects the plaintext block Pi into the state and obtains the
cipher blocks Ci ;

• Finalization where the key is injected again, and the tag is obtained for authentication.

The 320-bit initial state of Ascon is composed of the secret key K with k bits, the
nonce N with 128 bits, and an Initialization Vector (IV) specifying various algorithm param-
eters, including the key size k , the rate r , the initialization and finalization round numbers
a, and the intermediate round number b, each represented as an 8-bit integer. Figure 2.4
illustrates the Initialization Vector (IV) and the initial state S.

During the initialization phase, the initial state undergoes a rounds of the round
transformation p, followed by an XOR operation with the secret key K .

1In the context of cryptography, the sponge construction is a mode of operation, based on a fixed-length
permutation (or transformation) and on a padding rule, which builds a function mapping variable-length input
to variable-length output (source: https://keccak.team/sponge_duplex.html).

https://keccak.team/sponge_duplex.html

24
33 Page 8 of 42 C. Dobraunig et al.

Fig. 1. Ascon’s mode of operation.

and split it into s blocks of r bits, A1‖ . . . ‖As . In case A is empty, no padding is applied
and s = 0:

A1, . . . , As ←
{
r -bit blocks of A‖1‖0r−1−(|A|mod r) if |A| > 0
∅ if |A| = 0

Each block Ai with i = 1, . . . , s is xored to the first r bits Sr of the state S, followed
by an application of the b-round permutation pb to S:

S ← pb((Sr ⊕ Ai)‖Sc), 1 ≤ i ≤ s

After processing As (also if s = 0), a 1-bit domain separation constant is xored to S:

S ← S ⊕ (0319‖1)

Processing Plaintext/Ciphertext Ascon processes the plaintext P in blocks of r bits.
The padding process appends a single 1 and the smallest number of 0s to the plaintext P
such that the length of the padded plaintext is a multiple of r bits. The resulting padded
plaintext is split into t blocks of r bits, P1‖ . . . ‖Pt :

P1, . . . , Pt ← r -bit blocks of P‖1‖0r−1−(|P|mod r)

Figure 2.3 – Ascon’s modes of operation [Dobraunig et al., 2021].

Ascon v1.2: Lightweight Authenticated Encryption and Hashing Page 7 of 42 33

Initialization The 320-bit initial state of Ascon is formed by the secret key K of k bits
and nonce N of 128 bits, as well as an IV specifying the algorithm (including the key
size k, the rate r , the initialization and finalization round number a, and the intermediate
round number b, each written as an 8-bit integer):

IVk,r,a,b ← k‖r‖a‖b‖0160−k =






80400c0600000000 forAscon-128
80800c0800000000 forAscon-128a
a0400c06 forAscon-80pq

S ← IVk,r,a,b‖K‖N

In the initialization, a rounds of the round transformation p are applied to the initial
state, followed by an xor of the secret key K :

S ← pa(S) ⊕ (0320−k‖K)

Processing Associated Data Ascon processes the associated data A in blocks of r bits.
It appends a single 1 and the smallest number of 0s to A to obtain a multiple of r bits

Figure 2.4 – Initialization Vector and initial state S.

During the associated data processing phase, the objective is to incorporate the
associated data (A) into the state. To achieve this, the data is processed in blocks of r
bits. In cases where the data size is not a multiple of r , a padding process is initiated to
align the data with the rate r . The padding process appends a single 1 and the smallest
number of 0s to the plaintext P such that the length of the padded plaintext is a multiple
of r bits (S ← S ⊕ (0319||1)). Each block Ai is XORed with the first r bits of the state, and
subsequently, this data undergoes b rounds of permutation denoted as pb. If the block Ai

is non-zero, it is also XORed with the state Sr . Following the processing of the associated
data, a 1-bit domain separation constant is XORed with the state to finalize the operation.

The same process is executed for the Plaintext processing, splitting the plain text
block in r bits, using the same rule for the padding to align with the rate bits (r). The encryp-
tion process starts in this step. In each iteration, one padded plaintext block Pi is xored to

25

the internal state’s first r bits Sr using the permutation Pb, except for the last. In the whole
plaintext step, after a permutation is completed, a ciphertext block is generated.

Subsequently, in the finalization step, the state undergoes transformation via per-
mutation Pa, utilizing the secret key for a rounds. In this phase, the tag is generated from
the 128 least significant bits of the state and the least significant bits of the key. Finally, the
encryption algorithm yields the ciphertext along with the tag. During decryption, if the values
match, the plaintext is returned.

The main structure, called permutation, has 3 main operations, detailed in Sec-
tion 4.1.

2.2.2 AES-128 CCM

AES (Advanced Encryption Standard) [NIST, 2001a] is a widely adopted block ci-
pher standard used for confidential transmission of information. Among its variants, AES-
128 is particularly prevalent in embedded systems. An optimization technique employed in
software implementations of AES is the utilization of T-Tables. This approach condenses
an iteration in the AES cipher operation to 16 Look-Up Table (LUT) accesses and 16 bit-
wise XOR operations. However, this optimization comes at the cost of significant memory
consumption, typically requiring 4 KB of memory.

The RISC-V Zkne extension introduces specialized instructions such as aes32esmi

and aes32esi. These instructions enable the computation of T-Table entries directly in hard-
ware, eliminating the need to store LUTs in memory. Additionally, these instructions op-
tionally perform XOR operations on the current entry with previous entries for the same
output column. This hardware acceleration results in improved performance, reduced code
size, and enhanced energy efficiency by mitigating the overhead associated with memory
accesses, as highlighted in [Saarinen, 2020, Gewehr and Moraes, 2023].

The CCM operation mode [NIST, 2007], illustrated in Figure 2.5, uses two si-
multaneous operation modes, CTR for encryption and CBC for generating authentication
tags [NIST, 2001b]. The ciphertext is computed by encrypting the plaintext using the CTR
mode, and the authentication tag is computed by encrypting the associated data and plain-
text using the CBC mode. The CCM mode of operation is interesting, since it uses the
underlying block cipher both for encryption and authentication, unlike other AEAD modes
of operation such as GCM, which employ other means for generating authentication tags.
Hardware acceleration of the underlying block cipher (here, AES-128) improves the effi-
ciency of both encryption/decryption and authentication. Note that one AES-128 operation
is performed for each block of associated data, while two AES-128 operations are performed
for each block of plaintext.

26

Figure 2.5 – The CCM mode of operation.

2.2.3 ChaCha20-Poly1305

The ChaCha cipher and Poly1305 authenticator [Nir and Langley, 2015] emerged
as alternatives to AES, primarily due to their superior performance in pure software imple-
mentations, particularly on low-complexity microcontrollers. Among the variants, ChaCha20
is the most widely adopted. Internally, ChaCha operates on 32-bit variables, employing three
main operations: addition, rotations by constant amounts, and XOR operations. Its internal
state comprises 512 bits, divided into 16 32-bit variables. The quarter-round function, de-
picted in Figure 2.6, processes four variables simultaneously.

Figure 2.6 – ChaCha quarter-round function.

Hardware acceleration of ChaCha on 32-bit RISC-V cores via specialized algorithm-
specific instructions has been briefly explored in [Marshall et al., 2021]. However, each group
of Add-XOR-Rotate macro-operations requires three inputs, which cannot be directly imple-
mented in a single RISC-V instruction, as each instruction should read at most two inputs
from the register file. Introducing a third input would necessitate significant changes in the
register file implementation, resulting in a significant area overhead. Attempting to merge
two operations instead of three would not yield substantial gains. However, modest improve-
ments can be achieved through the Zbkb extension, as the right-rotation operation can be
executed using a single instruction (rori), as opposed to three RV32I instructions.

27

2.3 Hardware Acceleration

Most electronic devices employ a central processing unit (CPU) to perform various
operations. Each instruction executed by the CPU typically corresponds to a fundamental
operation, such as addition, subtraction, or data manipulation through loading and storing.
Hardware acceleration, as outlined in [Dally et al., 2020], involves offloading specific func-
tionalities from the CPU to dedicated hardware units, thereby enhancing data processing
efficiency. An example of a hardware accelerator is the graphics processing unit (GPU),
which specializes in graphical computations, thus relieving the CPU from such tasks.

Two primary approaches exist for integrating accelerators into computing systems:
co-processor acceleration (loosely coupled) and tightly coupled acceleration. Each method
presents distinct advantages and drawbacks.

A separate processing unit, loosely coupled with the processor, handles specific
application domains in the co-processor approach. Communication between the CPU and
co-processor typically occurs via an interface or bus, allowing the CPU to concentrate on
executing general-purpose instructions. Co-processors offer reusability across different sys-
tems and facilitate straightforward integration or removal from the processor. However, the
drawback lies in the communication overhead incurred when transmitting data to the co-
processor.

On the other hand, tightly coupled acceleration involves augmenting the processor
with additional instructions and sharing the processor units, such as the register file and the
ALU.

Another critical aspect to consider is the granularity of the accelerator’s operation.
Accelerators can either independently execute extensive segments of algorithms, referred to
as coarse-grain acceleration, or handle smaller portions of algorithms, named as fine-grain
acceleration.

In the context of this work, we employ fine-grain tightly coupled acceleration.
We compare this acceleration to a weakly coupled co-processor to show the difference be-
tween the methods. This decision is justified for embedded systems with limited memory
and processing requirements due to its ability to optimize resource utilization and minimize
overhead. By integrating closely with the processor and executing small portions of algo-
rithms efficiently, fine-grain acceleration ensures that computational tasks are handled pre-
cisely while conserving memory and processing power, which is particularly advantageous
for resource-constrained embedded environments.

28

3. RELATED WORK

Section 3.1 presents proposals that evaluate LWC algorithms and how these an-
alyzes are performed and commonly used in research environments. Section 3.2 present
work adopting encryption extensions in ISA RISC-V and also new instructions to help speed
up existing algorithms. Section 3.3 summarizes the related work and positions this work in
relation to the literature.

3.1 Assessments on LWC algorithms

Part of the literature has addressed the behavior of LWC algorithms in edge devices
[Regla and Festijo, 2022, Beg et al., 2019, Akbas, 2019, Elaguech et al., 2019, Kotel et al.,
2016, Lara-Nino et al., 2016]. However, the proposed approaches present drawbacks such
as: (i) a low number or no end or edge device evaluated; (ii) a low number of assessed LWC
algorithms; and (iii) none covered all PPA (Power-Performance-Area) metrics. In this regard,
relevant recent works are reviewed to understand how assessments were performed in the
literature and their applications to this work.

Ledwaba et al. [Ledwaba et al., 2018] investigate three widely adopted standard
algorithms (AES, ECDSA, and SHA) that target end devices in the Internet of Energy (IoE).
Their analysis primarily focuses on a single version of each algorithm without addressing
LWC options. Ledwaba et al. utilize ST Microelectronics boards with Arm cores and evaluate
the following parameters: performance, power consumption, and memory footprint. These
Authors conclude that symmetric cryptography is viable for use in endpoint devices, a finding
that does not extend to asymmetric cryptography such as ECDSA.

Kane et al. [Kane et al., 2020] evaluate various combinations of three low-power
microcontrollers (ATmega328, STM32F103C8T6, and ESP8266) and three cryptographic
algorithms (AES, ChaCha, and Acorn). The Authors assess power consumption, energy us-
age, execution time, and memory footprint, demonstrating the trade-offs that emerge among
processor and cipher selections concerning the evaluated metrics.

Thakor et al. [Thakor et al., 2021] present a comprehensive review of fifty-two
lightweight cryptography algorithms or their variations. The Authors describe each cipher
and examine the performance of both hardware and software implementations for most al-
gorithms. Additionally, the paper evaluates the relative security of the ciphers and their
susceptibility to different types of attacks. In conclusion, the study recommends further re-
search on substitution-permutation methods involving S-Boxes to develop new ciphers that
balance cost, performance, and security.

29

More recently, Elsadek et al. [Elsadek et al., 2022b, Elsadek et al., 2022a] per-
formed a PPA assessment of ASIC implementations for some of the NIST LWC standard-
ization candidates [NIST, 2022]. Mohajerani et al. [Mohajerani et al., 2021] also proposed a
hardware benchmarking of these LWC algorithms.

While these Authors focus on evaluating the hardware implementation of a few
candidates, this dissertation differs from them by assessing the software and hardware inte-
gration of the winning LWC algorithm for NIST standardization, in addition to adding modifi-
cations in the RISC-V ISA for efficient use of the same.

3.2 Cryptography Extension in RISC-V ISA

IoT end devices require optimized performance and excellent energy efficiency.
One technique used to enhance runtime performance and benefit efficiency in LWC algo-
rithms is the bit manipulation extension. Sud et al. [Sud et al., 2022] present a simulation
environment for the open-source RISC-V ISA that incorporates the base RISC-V ISA as well
as the “bit manipulation” instruction set extension. They demonstrate the implementation
of lightweight block ciphers LEA, SIMON, and SPECK on the simulator and evaluate their
performance with and without bit manipulation instructions. Results show an average 38%
improvement in clock cycles for lightweight ciphers when utilizing bit manipulation instruc-
tions, as well as providing insights by comparing their performance with other architectures,
including ARM processors as reported in existing literature.

Cheng et al. [Cheng et al., 2022] conducted an evaluation of nine out of ten sub-
missions from the final round of the NIST LWC selection process. The Authors focused on
the design, implementation, and evaluation of Instruction Set Extensions (ISEs) for these
algorithms. The approach involved developing independent ISEs for each algorithm, estab-
lishing a uniform structure while using the most recent submission of each algorithm as a
reference. RISC-V served as the base instruction set architecture, and the assessments
were performed based on latency measured in clock cycles and area cost measured in
FPGA LUT usage. Note that Ascon, the main algorithm assessed in this work, was among
the evaluated algorithms. However, it is important to mention that the proposed extension
for Ascon bears a significant resemblance to the SHA-2 extensions, implying that its area
cost is non-trivial.

On the other hand, Tehrani et al. [Tehrani et al., 2020] introduce a specialized exe-
cution unit for RISC-V processors that achieves significant performance gains in lightweight
64-bit block ciphers, with potential speedups of over a hundred compared to the reference
architecture. The execution unit leverages five adaptable instructions specifically designed
for the VexRiscv architecture, offering improved agility and performance for lightweight cryp-
tographic implementations. Detailed architecture and implementation of these instructions

30

are provided, demonstrating their impact on execution speed, code size, and the potential
for reduced instruction count. Additionally, the authors highlight the importance of Round
Key specific registers for enhanced performance and security in a protected version under
development.

As the ChaCha Algorithm was initially designed to be efficient in software, imple-
menting it in hardware is challenging since the ChaCha function computes the values of
32-bit registers in two consecutive operations and can involve up to 3 elements. This is a
problem since acceleration like RISC-V operates with a maximum of 2 registers. Therefore,
[Marshall et al., 2021] proposes an ISE to support simple operations where the instruction
has a maximum of 2 operators to interact with the RISC-V processor. The ISE then stores
operands and intermediate results, executes in 1 clock cycle, and guarantees constant tim-
ing to prevent latency-based attacks.

3.3 Related Work Summary

Table 3.1 compares the reviewed proposals, organized by color coding. Green
proposals focus on evaluating and comparing LWC methods, though they may not neces-
sarily propose new algorithm acceleration techniques. Proposals marked in blue focus on
proposing novel techniques or combining existing methods to enhance RISC-V algorithms,
providing results.

This MSc work aims to enhance AEAD in low-power embedded systems by imple-
menting hardware acceleration for Ascon, AES-128 in CCM mode, and ChaCha20-Poly1305
on the Ibex RISC-V platform. By integrating Zbkb, Zkne, and Xascon instruction set exten-
sions, this work seeks to improve cryptographic efficiency with minimal power dissipation
overhead, addressing the critical need for secure and efficient data processing in resource-
constrained environments. This approach leverages the advancements in lightweight cryp-
tography and RISC-V architectural extensions, contributing to the security of IoT devices and
similar embedded systems.

31

Table 3.1 – Related works on Cryptography Extension and Assessment.
Work Algorithm Target Goals

Security and Performance in IoT: A Balancing
Act [Kane et al., 2020]

AES, ChaCha and
Acorn IoT devices

Evaluate cryptographic
performance of IoT devices,
including power, performance,
energy, memory footprint on
ATmega328, STM32F103C8T6
and ESP8266 low-power
microcontroller devices.

Lightweight Cryptography Algorithms for
Resource-Constrained IoT Devices: A Review,
Comparison and Research Opportunities
[Thakor et al., 2021]

52 LWC algorithms
submitted to NIST
competition

IoT devices

Comparison in terms of
implementation cost, hardware,
and software performances and
attack resistance properties.

Performance evaluation and design
considerations of lightweight block cipher for
low-cost embedded devices [Kotel et al., 2016]

AES, PRESENT,
Simon, Speck

Low-cost embedded
Devices

Improve the software
performance of lightweight
block ciphers suited for low-cost
embedded systems.

Hardware and Energy Efficiency Evaluation of
NIST Lightweight Cryptography
Standardization Finalists [Elsadek et al., 2022b]

10 LWC final round
submissions,
including Ascon

IoT devices
Design and evaluate the
hardware of 10 LWC NIST final
round using ASIC synthesis.

RISC-V Extension for Lightweight
Cryptography [Tehrani et al., 2020]

PRESENT, GIFT,
PRINCE, Midori,
Twine, Skinny

RISC-V (VexRiscv)

Develop an execution unit for
the RISC-V processor able to
run the most common
lightweight 64-bit block ciphers
(custom extensions)

Evaluating Cryptographic Extensions on a
RISC-V Simulation Environment [Sud et al.,
2022]

LEA, SIMON, and
SPECK

RISC-V with B
extension (bitmanip)

Simulation environment
comparing performance with
and without bit manipulation
instructions, with an average
improvement of 38% in the total
number of clock cycles to run
lightweight ciphers with the B
extension

RISC-V Instruction Set Extensions for
Lightweight Symmetric Cryptography [Cheng
et al., 2022]

10 LWC final round
submissions,
including Ascon

RISC-V with Zbkb
extension (Rocket
core, with 5-stage
pipeline)

Implementation and evaluation
of the ten LWC finalists using
Zbkb

A lightweight ISE for ChaCha on RISC-V
[Marshall et al., 2021] ChaCha20 RISC-V for IoT edge

devices

Propose a lightweight ISE to
support ChaCha on RISC-V
architectures

This MSc work
Ascon, AES-128 in
CCM mode and
ChaCha20-Poly1305

Ibex RISC-V with
Zbkb, Zkne and
Xascon extensions

Hardware Acceleration of
Authenticated Encryption with
Associated Data via RISC-V
Instruction Set Extensions in
Low Power Embedded Systems

32

4. AEAD HARDWARE ACCELERATION

This Chapter presents methods to accelerate AEAD algorithms.

• Section 4.1 provides information about how to accelerate the Ascon algorithm using
an approved ISE, Zbkb, and provides insights into its functioning. The ChaCha20-
Poly1305 1305 is also accelerated using the Zbkb ISE extension.

• Section 4.2 introduces a novel method for accelerating the Ascon algorithm, employing
specialized instructions and implementation details.

• Section 4.3 provides an overview of the T-table technique for accelerating the AES
algorithm by using the Zkne ISE.

• Section 4.4 presents an Ascon core tailored for loosely coupled acceleration to com-
pare this method against ISE acceleration techniques.

4.1 RISC-V ZBKB

The Zbkb extension represents a subset of instructions tailored for scalar cryp-
tography on RISC-V architecture, offering bit manipulation capabilities to increase the per-
formance of operations at the bit level. The inclusion of Zbkb instructions is expected to
enhance the performance of certain cryptographic algorithms, including SHA-3, SHA-2, and
Ascon, particularly when executed on a 32-bit processor. These algorithms operate on 64-
bit data words, while the processor operates on 32 bits. This section provides an overview
of key aspects of the Ascon algorithm and explain how it benefits from the Zbkb extension.

4.1.1 Zbkb Extension and Relationship with Ascon

The main components of Ascon algorithm are the two 320-bit permutations pa and
pb. Permutations iteratively apply an SPN-based (substitution-permutation-network) round
transformation p that in turn, consists of three steps pC, pS, pL:

p = pL ◦ pS ◦ pC

pa and pb differ only in the number of rounds, where pa has 12 rounds and is used on
initialization and finalization, while pb has 6 rounds and is used in associated data and
plaintext states. The number of rounds a and the number of rounds b are tunable security
parameters if you want to use Ascon-128a or Ascon-Hash.

33

For the round transformations, the 320-bit state S is split into five 64-bit registers
words xi , S = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4, as shown in Figure 4.1. This internal state is used to
store the input data and perform the permutation. This arrangement of the data is used to
facilitate the operations. Figure 4.1 presents the high-level view of each of the three steps.

Figure 4.1 – Register words of the 320-bit state S and operations pC, pS, and pL [Dobraunig
et al., 2021].

As all Ascon algorithm operations work with 64-bit words, 32-bit processors cannot
use just one register to store each word and operate on just one register, so each word is
divided into two registers as shown in the Figure 4.2. With this separation of data into two
registers, operations end up being more costly, since we need more instructions to manage
the data between them. The bit manipulation extension makes this work easier by saving
instructions to operate on the data.

0 9 19 29 31301 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28

32 40 50 60 626133 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59

Reg 0

Reg 1

X0 63

0 9 19 29 31301 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28

32 40 50 60 626133 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59

Reg 2

Reg 3

X1 63

0 9 19 29 31301 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28

32 40 50 60 626133 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59

Reg 4

Reg 5

X2 63

0 9 19 29 31301 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28

32 40 50 60 626133 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59

Reg 6

Reg 7

X3 63

0 9 19 29 31301 2 3 4 5 6 7 8 10 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28

32 40 50 60 626133 34 35 36 37 38 39 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56 57 58 59

Reg 8

Reg 9

X4 63

Figure 4.2 – Ascon State on 32-bit Register Processors.

34

The first step is the pC, which is the function that adds a round constant to the state.
This step is straightforward, as shown in Figure 4.1(a). It gets the word x2 of the state and
performs a xor with a constant cr based on the indices r and i . Indices r and i start from
zero, and the algorithm uses r = i for pa and r = i + a − b for pb. Table 4.1 presents the
constant cr for the combinations.

Table 4.1 – Constant cr table.

The second step is the substitution layer pS. The five words (x0...x4) from the state
S are updated by the 5-bit S-box as defined in Figure 4.3. In this Figure, x corresponds to
one of 32 possible values that a given bit slice across the five registers can assume, and
S(x) is the output of the lookup table (LUT). This LUT is implemented by the circuit depicted
in Figure 4.4(a), using bit slicing. This method is faster than accessing a LUT in memory, as
it comprises only logical gates and reduces memory access, consequently reducing memory
leakages.

33 Page 12 of 42 C. Dobraunig et al.

Fig. 3. Register words of the 320-bit state S and operations pL ◦ pS ◦ pC .

Table 6. Round constants cr used in each round i of pa and pb .

p12 p8 p6 Constant cr p12 p8 p6 Constant cr

0 00000000000000f0 6 2 0 0000000000000096
1 00000000000000e1 7 3 1 0000000000000087
2 00000000000000d2 8 4 2 0000000000000078
3 00000000000000c3 9 5 3 0000000000000069
4 0 00000000000000b4 10 6 4 000000000000005a
5 1 00000000000000a5 11 7 5 000000000000004b

Table 7. Ascon’s 5-bit S-box S as a lookup table.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f

S(x) 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

Addition of Constants The constant addition step pC adds a round constant cr to register
word x2 of the state S in round i (see Fig. 3a). Both indices r and i start from zero and
we use r = i for pa and r = i + a − b for pb (see Table 6):

x2 ← x2 ⊕ cr .

Substitution Layer The substitution layer pS updates the state S with 64 parallel appli-
cations of the 5-bit S-box S(x) defined in Fig. 4a to each bit-slice of the five registers
x0 . . . x4 (Fig. 3b). It is typically implemented in this bitsliced form with operations
performed on the entire 64-bit words, as in the example code in Fig. 5. The lookup table
of S is given in Table 7, where x0 is the MSB and x4 the LSB.

Figure 4.3 – Ascon 5-bit S-box S as a lookup table [Dobraunig et al., 2021].
Ascon v1.2: Lightweight Authenticated Encryption and Hashing Page 13 of 42 33

Fig. 4. Ascon’s substitution layer and linear diffusion layer.

Linear Diffusion Layer The linear diffusion layer pL provides diffusion within each
64-bit register word xi (Fig. 3c). It applies a linear function !i (xi) defined in Fig. 4b to
each word xi :

xi ← !i (xi), 0 ≤ i ≤ 4.

3. Security Claims

3.1. Authenticated Encryption

AllAscon family members provide 128-bit security in the notion of nonce-based authen-
ticated encryption with associated data (AEAD), that is, they protect the confidentiality
of the plaintext (except its length) and the integrity of ciphertext including the asso-
ciated data (under adaptive forgery attempts). The number of processed plaintext and
associated data blocks protected by the encryption algorithm is limited to a total of
264 blocks per key, which corresponds to 267 bytes (for Ascon-128, Ascon-80pq) or
268 bytes (for Ascon-128a). We consider this as more than sufficient for lightweight
applications in practice. In order to fulfill the security claims stated in Table 8, imple-
mentations must take care that the nonce (public message number) is never repeated for
two encryptions under the same key, and that decrypted plaintexts are only released after
successful verification of the final tag. The difference between the family members is
in their robustness against other adversaries beyond the classical security claim and is
discussed in the following. In particular, Ascon-128a offers a higher throughput at the
cost of reduced robustness.

Ascon has been designed for robust security in case of certain implementation errors
that violate these requirements, such as repeated nonces. For instance, the security claims
of Table 8 can even be fulfilled if nonces are reused a few times by accident as long
as the combination of nonce and associated data stays unique. Furthermore, even a full
recovery of a single secret state during the processing of the associated data, plaintext,
or ciphertext (e.g., with implementation attacks) does not imply practical global attacks
such as key recovery or forgeries without significant additional computations. In this
case, forgeries can be obtained with complexity 2c/2 by constructing collisions on the

Figure 4.4 – Ascon substitution layer and linear diffusion layer [Dobraunig et al., 2021].

Code 4.1 presents the assembly code to execute the S-box implemented in the
bitsliced form (Figure 4.4(a)) – adapted from: https://github.com/ascon/ascon-c/blob/main/
crypto_aead/ascon128v12/asm_bi32_rv32b/ascon.S. In this example, a macro named sbox

https://github.com/ascon/ascon-c/blob/main/crypto_aead/ascon128v12/asm_bi32_rv32b/ascon.S
https://github.com/ascon/ascon-c/blob/main/crypto_aead/ascon128v12/asm_bi32_rv32b/ascon.S

35

was created to execute the logic and is called twice (lines 22-23). On lines 6 and 16, two
instructions from the Zbkb extension, orn and andn, are used. In the assembly without the
Zbkb extension, instead of orn, which performs the or operation and inverts the result in a
single instruction, we would have to call a xori x4, x4, -1, followed by a or x4, x4, x3,
spending one more instruction than in the Zbkb implementation. The same occurs for the
andn instruction. This demonstrates how the Zbkb extension can optimize operations by
reducing the amount of required instructions.

Lines 22 and 23 execute the low part and high part respectively of each internal
state word, as shown in Figure 4.2 the internal state word is divided into two registers, e.g:
x0 is stored in reg0 and reg1. Therefore, this macro is called 5 times, to execute throughout
the internal state of Ascon.

Code 4.1 – Assembly of Ascon 5-bit S-box using the RISC-V assembly with Zbkb.

1 ## S-BOX MACRO DEFINITION FOR ZBKB INSTRUCTIONS
2 .macro sbox x0, x1, x2, x3, x4, t0, t1, t2
3 xor \t1 , \x0, \x4
4 xor \t2 , \x3, \x4
5 xor \t0 , \x1, \x2
6 orn \x4, \x3, \x4
7 xor \x4, \x4, \t0
8 xor \x3, \x3, \x1
9 or \x3, \x3, \t0

10 xor \x3, \x3, \t1
11 xor \x2, \x2, \t1
12 or \x2, \x2, \x1
13 xor \x2, \x2, \t2
14 or \x0, \x0, \t2
15 xor \t0 , \t0, \x0
16 andn \x1, \x1, \t1
17 xor \x1, \x1, \t2
18 .endm
19
20 ## MACRO USAGE
21 # s-box
22 sbox x0l, x1l, x2l, x3l, x4l, t0l , t0h , t1h
23 sbox x0h, x1h, x2h, x3h, x4h, t0h , x0l, t1h

The Linear Diffusion Layer constitutes the third step, providing diffusion pL within
each 64-bit word by applying a linear function, as shown in Figure 4.4(b). This function
executes right rotation on the bits.

For the Linear Diffusion Layer function pL, a right-rotation operation must be per-
formed on 64-bit words. Since the processor uses 32-bit registers to store data, the rotation
would require several instructions to load the data into registers and then carry out the rota-
tions, executing XOR operations between the registers to complete this task. This process
is optimized using the instructions pack , packh , zip and unzip . These instructions split
the 64-bit word into two 32-bit registers, with one register storing the odd bits and the other
storing the even bits, Figure 4.5 presents the functioning of the zip, unzip and pack func-

36

tions that will be used for a better understanding of what happens in each one, this example
uses 8-bit registers for simplicity. This process is detailed in Code 4.2. Each rotation opera-
tion on the 64-bit word corresponds to 2 rotation operations in this setup. This optimization
effectively reduces the computational overhead and improves the algorithm’s performance.

10 11 12 13 14 15 16 17

10 11 12 13

Source

Dest

ZIP

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

10 12 14 16

Source

Dest

UNZIP

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

10 11 12 13 18 19 20 21

Source 1

Dest

PACK

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

18 19 20 21 22 23 24 25 Source 2

0 1 2 3 4 5 6 7

Figure 4.5 – Zip, Unzip and Pack instructions (Source: the Author).

Code 4.2 – Code with Zbkb instructions to rotate words larger than the processor word (e.g.,
64-bit words in 32-bit processor). This example assumes a 16-bit word in an 8-bit processor.

1 // 16-bit word, stored in 8-bit registers, R1 and R2:
2 R1: [0 1 2 3 4 5 6 7]
3 R2: [8 9 10 11 12 13 14 15]
4

5 // Unzip in R1 and R2 registers:
6 R1: [0 2 4 6 1 3 5 7]
7 R2: [8 10 12 14 9 11 13 15]
8

9 // pack instruction using R1 and R2 - even bits
10 R3: [0 2 4 6 8 10 12 14]
11

12 // rotate right 4 bits right in R1 and R2
13 R1: [1 3 5 7 0 2 4 6]
14 R2: [9 11 13 15 8 10 12 14]
15

16 // pack instruction using R1 and R2 - odd bits
17 R4: [1 3 5 7 9 11 13 15]
18

19 // rotate right 1 bit right in R3 and R4
20 R3: [14 0 2 4 6 8 10 12]
21 R4: [15 1 3 5 7 9 11 13]
22

23 // pack instruction using R3 and R4
24 R1: [14 0 2 4 15 1 3 5]
25

26 // rotate right 4 bits right in R3 and R4
27 R3: [6 8 10 12 14 0 2 4]
28 R4: [7 9 11 13 15 1 3 5]
29

30 // pack instruction using R3 and R4
31 R2: [6 8 10 12 7 9 11 13]
32

33 // zip in R1 and R2
34 R1: [14 15 0 1 2 3 4 5]
35 R2: [6 7 8 9 10 11 12 13]
36

37 // merging R1 and R2 we obtain a 2-bit rotate right
38 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13

37

4.2 RISC-V ISE XAscon

The XAscon ISE was introduced by [Cheng et al., 2022]. This ISE introduces two
new instructions, as depicted in Figure 4.6. One instruction is dedicated to computing the
high part of each of the five 64-bit word registers, while the other instruction handles the
computation of the low part. Consequently, each sigma function can be computed in just
two instructions, a significant reduction from the 16 instructions required in a RISC-V base
implementation.

00 imm rs2 rs1 111 rd 0101011 ascon.sigm.lo

01 imm rs2 rs1 111 rd 0101011 ascon.sigm.hi

31 30 6 5 4 3 2 1 0 11 10 9 8 7 14 13 1219 18 17 16 1524 23 22 21 2029 28 27 26 25

Figure 4.6 – Xascon Instruction definition.

As seen in Section 4.1.1, normally the substitution layer is implemented in a bit-
sliced using logical ANDs, XORs and NOTs, whereas the permutation layer performs an
operation of the form x = x ⊕ (x >> n)⊕ (x >> m) in each 64-bit word of the state, using Bit
Interleaved, separating these 64-bits into two 32-bit registers, one with the odd position bits
and the other with the even position bits. We show in the results section that this technique
actually accelerates Ascon’s linear functions, but it is worth highlighting that this gain occurs
at the expense of conversions between the Bit Interleaved representation and the normal
one.

As discussed in [Campos et al., 2020], an optimized implementation of the S-BOX
necessitates 17 native RV32GC instructions. However, with the Zbkb extension, this count
can be reduced to 15 instructions. Nevertheless, the extension proposes that with the in-
clusion of two custom instructions—one for the lower and another for the higher part of a
64-bit state word—a more substantial speedup can be achieved. Additionally, rotation val-
ues can be specified using immediate values. Consequently, the instruction count for the full
permutation layer can be reduced from 80 (i.e., 16 per word) to just 10 instructions.

Equation (4.1) and Equation (4.2) display the lookup tables that need to be defined
to facilitate the implementation of these instructions (see (Figure 4.4(b)). The position that
will be utilized in the rotation is conveyed through the Immediate register, denoted as imm,
with RTO0 designated for the low part and RTO1 designated for the high part.

ROT0 = {19, 61, 1, 10, 7} (4.1)

ROT1 = {28, 39, 6, 17, 41} (4.2)

38

Code 4.3 and Code 4.4 depict the steps that each of the instructions must follow
during implementation. The operations remain consistent for both instructions, with the se-
lection of the output being determined through a multiplexer to choose between directing the
output to the high part or the low part.

Code 4.3 – ascon.sigma.lo rd, rs1, rs2, imm.

1 // Xascon sigma High instruction datapath
2 x_hi = GPR[rs2]
3 x_lo = GPR[rs1]
4 x = x_hi || x_lo
5 r = x ^ (x >> ROT_0[imm]) ^ (x >> ROT_1[imm])
6 GPR[rd] = r_{31...0}

Code 4.4 – ascon.sigma.hi rd, rs1, rs2, imm.

1 // Xascon sigma High instruction datapath
2 x_hi = GPR[rs2]
3 x_lo = GPR[rs1]
4 x = x_hi || x_lo
5 r = x ^ (x >> ROT_0[imm]) ^ (x >> ROT_1[Imm])
6 GPR[rd] = r_{63..32}

4.3 RISC-V ZKNE

AES (Advanced Encryption Standard) [NIST, 2001a] is a block cipher standardized
for NIST, and is widely used in various applications. Using just a block cipher algorithm like
AES with ECB does not guarantee confidentiality, this means that with the same data input,
we always generate the same output, which is why there are others modes of operation,
which prevent attackers from inferring plaintext information by analyzing ciphertext patterns.
Some of the operating modes that are used in AES are Electronic Code Book (ECB), Cipher
Block Chaining (CBC), PCBC Mode (Propagating cipher-block chaining), CFB Mode (Cipher
feedback), OFB Mode (Output feedback) and CTR (Counter) Mode.

For a fair comparison between Ascon and AES, it is necessary to use the AES-
CCM [NIST, 2007] variation to generate authentication tags, providing authentication and
confidentiality. AES employs both CBC and CTR in CMM as shown in Figure 2.5. The Zkne

39

extension of the RISC-V cryptography extension version 1.0.1 is used to accelerate AES
functions. For this purpose, it is necessary to add 6 new instructions, as shown in Table 2.4

Internally, AES performs four operations by round: SubBytes, ShiftRows, Mix-
Columns and AddRoundKey. During the SubBytes operation we can use an optimization
technique, where each S-BOX value is pre-calculated and stored in a Look-Up Table (LUT).
The SBOX LUT comprises 256 bytes and is equivalent in size to 64 RV32I instructions.

An additional observation pertains to the potential for pre-computation not only of
the SubBytes operation but also of the ShiftRows and MixColumns operations. These op-
erations involve shifts and multiplications by constants, respectively. This pre-computation
technique is referred to as the T-Table approach [Marshall et al., 2020]. The T-Table method-
ology entails the pre-computation of S-box substitution values for all conceivable 8-bit inputs.
Subsequently, it generates tables (T-Tables) for the MixColumns operation, characterized by
matrix multiplication within the AES algorithm. During the encryption process, the precom-
puted values from the T-Tables are utilized, thereby avoiding the need for recurrent compu-
tations.

The SBOX LUT comprises 256 bytes and is equivalent in size to 64 RV32I instruc-
tions, with a 1 to 1 byte mapping, while the T-Table maps from 1 to 4 bytes simplifying an
entire round of AES to 16 LUT lookups and 16 XOR operations bit by bit. Equation (4.3)
represents how this operation works.

T0[x] =


02(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)
03(16) ⊗ Sbox(x)

 T1[x] =


03(16) ⊗ Sbox(x)
02(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)



T2[x] =


01(16) ⊗ Sbox(x)
03(16) ⊗ Sbox(x)
02(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)

 T3[x] =


01(16) ⊗ Sbox(x)
01(16) ⊗ Sbox(x)
03(16) ⊗ Sbox(x)
02(16) ⊗ Sbox(x)



(4.3)

To implement this acceleration it is necessary to use the Zkne extension of the
RISC-V cryptography package version 1.0.1 and use the aes32esmi and aes32esi instruc-
tions. The aes32esmi instruction can be interpreted as calculating T-Table entries in hard-
ware and then XORing the current input with previous T-Table entries for the same output
column. The aes32esi only performs a single SBOX and XOR lookup, used in calculating
round keys and the last round of encryption, without MixColumns.

40

4.4 Ascon Crypto-Core

We can implement co-processors to perform a specific task so that processing is
more efficient and the main processor can continue processing other data. The evaluated
core is a version described in SystemVerilog made available by the Ascon team [Ascon,
2022b]. Figure 4.7 presents the interface of this Core and Table 4.2 contains a description
of the interface signals.

To integrate this module with the RISC-V processor, we developed an AXI-Lite bus
to send the data and configure the Ascon Core. At the RISC-V side, we added an AXI master
interface and at Ascon core side a slave interface. We also reserved addresses ranges, so
that the processor can access the accelerator as a memory-mapped I/O device.

Figure 4.7 – Ascon Core Interface (Source: [Ascon, 2022b]).

Incorporating loosely coupled hardware accelerators with processors presents chal-
lenges and trade-offs. These challenges are related to managing the increased complexity
associated with coordinating communication between the CPU and accelerators, handling
data transfers, ensuring correct operation, and keeping compatibility between software and
hardware. Additionally, modifications to the architecture may be necessary to accommodate
the memory map and ensure seamless integration.

However, despite these challenges, hardware accelerators, holds the potential for
significant efficiency gains. The CPU can focus on other tasks by offloading specific tasks
to optimized hardware accelerators, improving overall system performance. Moreover, hard-
ware accelerators can operate parallel with the CPU, enabling higher levels of parallelism
and enhancing system throughput.

Despite the challenges to overcome, the potential efficiency gains offered by hard-
ware accelerators make them a compelling option for enhancing the performance of hard-
ware architectures in real-world applications.

41

Table 4.2 – Ascon Core interface signals
Name Description
clk Clock signal.
rst Reset signal. Note: Synchronous active high.
key Key data input.
key_valid Key data is valid.
key_ready Ascon core is ready to receive a new key.
bdi_data Block data input (BDI).
bdi_valid BDI data is valid.
bdi_ready Ascon core is ready to receive data.
bdi_eot The current BDI block is the last block of its type.

bdi_eoi
The current BDI block is the last block of input other than the tag
segment.

bdi_type Type of BDI data. See rtl/config_core.sv.
decrypt 0=Encryption, 1=Decryption.
hash 0=Encryption/Decryption, 1=Hash.
bdo_data Block data output (BDO).
bdo_valid BDO data is valid.
bdo_ready Test bench is ready to receive data.
bdo_type Type of BDO data. See rtl/config_core.sv.
auth 1=Authentication success, 0=Authentication failure.
auth_valid Authentication output is valid.
auth_ready Test bench is ready to accept authentication result.

4.5 Implementation

This section presents the modifications made to the IBEX environment to include
ISEs. Section 4.5.1 presents the changes to add the Zbkb extension, Section 4.5.2 presents
the changes to add Xascon and Section 4.5.3 presents the changes to add the Ascon core
loosely coupled to the processor.

4.5.1 Changes for Zbkb

To include the Zbkb extension, modifications were made in the Decoder and Alu
blocks, in addition to the system flags mentioned in Table 2.5. These changes were imple-
mented within the Ibex framework to include the new instructions.

The first block modified was the ibex_decoder, where the processor interprets the
instructions. Figure 4.8 presents the binary code for the zip rd , rs instruction. The object
code of this instruction is embodied in bits {31,25}, {24,20}, {14,12}, and {6,0}. The instruc-

42

tion is only decoded if the system flag is set up to include these instructions. Otherwise, the
“illegal_insn” flag is be set to 1, signaling an error in the decoding process.

Figure 4.8 – zip instruction specification

Another block requiring modification is ibex_alu, responsible for implementing the
logic for the instructions. For example, when the decoder identifies the instruction as ALU_ZIP,
the ALU block places all odd bits in the lower halves of the word and even bits in the upper
halves. Modifications for the remaining instructions of the Zbkb extension are required, such
as unzip, brev8, and packh.

The ibex_pkg file is responsible for establishing definitions and parameters, as
well as creating the system flags to manage the hardware during synthesis. In this file, the
flag RV32BCrypto was added to group the instructions for the Zbkb that were implemented,
along with some instructions from zbb that were already implemented.

Through this approach, the hardware is synthesized with the required instructions,
occupying the smallest possible area. This facilitates the evaluation of the trade-off between
speedup and area utilization.

To setup correctly the use of these instructions, We need to notify the GCC which
extensions should be used. Then we should pass all extensions split by an underscore like
rv32imc_zicsr_Zbkb, to compile and run without errors.

4.5.2 Changes for Xascon

A few changes were needed to add the Xascon extension. First, we modify the
decoder block so that the processor understands that it is a valid instruction, as shown in
Figure 4.6, which presents the binary code of the instruction. Bits {14,12} are used to identify
which is the Xascon extension and bits {31,25} identify which of the 10 instructions should
be decoded.

Figure 4.9 illustrates the ID/EX pipeline stage datapath featuring the XAscon func-
tional unit. This block only adds the logic of the sigma functions which was explained in
Section 4.2. This unit operates entirely in a combinational manner, with all XAscon instruc-
tions executing within a single clock cycle. As sigma functions involve rotations by static
values, this implementation is very efficient on hardware. Unlike other units that possess
well-defined datapaths, the XAscon unit is essentially comprised of XOR operations, re-
sponsible for computing sigma functions. A multiplexer (MUX) is employed to select either
the high or low part of the sigma function as required.

43

Ascon Unit

ALU Unit

Load Store Unit

Intruction Decoder

Register File

W
rite back

ID
/E

X
In

te
rf

ac
e

O
perand A

O
perand B

EX Block
ID Stage

Data Memory interface

Figure 4.9 – Ibex ID/EX pipeline stage datapath with XAscon functional unit (Source: the
Author).

Finally, we need to change GCC to include these instructions by modifying (riscv.md)
in the GCC source code, defining the new instruction pattern that matches the machine code
that ISA expects, as they are not standardized and the compiler cannot process without
these modifications.

4.5.3 Changes for Ascon core

The initial phase involved the development of the AXI bus, resulting in the creation
of a module named bus_axi.sv, which was designed according to the AXI bus specification
[Arm, 2023]. A wrapper was designed to facilitate integration with the Ascon encryption
core. This wrapper encompasses the instantiation of the Ascon core, the incorporation of
memories for the AXI bus connectivity, and the establishment of control logic that manages
data reception and core operation.

Subsequently, on the RISC-V processor side, it became imperative to embed the
AXI bus module within the ibex_simple_system block. Additionally, modifications were
applied to the ibex_load_store_unit.sv file to enable the processor to communicate with
the bus, enabling I/O transactions. With these changes, it was also necessary to change the
part of the memories that use the bus, changing the prim_generic_ram_2p.sv block.

44

5. RESULTS

This Chapter presents the results obtained in this work.

• Section 5.1 provides a brief comparison between Ascon and other lightweight encryp-
tion algorithms, aiming to assess the positioning of this new standard to existing LWC
algorithms.

• Section 5.2 evaluates the performance of the Ascon algorithm. This evaluation includes
performance metrics of various implementations, including pure software implementa-
tions, to facilitate an assessment of acceleration for each implementation.

• Section 5.3 compares AEAD and Ascon algorithms, specifically AES-128 in CCM
mode and ChaCha20-Poly1305 in the IBEX environment. This section also delves into
the analysis of the central operations of each algorithm to scrutinize the acceleration
results for both the entire algorithm and only the main kernels.

• Section 5.4 presents the results of the Ascon core separetly, once it is an implementa-
tion external to the processor.

• Section 5.5 presents final remarks related to the results obtained in this Chapter.

The results presented in Section 5.2 and Section 5.3 were obtained for two distinct
scenarios typically found in real-world applications, as proposed by [Cardoso dos Santos
et al., 2020]. These scenarios involve different packet sizes, with the first scenario repre-
senting Zigbee and the second representing IPV6. This approach allows for an analysis
of algorithm behavior concerning both shorter and longer messages, aiming to identify any
operational variations based on instructions or among different algorithms.

Compilation was conducted using GCC version 12.2.0 with the -Os flag in an IBEX
RISC-V Environment.

5.1 Assessment of LWCs

Table 5.1 presents the performance of several LWC algorithms, utilizing the same
implementation as detailed in [Moura et al., 2023]. It is worth noting that this comparison is
not entirely fair, as the Ascon algorithm is an AEAD algorithm, whereas the other algorithms
listed may not necessarily provide authentication alongside encryption. Nevertheless, this
table provides insight into how Ascon positions itself alongside other LWC algorithms in
terms of performance.

45

All results were obtained under the same scenario: one full-block cipher oper-
ation. In this scenario, 128-bit input data were encrypted and subsequently decrypted.
This approach allows for an estimate of the processing cost associated with a complete
block for each LWC algorithm. These implementations can be found in https://github.com/
nicolasMoura25/cryptography-algorithms.

Table 5.1 – Lightweight performance figures on IBEX base (128-bit message)
.

Performance Counters Ascon ARIA GOST HIGHT IDEA NOEKEON SEED SIMON
Clock cycles 32,878 59,975 87,868 67,846 47,585 28,039 32,871 41,252
Instructions retired 21,994 42,026 59,642 50,972 29,037 18,803 22,700 31,999
Instructions fetched (KB) 12.89 114.75 172.83 153.45 78.06 51.28 63.87 102.76
Loads from memory (KB) 5.05 7.61 5.01 5.78 2.81 2.10 2.93 2.90
Stores to memory (KB) 8.49 5.10 3.53 3.45 2.46 2.52 1.42 1.82

For the sake of perspective, we observe that the Ascon stands out in performance.
Despite the additional overhead of encrypting the associated data and the plaintext, Ascon
was faster than most algorithms, only behind NOEKEON, with similar performance to SEED.
This is a relevant result, considering that Ascon is an AEAD algorithm, requiring encryption
of the associated data and the plaintext, unlike the other LWC algorithms.

5.2 Ascon Performance Evaluation

Table 5.2 assess the performance obtained for each of the analyzed extensions
and the performance results achieved through the software execution (average values of the
Table row “clock cycles”):

• Zbkb: 15.9% better performance (15.9% and 15.9%) than the software;

• Xascon: 52.9% better performance (52.55% and 53.28%) than the software;

• Zbkb + Xascon: 59.71% better performance (59.11% and 60.31%) than the software
implementation.

Hardware acceleration leads to a reduction in the number of retired and fetched
instructions. The count of store-to-memory operations remains unaltered since all imple-
mentations’ input data and operations remain the same. However, memory loads increased
in the Zbkb implementation due to adopting bit-interleaved representation. Notably, this
increase in memory loads is not replicated in the Zbkb+XAscon implementation. This is be-
cause the increase in loads is specific to the layer replacement phase, which is executed by
XAscon when both methods are combined. Therefore, when Zbkb and XAscon are utilized

https://github.com/nicolasMoura25/cryptography-algorithms
https://github.com/nicolasMoura25/cryptography-algorithms

46

Table 5.2 – Ascon performance figures.

Performance Counters
Zigbee packet (A = 25 bytes, P = 86 bytes) IPv6 packet (A = 40 bytes, P = 1224 bytes)
Software Zbkb Xascon Zbkb+Xascon Software Zbkb Xascon Zbkb+Xascon

Clock cycles 14,385 12,097 6,825 5,881 128,471 107,921 60,011 50,979
Instructions retired 13,734 8,939 6,174 5,230 123,381 79,887 54,921 45,889
Instructions fetched (KB) 53.086 34.326 23.555 19.867 478.639 308.428 211.217 175.936
Loads from memory (KB) 0.222 0.448 0.222 0.222 1.342 3.409 1.342 1.342
Stores to memory (KB) 0.190 0.190 0.190 0.190 1.295 1.295 1.295 1.295

together, the increase in memory loads attributable to bit-interleaved representation is not
duplicated.

5.3 Assessment of Authenticated Encryption with Associated Data Algorithms

Table 5.3 compares AES-128 in CCM mode, Ascon, and ChaCha20-Poly1305 al-
gorithms executed purely in software within the IBEX RISC-V environment. Ascon emerges
as the faster algorithm in both scenarios. However, it is noteworthy that ChaCha20-Poly1305
exhibits a minimal difference in the IPV6 scenario. This suggests that ChaCha20-Poly1305
may possess a more efficient architecture for processing large messages than small ones.
In the Zigbee scenario, Ascon in pure software demonstrates a speed advantage of approx-
imately 15 times over AES-CCM. Conversely, compared to ChaCha20-Poly1305, Ascon is
only around 1.5 times faster. Ascon presents significantly fewer loads and stores than the
other two algorithms, directly impacting its performance.

Table 5.3 – AEAD performance figures – software execution.

Performance Counters
Zigbee packet (A = 25 bytes, P = 86 bytes) IPv6 packet (A = 40 bytes, P = 1224 bytes)

AES-128 CCM Ascon ChaCha20-Poly1305 AES-128 CCM Ascon ChaCha20-Poly1305
Clock cycles 218,582 14,385 21,913 2,171,290 128,471 129,660
Instructions retired 133,834 13,734 16,615 1,325,726 123,381 100,666
Instructions fetched (KB) 309.541 53.086 54.049 4,112.371 478.639 330.445
Loads from memory (KB) 50.142 0.222 4.392 493.120 1.342 20.497
Stores to memory (KB) 30.818 0.190 4.204 303.554 1.295 16.341

Table 5.4 presents the results related to the hardware acceleration, offering insight
into which algorithm attained the best performance and which experienced the most signif-
icant gains. Notably, the ChaCha20-Poly1305 algorithm achieved the lowest speedup, with
the Zbkb extension yielding only marginal performance improvements (5.2%). While AES
had an improvement of 95.1% and Ascon 60.3%. But it is worth noting that AES had more
room for improvement, and with the acceleration, the final result was very close to the Ascon
result purely in software.

For a more detailed analysis of the AES-128 in CCM mode and Ascon algorithms,
Table 5.5 and Table 5.6 present results for the main operations of the algorithms, focusing

47

Table 5.4 – AEAD performance figures – hardware acceleration.

Performance Counters
Zigbee packet (A = 25 bytes, P = 86 bytes) IPv6 packet (A = 40 bytes, P = 1224 bytes)

AES-128 CCM Ascon ChaCha20-Poly1305 AES-128 CCM Ascon ChaCha20-Poly1305
Clock cycles 11,119 5,881 20,953 107,176 50,979 122,940
Instructions retired 7,414 5,230 14,695 73,752 45,889 87,226
Instructions fetched (KB) 25.568 19.867 47.250 258.230 175.936 282.865
Loads from memory (KB) 3.698 0.222 4.392 34.993 1.342 720.497
Stores to memory (KB) 0.818 0.190 4.204 5.429 1.295 16.341

on the AES-128 block cipher and the permutation operation (pb) for Ascon. From these
results, the AES-128 in CCM mode with the Zkne extension exhibits superior performance
when executed on an extended IBEX core for Associated data, but lose for Xascon+Zbkb
for plaintext, for long messages like IPv6 the plaintext there are more impact. It’s important
to note that this observation is aligned from the findings in Table 5.4, primarily due to the
inclusion of data I/O operations and the relative optimization levels of the AES-128 software
implementation in CCM mode versus the Ascon baseline implementation. Another point
is that while AES in CCM mode relies on memory operations for temporary values, Ascon
keeps these values within the register file, potentially contributing to its overall efficiency.

Table 5.5 – Associated Data & Plaintext Performance (smaller is better).
Ascon AES

Metric SW Zbkb Xascon Zbkb+Xascon AES-128 Zkne

AD
Cycles/byte 89.875 75.375 37.375 34.375 18.563
Instr./byte 88.125 56.875 35.625 32.625 14.5625

P
Cycles/byte 89.875 75.375 37.375 34.375 37.125
Instr./byte 88.125 56.875 35.625 32.625 29.125

Table 5.6 provides insight into the CPI (Cycles Per Instruction) required to execute
the algorithms. AES-128 exhibits a higher CPI because it needs to load the round key at
each iteration. In contrast, Ascon avoids memory operations, except in the Zbkb case. We
can notice that the implementation with just the ISE Zbkb causes the number of memory
accesses to increase, going from a CPI of 1.02 to 1.32.

Table 5.6 – Core operation profiling – (Clock cycles, Instr. retired), CPI.
Ascon AES

Step SW Zbkb Xascon Zbkb+Xascon AES-128 Zkne
SBOX (204, 204), 1 (180, 180), 1 (204, 204), 1 (180, 180), 1 -
Linear (480, 480), 1 (365, 238), 1.53 (60, 60), 1 (60, 60), 1 -
Other (35, 21), 1.66 (58, 37), 1.57 (35, 21), 1.67 (35, 21), 1.67 -
Total (719, 705), 1.02 (603, 455), 1.32 (299, 285), 1.05 (275, 261), 1.05 (297, 233), 1.27

Table 5.7 presents the synthesis data of the baseline Ibex processor and its ex-
tensions, targeting a high-density 8-track cell library for a 28nm FDSOI process from ST
Microelectronics. These results were obtained using the GENUS Version 2112 tool, em-

48

ploying the PLE flow, and considering a worst-case PVT corner timing of a slow process
(0.75 V at 125°C). All netlists have a slack time of 0 ns for fair comparison. The analysis
indicates that the Zbkb extension exhibits the lowest overhead when considering only area
overhead. However, when both area and performance are considered, AES-128 in CCM
mode demonstrates a smaller overhead compared to the accelerated implementations of
Ascon and ChaCha20-Poly1305.

Table 5.7 – Synthesis results for baseline and extended Ibex cores.

Synthesis results Baseline Zbkb Xascon Xascon+Zbkb Zkne
Cell Area (µm2) 11,238 11,307 12,210 12,148 11,709
Net Area (µm2) 6,992 5,142 8,181 5,957 6,261
Total Area (µm2) 18,230 16,449 20,391 18,105 17,970
Cell Instance Count 10,289 11,769 11,010 12,256 11,458
Equiv. NAND2 gates 34,433 34,642 37,408 37,219 35,873

In conclusion, the hardware acceleration for AES-128 CCC mode and Ascon re-
sulted in performance improvements of 95.1% and 60.3% (clock cycles) at the cost of 4.2%
and 8.1% (equivalent NAND2 gates). Such results demonstrate the benefits of using ISEs
to accelerate these algorithms.

5.3.1 Memory Usage Evaluation

Figure 5.1 presents the memory usage for AES-128 in CCM mode and Ascon.
The GCC fstack-usage flag is used to obtain stack usage and GNU nm for functions and
static data sizes. The total memory used for the AES-128 dropped from 2,437 to 1,563
bytes (35.9%) when using ISE Zkn. Ascon had its smallest reduction when combining the
Zbkb+Xascon, from 1,694 bytes to 1,198 (29.3%). It is worth mentioning that these values
are the sum of Max stack usage + Code size + Static data size. Table 5.8 presents raw
results for memory consumption.

Table 5.8 – Raw results for memory consumption
Memory results AES-128 SW AES-128 Zkne Ascon SW Ascon Zbkb Ascon Xascon Xascon+Zbkb
Max Stack Usage (Bytes) 337 257 96 96 96 96
Code Size (Bytes) 1800 1296 1598 1434 1310 1102
Static Data Size (Bytes) 300 10 0 25 0 0

The values for the ChaCha20-Poly1305 were not presented due to the complexity
of obtaining precise measurements. In general terms, the memory usage for ChaCha20-
Poly1305 is reported to be more than twice the size of AES-128 CCM. Additionally, the
comparison highlights that AES benefits more than Ascon in terms of memory usage when
accelerated.

49

Figure 5.1 – Memory usage for AES-128 in CCM mode and Ascon.

5.3.2 Energy Consumption Evaluation

Energy consumption is evaluated using the CACTI tool [Balasubramonian et al.,
2017] for memory, and gate-level simulations for logic. These results are obtained from a
nominal PVT corner of a typical process (0.9 V at 25°C). For a 16KB dual-port SRAM with
low-power bit cells in 28 nm technology, CACTI reports energy consumption of 63.362 fJ/bit
for reads and 41.436 fJ/bit for writes.

Energy consumption results are depicted in Figure 5.2 – the software AES-128-
CCM result is omitted due to its high energy cost. Table 5.9 presents the raw results for
energy consumption. The energy consumption in RISC-V systems is predominantly influ-
enced by the core rather than memory and I/O operations. With ISEs, the most efficient
implementation is Ascon with Zbkb and XAscon for both scenarios.

Table 5.9 – Raw results for energy consumption for IPv6 scenario.
Memory results AES-128 SW AES-128 Zkne Ascon SW Ascon Zbkb Ascon Xascon Xascon+Zbkb ChaCha20 SW ChaCha20 Zbkb
Data IO Energy (nJ) 324.950 20.006 1.136 2.209 1.136 1.136 16.186 16.186
Instruction IO Energy (nJ) 2134.574 134.037 248.443 160.093 109.635 91.321 171.521 146.824
Core Energy (nJ) 10348.913 592.391 1063.259 674.785 453.604 359.809 791.294 648.511
Total Energy (nJ) 12808.436 746.434 1312.838 837.087 564.374 452.266 979.002 811.521

The AES algorithm reduced the total energy from 12,808.436 nJ to 746.434 nJ us-
ing the ISE Zkne (94.2%). While Ascon reduced 65.6% when comparing Ascon in software
with Ascon Zbkb+Xascon.

50

Figure 5.2 – Energy Consumption Evaluation - Zigbee - left, IPv6 - right

5.4 Ascon core

The results for the Ascon core are unavailable due to an issue with the hardware
provided by the Ascon team. The provided model only works for a single input message
size, leading to failure when simulating Zigbee and IPV6 scenarios. Since the objective of
the work did not involve implementing or modifying the Ascon core, this aspect is included
as future work. It is important to note that the AXI bus is functional, and all modifications
are available in the RTL code. This means it is only necessary to integrate a working Ascon
core and configure it via the bus to be functional.

Table 5.10 presents synthesis results related to the Ascon core. The equivalent
number of NAND2 gates for this core is 5,963, while the overhead for IBEX with Zbkb and
XAscon is 2,786 (Table 5.7). The smaller area overhead with tightly coupled acceleration is
due to the resource sharing of the algorithm with the processor units.

From Table 5.4, IBEX with Zbkb and XAscon takes 41.6 clock cycles per byte to en-
crypt or decrypt a message. On the order side, the Ascon core took around 140 clock cycles
to complete the cryptography process over a 192-byte message (1.4 clock cycles per byte).
The performance overhead of acceleration using ISEs is due to the Von Neumann process
(fetch-decode-execute instructions). On the other hand, bus transactions may hinder the
performance of a dedicated core, penalizing its performance.

51

Table 5.10 – Synthesis results for Ascon Core
Synthesis results Ascon Core
Cell Area (µm2) 1,946
Net Area (µm2) 1,207
Total Area (µm2) 3,153
Cell Instance Count 1,796
Equiv. NAND2 gates 5,963

5.5 Final Remarks

In summary, comparing software-only and accelerated implementations depends
on how the algorithm was designed. For example, in the case of ChaCha20-Poly1305,
the implementation did not justify the addition of the Zbkb extension, as the performance
increased by only 5%. On the other hand, Ascon exhibited a significant increase in per-
formance by 2.45x when accelerated. Memory and energy consumption also benefit from
this acceleration. The maximum area cost for implementing Ascon with Zbkb + XAscon was
8.1%. Table 5.11 summarizes the results.

Table 5.11 – Summary of the results related to the evaluated AEAD algorithms (IPV6 sce-
nario).

Performance Figure Implementation
AES-128

CCM Mode
Ascon-128

ChaCha20-
Poly1305

Perfomance
(clock cycles)

Software 2,171,290 128,471 129,660
Hardware (best result) 107,176 50,979 122,940
Gain 95.1% 60.3% 5.2%

Energy (nJ)
Software 12,808 1,313 979
Hardware (best result) 746 452 811
Gain 94,2% 65.6% 17.2%

Memory (bytes)
Software 2,437 1,694 NA
Hardware (best result) 1,563 1,198 NA
Gain 35.9% 29.3% NA

Area (NAND2
gates)

Software 34,432 34,432 34,432
Hardware (best result) 35,873 37,219 34,641
Gain -4,2% -8,1% -0,6%

52

6. CONCLUSION AND FUTURE WORKS

This MSc thesis conducted a PPA (Power, Performance, and Area) evaluation of
three AEAD algorithms – Ascon, AES-128 in CCM mode, and ChaCha20-Poly1305, con-
sidering the base software execution and Instruction Set Extensions (ISEs) in the low-
complexity RISC-V Ibex core. One of this work’s contributions is the publicly available repos-
itory with all implementations: https://github.com/cggewehr/RISCV-crypto.

Despite efforts to ensure fairness in the evaluations, numerous factors impact the
results. This was evident when comparing the performance of all encryption algorithms
in two different scenarios: Zigbee and IPV6. In this comparison, Ascon emerged as the
superior algorithm, requiring only 14,385 cycles for the Zigbee scenario and 128,471 cycles
for the IPV6 scenario. However, when focusing solely on the main operations (such as the
pb permutation and the AES-128 block cipher), AES-128 in CCM mode demonstrated better
acceleration, requiring 18,563 cycles for computing Associated data and 37,125 cycles for
plaintext, while Ascon needed 34,375 cycles for both processes in its most accelerated
version. Thus, it is expected that for larger messages, i.e., larger plaintext, the AES-128 in
CCM mode may be faster than the Ascon algorithm.

Results showed a performance gain of 95.1%, 60.3%, and 5.2%, along with an in-
crease in the energy efficiency of 94.2%, 65.6%, and 17.2%, for AES, Ascon, and ChaCha20-
Poly1305, respectively. Area overheads were observed to be up to 9%. Additionally, im-
provements in memory usage (considering code size, static data size, and stack usage) of
35.9% (AES in CCM mode) and 29.3% (Ascon) were measured.

In conclusion, adopting an extension to accelerate an algorithm can yield consider-
able advantages, particularly when a device dedicates substantial time to data encryption.
It is important to note that not all algorithms exhibit impressive performance enhancements,
such as AES and Ascon; however, the justification for acceleration may lie in the resultant
improvements in energy efficiency. For example, the ChaCha20-Poly1305 algorithm dis-
played a modest performance increment of 5.2%, but with a 17.2% enhancement in energy
efficiency. The silicon area overhead, quantified at 8.1% in a worst-case scenario, consti-
tutes a negligible trade-off when weighed against the performance and energy efficiency
benefits. This suggests that devices with limited resources that need to encrypt data benefit
significantly from such extensions.

https://github.com/cggewehr/RISCV-crypto

53

The results of this work were published in:

Hardware Acceleration of Authenticated Encryption with Associated Data via RISC-V Instruction Set Extensions in
Low Power Embedded Systems.
Gewehr, Carlos; Moura, Nicolas; Luza, Lucas; Bernardon, Eduardo; Calazans, Ney; Garibotti, Rafael; MORAES,
Fernando Gehm.
In: LASCAS, 2023.

Assessment of Lightweight Cryptography Algorithms on ARM Cortex-M Processors.
Moura, Nicolas; Lucena, Joaquim ; Pereira, Eduardo; Calazans, Ney; Ost, Luciano; Garibotti, Rafael; Moraes,
Fernando Gehm.
In: SBCCI, 2023. – https://ieeexplore.ieee.org/document/10261962

6.1 Future Work

The following points highlight the key areas of interest for future research:

1. Assembly implementations optimization. Develop assembly implementations of AES-
128 in CCM mode and ChaCha20-Poly1305 optimized for code size. This optimization
would allow for a fairer comparison with Ascon. While AES-128 in CCM mode demon-
strated better performance in its main operations, this improvement did not translate
into the results compared to the pure software model. This difference may be attributed
to differences in the optimization levels of the software implementations. Optimizing
the assembly implementations would provide a more accurate comparison between
the algorithms.

2. Development of Ascon hardware core. Develop an Ascon core that adheres to the
available standards. This core should be thoroughly tested to ensure all necessary
functionalities are implemented correctly. Additionally, it should be designed to connect
to RISC-V via the AXI bus that has already been created. Establishing a reliable Ascon
core would enhance the feasibility and accuracy of future evaluations and comparisons.

https://ieeexplore.ieee.org/document/10261962

54

REFERENCES

[Akbas, 2019] Akbas, A. (2019). Comparative Analysis of Lightweight Cryptography
Algorithms on Resource Constrained Microcontrollers. In International Informatics
and Software Engineering Conference (UBMYK), pages 1–4. https://doi.org/10.1109/
UBMYK48245.2019.8965525.

[Alliance, 2023] Alliance, C. (2023). Rocket Chip Generator. https://github.com/
chipsalliance/rocket-chip, November 2023.

[Arm, 2023] Arm (2023). AMBA AXI Protocol Specification. https://developer.arm.com/
documentation/ihi0022/latest/, November 2023.

[Ascon, 2022a] Ascon (2022a). Ascon128v12 reference. https://github.com/ascon/ascon-c/
tree/main/crypto_aead/ascon128v12/ref, November 2023.

[Ascon, 2022b] Ascon (2022b). NIST LWC Hardware Reference Design of Ascon v1.2.
https://github.com/ascon/ascon-hardware, November 2023.

[Balasubramonian et al., 2017] Balasubramonian, R., Kahng, A. B., Muralimanohar, N.,
Shafiee, A., and Srinivas, V. (2017). CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories. ACM Transactions on Architecture and Code Optimiza-
tion, 14(2):1–25. https://doi.org/10.1145/3085572.

[Beg et al., 2019] Beg, A., Al-Kharobi, T., and Al-Nasser, A. (2019). Performance Evaluation
and Review of Lightweight Cryptography in an Internet-of-Things Environment. In Interna-
tional Conference on Computer Applications & Information Security (ICCAIS), pages 1–6.
https://doi.org/10.1109/CAIS.2019.8769509.

[Campos et al., 2020] Campos, F., Jellema, L., Lemmen, M., Müller, L., Sprenkels, A., and
Viguier, B. (2020). Assembly or Optimized C for Lightweight Cryptography on RISC-V. In
International Conference on Cryptology and Network Security (CANS), pages 526–545.
https://doi.org/10.1007/978-3-030-65411-5_26.

[Cardoso dos Santos et al., 2020] Cardoso dos Santos, L., Großschädl, J., and Biryukov,
A. (2020). FELICS-AEAD: Benchmarking of Lightweight Authenticated Encryption Algo-
rithms. In Smart Card Research and Advanced Applications (CARDIS), pages 216–233.
https://doi.org/10.1007/978-3-030-42068-0_13.

[Cheng et al., 2022] Cheng, H., Großschädl, J., Marshall, B., Page, D., and Pham, T. (2022).
RISC-V Instruction Set Extensions for Lightweight Symmetric Cryptography. https://tches.
iacr.org/index.php/TCHES/article/view/9951, November 2023.

https://doi.org/10.1109/UBMYK48245.2019.8965525
https://doi.org/10.1109/UBMYK48245.2019.8965525
https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://developer.arm.com/documentation/ihi0022/latest/
https://developer.arm.com/documentation/ihi0022/latest/
https://github.com/ascon/ascon-c/tree/main/crypto_aead/ascon128v12/ref
https://github.com/ascon/ascon-c/tree/main/crypto_aead/ascon128v12/ref
https://github.com/ascon/ascon-hardware
https://doi.org/10.1145/3085572
https://doi.org/10.1109/CAIS.2019.8769509
https://doi.org/10.1007/978-3-030-65411-5_26
https://doi.org/10.1007/978-3-030-42068-0_13
https://tches.iacr.org/index.php/TCHES/article/view/9951
https://tches.iacr.org/index.php/TCHES/article/view/9951

55

[da Rocha et al., 2022] da Rocha, V., Moura, N., Gava, J., Bandeira, V., Ost, L., Reis, R.,
and Garibotti, R. (2022). Soft Error Reliability Assessment of Lightweight Cryptographic
Algorithms for IoT Edge Devices. In IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 457–460. https://doi.org/10.1109/ISCAS48785.2022.9937998.

[Dally et al., 2020] Dally, W. J., Turakhia, Y., and Han, S. (2020). Domain-specific hard-
ware accelerators. Communications of the ACM, 63(7):48—-57. https://doi.org/10.1145/
3361682.

[Dobraunig et al., 2021] Dobraunig, C., Eichlseder, M., Mendel, F., and Schläffer, M. (2021).
Ascon v1.2: Lightweight Authenticated Encryption and Hashing. Journal of Cryptology,
34(3):33:1–33:42. https://doi.org/10.1007/s00145-021-09398-9.

[Elaguech et al., 2019] Elaguech, A., Kchaou, A., El Hadj Youssef, W., Ben Othman, K.,
and Machhout, M. (2019). Performance Evaluation of Lightweight Block Ciphers in Soft-
core Processor. In International Conference on Sciences and Techniques of Automatic
Control and Computer Engineering (STA), pages 101–105. https://doi.org/10.1109/STA.
2019.8717266.

[Elsadek et al., 2022a] Elsadek, I., Aftabjahani, S., Gardner, D., MacLean, E., Wallraben-
stein, J. R., and Tawfik, E. Y. (2022a). Energy Efficiency Enhancement of Parallelized
Implementation of NIST Lightweight Cryptography Standardization Finalists. In IEEE
International Symposium on Circuits and Systems (ISCAS), pages 138–141. https:
//doi.org/10.1109/ISCAS48785.2022.9937755.

[Elsadek et al., 2022b] Elsadek, I., Aftabjahani, S., Gardner, D., MacLean, E., Wallraben-
stein, J. R., and Tawfik, E. Y. (2022b). Hardware and Energy Efficiency Evaluation of NIST
Lightweight Cryptography Standardization Finalists. In IEEE International Symposium
on Circuits and Systems (ISCAS), pages 133–137. https://doi.org/10.1109/ISCAS48785.
2022.9937643.

[Gewehr and Moraes, 2023] Gewehr, C. and Moraes, F. (2023). Improving the Efficiency
of Cryptography Algorithms on Resource-Constrained Embedded Systems via RISC-V
Instruction Set Extensions. In Symposium on Integrated Circuits and Systems Design
(SBCCI), pages 1–6. https://doi.org/10.1109/sbcci60457.2023.10261964.

[Guo et al., 2016] Guo, Z., Karimian, N., Tehranipoor, M. M., and Forte, D. (2016). Hardware
Security Meets Biometrics for the Age of IoT. In IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1318–1321. https://doi.org/10.1109/ISCAS.2016.7527491.

[Ibex, 2023a] Ibex (2023a). Ibex: An embedded 32 bit RISC-V CPU core. https://ibex-core.
readthedocs.io/en/latest/01_overview/index.html, November 2023.

https://doi.org/10.1109/ISCAS48785.2022.9937998
https://doi.org/10.1145/3361682
https://doi.org/10.1145/3361682
https://doi.org/10.1007/s00145-021-09398-9
https://doi.org/10.1109/STA.2019.8717266
https://doi.org/10.1109/STA.2019.8717266
https://doi.org/10.1109/ISCAS48785.2022.9937755
https://doi.org/10.1109/ISCAS48785.2022.9937755
https://doi.org/10.1109/ISCAS48785.2022.9937643
https://doi.org/10.1109/ISCAS48785.2022.9937643
https://doi.org/10.1109/sbcci60457.2023.10261964
https://doi.org/10.1109/ISCAS.2016.7527491
https://ibex-core.readthedocs.io/en/latest/01_overview/index.html
https://ibex-core.readthedocs.io/en/latest/01_overview/index.html

56

[Ibex, 2023b] Ibex (2023b). IBEX Security Features. https://ibex-core.readthedocs.io/en/
latest/03_reference/security.html, November 2023.

[Intel, 2017] Intel (2017). TinyCrypt Cryptographic Library. https://github.com/intel/tinycrypt,
November 2023.

[Kane et al., 2020] Kane, L. E., Chen, J. J., Thomas, R., Liu, V., and Mckague, M. (2020).
Security and Performance in IoT: A Balancing Act. IEEE Access, 8:121969–121986.
https://doi.org/10.1109/ACCESS.2020.3007536.

[Kotel et al., 2016] Kotel, S., Sbiaa, F., Zeghid, M., Machhout, M., Baganne, A., and Tourki,
R. (2016). Performance Evaluation and Design Considerations of Lightweight Block Ci-
pher for Low-Cost Embedded Devices. In IEEE/ACS International Conference of Com-
puter Systems and Applications (AICCSA), pages 1–7. https://doi.org/10.1109/AICCSA.
2016.7945695.

[Lara-Nino et al., 2016] Lara-Nino, C. A., Morales-Sandoval, M., and Diaz-Perez, A. (2016).
An Evaluation of AES and PRESENT Ciphers for Lightweight Cryptography on Smart-
phones. In IEEE International Conference on Electronics, Communications and Com-
puters (CONIELECOMP), pages 87–93. https://doi.org/10.1109/CONIELECOMP.2016.
7438557.

[Ledwaba et al., 2018] Ledwaba, L. P. I., Hancke, G. P., Venter, H. S., and Isaac, S. J. (2018).
Performance Costs of Software Cryptography in Securing New-Generation Internet of En-
ergy Endpoint Devices. IEEE Access, 6:9303–9323. https://doi.org/10.1109/ACCESS.
2018.2793301.

[Marshall, 2021] Marshall, B. (2021). Scalar Cryptography v1.0.0 rc2. https://github.com/
riscv/riscv-crypto/releases/tag/v1.0.0-rc2-scalar, November 2023.

[Marshall et al., 2020] Marshall, B., Newell, G. R., Page, D., Saarinen, M.-J. O., and Wolf,
C. (2020). The design of scalar AES Instruction Set Extensions for RISC-V. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(1):109–136.
https://tches.iacr.org/index.php/TCHES/article/view/8729.

[Marshall et al., 2021] Marshall, B., Page, D., and Pham, T. H. (2021). A Lightweight ISE for
ChaCha on RISC-V. Cryptology ePrint Archive, Paper 2021/1030. https://eprint.iacr.org/
2021/1030, November 2023.

[Mohajerani et al., 2021] Mohajerani, K., Haeussler, R., Nagpal, R., Farahmand, F., Abdul-
gadir, A., Kaps, J.-P., and Gaj, K. (2021). Hardware Benchmarking of Round 2 Can-
didates in the NIST Lightweight Cryptography Standardization Process. In IEEE De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pages 164–169.
https://doi.org/10.23919/DATE51398.2021.9473930.

https://ibex-core.readthedocs.io/en/latest/03_reference/security.html
https://ibex-core.readthedocs.io/en/latest/03_reference/security.html
https://github.com/intel/tinycrypt
https://doi.org/10.1109/ACCESS.2020.3007536
https://doi.org/10.1109/AICCSA.2016.7945695
https://doi.org/10.1109/AICCSA.2016.7945695
https://doi.org/10.1109/CONIELECOMP.2016.7438557
https://doi.org/10.1109/CONIELECOMP.2016.7438557
https://doi.org/10.1109/ACCESS.2018.2793301
https://doi.org/10.1109/ACCESS.2018.2793301
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0-rc2-scalar
https://github.com/riscv/riscv-crypto/releases/tag/v1.0.0-rc2-scalar
https://tches.iacr.org/index.php/TCHES/article/view/8729
https://eprint.iacr.org/2021/1030
https://eprint.iacr.org/2021/1030
https://doi.org/10.23919/DATE51398.2021.9473930

57

[Moura et al., 2023] Moura, N., Lucena, J., Pereira, E., Calazans, N., Ost, L., Moraes, F.,
and Garibotti, R. (2023). Assessment of Lightweight Cryptography Algorithms on ARM
Cortex-M Processors. In Symposium on Integrated Circuits and Systems Design (SBCCI),
pages 1–6. https://doi.org/10.1109/SBCCI60457.2023.10261962.

[Nir and Langley, 2015] Nir, Y. and Langley, A. (2015). ChaCha20 and Poly1305 for IETF
Protocols. RFC 7539. https://www.rfc-editor.org/info/rfc7539, November 2023.

[NIST, 2001a] NIST (2001a). Advanced Encryption Standard (AES). National Institute
of Standards and Technology. 38p., https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
197-upd1.pdf.

[NIST, 2001b] NIST (2001b). Recommendation for Block Cipher Modes of Operation. Na-
tional Institute of Standards and Technology. 66p., https://doi.org/10.6028/nist.sp.800-38a.

[NIST, 2007] NIST (2007). Recommendation for Block Cipher Modes of Operation: The
CCM Mode for Authentication and Confidentiality. National Institute of Standards and
Technology. 27p., http://dx.doi.org/10.6028/NIST.SP.800-38C.

[NIST, 2022] NIST (2022). Lightweight Cryptography: Project Overview. https://csrc.nist.
gov/projects/lightweight-cryptography, November 2023.

[OpenHWGroup, 2023] OpenHWGroup (2023). CORE-V CV32E40P RISC-V. https://
github.com/openhwgroup/cv32e40p, November 2023.

[Regla and Festijo, 2022] Regla, A. I. and Festijo, E. D. (2022). Performance Analysis of
Light-weight Cryptographic Algorithms for Internet of Things (IoT) Applications: A Sys-
tematic Review. In IEEE International Conference for Convergence in Technology (I2CT),
pages 1–5. https://10.1109/I2CT54291.2022.9824108.

[Rescorla, 2018] Rescorla, E. (2018). The Transport Layer Security (TLS) Protocol Version
1.3. RFC 8446. https://www.rfc-editor.org/info/rfc8446, November 2023.

[Rescorla et al., 2022] Rescorla, E., Tschofenig, H., and Modadugu, N. (2022). The Data-
gram Transport Layer Security (DTLS) Protocol Version 1.3, november 2023. RFC 9147.
https://www.rfc-editor.org/info/rfc9147.

[RISC-V, 2019] RISC-V (2019). The RISC-V Instruction Set Manual, Volume I: User-Level
ISA, Document Version 20191213. https://riscv.org/technical/specifications, May 2023.

[Saarinen, 2020] Saarinen, M.-J. O. (2020). A Lightweight ISA Extension for AES and SM4.
https://arxiv.org/abs/2002.07041, November 2023.

[Sud et al., 2022] Sud, P., Neisarian, S., and Kavun, E. B. (2022). Evaluating Cryptographic
Extensions On A RISC-V Simulation Environment. In Euromicro Conference on Digital
System Design (DSD), pages 548–555. https://10.1109/DSD57027.2022.00079.

https://doi.org/10.1109/SBCCI60457.2023.10261962
https://www.rfc-editor.org/info/rfc7539
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://doi.org/10.6028/nist.sp.800-38a
http://dx.doi.org/10.6028/NIST.SP.800-38C
https://csrc.nist.gov/projects/lightweight-cryptography
https://csrc.nist.gov/projects/lightweight-cryptography
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p
https://10.1109/I2CT54291.2022.9824108
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc9147
https://riscv.org/technical/specifications
https://arxiv.org/abs/2002.07041
https://10.1109/DSD57027.2022.00079

58

[Tehrani et al., 2020] Tehrani, E., Graba, T., Merabet, A. S., and Danger, J.-L. (2020). RISC-
V Extension for Lightweight Cryptography. In Euromicro Conference on Digital System
Design (DSD), pages 222–228. https://10.1109/DSD51259.2020.00045.

[Thakor et al., 2021] Thakor, V. A., Razzaque, M. A., and Khandaker, M. R. A. (2021).
Lightweight Cryptography Algorithms for Resource-Constrained IoT Devices: A Review,
Comparison and Research Opportunities. IEEE Access, 9:28177–28193. https://doi.org/
10.1109/ACCESS.2021.3052867.

[Zurich and of Bologna, 2017] Zurich, E. and of Bologna, U. (2017). Ibex: An embedded
32-bit RISCV CPU core. https://ibex-core.readthedocs.io/en/latest/, November 2023.

https://10.1109/DSD51259.2020.00045
https://doi.org/10.1109/ACCESS.2021.3052867
https://doi.org/10.1109/ACCESS.2021.3052867
https://ibex-core.readthedocs.io/en/latest/

	Introduction
	Motivation
	Objectives
	Contribution
	Methodology
	Document organization

	Fundamental concepts
	RISC-V Architecture
	RISC-V Instruction Set Extensions - ISE
	RISC-V Ibex
	Ibex Security

	Introduction to AEAD
	 Ascon Algorithm
	 AES-128 CCM
	 ChaCha20-Poly1305

	 Hardware Acceleration

	Related Work
	 Assessments on LWC algorithms
	 Cryptography Extension in RISC-V ISA
	Related Work Summary

	AEAD HARDWARE ACCELERATION
	RISC-V ZBKB
	 Zbkb Extension and Relationship with Ascon

	RISC-V ISE XAscon
	RISC-V ZKNE
	Ascon Crypto-Core
	 Implementation
	Changes for Zbkb
	Changes for Xascon
	Changes for Ascon core

	Results
	Assessment of LWCs
	Ascon Performance Evaluation
	Assessment of Authenticated Encryption with Associated Data Algorithms
	Memory Usage Evaluation
	Energy Consumption Evaluation

	 Ascon core
	 Final Remarks

	CONCLUSION AND FUTURE WORKS
	 Future Work

	References

