
RS5: Bridging Scalability and Efficiency
in Modern Processor Design

GAPH-PUCRS

Fernando Gehm Moraes

July 1, 11h00, 2025

Agenda

1. RS5 RISC-V

2. MEMPHIS Manycore

3. SoC-Wimed

RISC-V RS5
3

RISC-V developed at PUCRS
• No reference design (e.g., PULP, IBEX, CV32E40P, …)
• No 3PIP
• Flexiblity
• Support for OSs
• Open hardware - https://github.com/gaph-pucrs/RS5

• 32-bit integer ISA
• Machine and User Privileges
• Standardized Interrupt Controller
• Real-Time Clock (RTC)

RISC-V RS5
4

RV32IMACZicsr_Zihpm_Xosvm ISA
• I - Integer 32-bit
• M - Hardware multiplication and division
• A - Atomic instructions
• C - Compressed Instructions
• CSR with machine-mode and user-mode
• Hardware counters
• Custom offset-based virtual memory

Nunes, W. A., Dal Zotto, A. E., Borges, C. S., Moraes, F. G (2024). RS5: An Integrated Hardware and Software Ecosystem for RISC-V Embedded Systems. In
Proceedings of the IEEE Latin America Symposium on Circuits and Systems (LASCAS), pages 1-5.

5

Other optional extensions
• Zicond

• Zcb (code size reduction)

• Zkne (AES)
• aes32esmi and aes32esi
• modified TinyCrypt library

• Vector subset (VLEN from 64 bits up to 1024 bits)

RISC-V RS5

TABLE V
EXECUTION STATISTICS FOR AES AND KEYSCHEDULE

Config Counter AES KeySchedule

non-Zkne

nop counter 2785 123
logic counter 2153 342
addsub counter 2057 538
shift counter 1084 242
branch counter 510 76
jump counter 683 3
load counter 1563 71
store counter 816 45
luislt counter 18 2
time counter 99910 11879

Zkne

nop counter 264 40
logic counter 54 50
addsub counter 167 39
shift counter 20 20
branch counter 127 10
jump counter 18 2
load counter 173 14
store counter 141 44
luislt counter 10 1
time counter 28418 9287

AES KeySchedule
0

5000

10000

11,677

1,4431,177
261

C
yc

le
s

non-Zkne
Zkne

Fig. 3. Cycle count comparison for AES and KeySchedule with and without
Zkne.

49,843.76 µm2 compared to 49,021.60 µm2 in the reference
baseline, a change of approximately 1.68%.

TABLE VI
CELL INSTANCE COUNT AND AREA FOR Zkne AND NON-Zkne

Config Module Inst. Count Total Area

Zkne

RS5 17959 49843.764
CSRBank 5332 15634.872
RegBank 3550 11675.880
decoder 1253 3510.972
execute 6114 13917.348

aes unit 381 725.040
fetch 1416 4265.082
retire 197 544.464

non-Zkne

RS5 17494 49021.596
CSRBank 5372 15671.466
RegBank 3600 11774.376
decoder 1229 3417.948
execute 5578 13027.122
fetch 1423 4264.056
retire 207 571.824

The additional logic required for hardware-accelerated AES
operations is concentrated within the aes unit module, which
contributes 725.04 µm2 and includes 381 standard cell in-

stances. This module is absent in the non-Zkne implemen-
tation.

Across the rest of the processor pipeline, only minor dif-
ferences are observed. The execute stage in Zkne contains
6114 instances and occupies 13,917.35 µm2, compared to
5578 instances and 13,027.12 µm2 in the reference design.
This increase aligns with the integration of AES-specific
datapaths and control logic. Other components such as the
CSRBank, RegBank, and decoder show negligible variation
between configurations, indicating that the Zkne extension
does not introduce significant overhead to the general control
or register infrastructure.

These results confirm that while Zkne introduces additional
area due to the AES functional unit, its impact remains
minimal. This trade-off is favorable when considering the
substantial performance benefits described in earlier sections.

D. Energy Evaluation
Despite the slight variations observed in internal and switch-

ing power between the Zkne and non-Zkne implementations
(as reported in Table II), the overall power consumption
remains virtually equivalent across configurations. This ob-
servation is particularly relevant when considering system-
level efficiency. Given that the Zkne implementation reduces
the AES encryption execution time by approximately 10!
(Figure 3), the energy required per encryption task is reduced.

From a system perspective, where energy is the product of
power and time, the nearly identical power figures imply that
the accelerated Zkne configuration performs the encryption
task with up to 10! less energy. This substantial improvement
highlights the effectiveness of instruction set extensions for
cryptographic acceleration, especially in energy-constrained
embedded systems.

V. CONCLUSION

This paper evaluated Zkne and non-Zkne AES implemen-
tations on the RS5 processor using physical synthesis and post-
layout simulation results across multiple process corners and
operating frequencies. The results confirm the effectiveness
of the Zkne hardware acceleration approach. Although the
Zkne configuration introduced a marginal area increase of
approximately 1.68% and negligible static power differences,
it achieved significant performance gains. AES encryption and
key scheduling execution times were reduced by 9.9! and
5.5!, respectively, and instruction count decreased.

Notably, given the comparable power consumption between
configurations, the reduced execution time directly trans-
lates to lower energy per encryption task—up to 10! less.
This outcome reinforces the suitability of Zkne for energy-
constrained embedded systems, highlighting a favorable per-
formance–energy–area trade-off. Overall, the findings validate
the Zkne extension as an efficient and practical solution for
accelerating AES workloads in RISC-V-based processors.

Future work includes the integration of additional crypto-
graphic accelerators, such as SHA-based extensions, within the
RS5 processor. Security analysis against side-channel attacks,
particularly those exploiting power and timing variations, may
be investigated to strengthen the proposed hardware extensions
for secure embedded applications.

<2% area overhead

RISC-V RS5
Xosvm extension (dedicated extension)

• “osvm”: offset and size virtual memory
• Paged memory organization

• divides the memory into contiguous, statically-sized pages for each process
• Alternative for:

• Sv32 extension requires the Supervisor mode (S-Mode)

• Embedded Systems usually do not have S-Mode
• Physical Memory Protection (PMP) extension

• In Ibex PMP nearly doubles area footprint
• no need to add additional instructions - only R/W operations over CSRs

scalar operand

instruction
& instruction operation

hold_o

VL

MASK
& VL
& RD

operands

hold

O
PF
/E
X

result_vlsu

result_valuEX
/W

B

MASK

rs1 data
& rs2 data

Vector
RegFile

result & write enable & destination register

rs1 & rs2

FSM - LMUL, VL &
Pointers Control

Vector CSRs

Write Enable
Generation

Scalar & Immediate
Replication

operands

scalar result

VALU

address & write enable & write data

read data

VLSU

hold_vlsu

hold_valu3

2

4

1

6

5

7

8

Fig. 2. Vector Unit Organization. Green components are temporal barriers. Signals that control the unit pipeline stall are marked in red. Blue signals are the
communication between the scalar core.

3.2) Register Pointers Control. Register groups are ad-
dressed by their smallest number, requiring adjustments
to the operand read address. The base register address
combines with cycle counters to obtain the correct
address.

3.3) Vector Length Control. Manages the number of
elements a register can hold and monitors how many
have been processed during instruction execution.

4) Vector Register File (VRF). Implements the vector reg-
isters. The VRF has one write port and three read ports:
first and second operands and mask (V0 register).

5) Vector Load-Store Unit (VLSU). Manages the vector
memory access. Each vector access is multi-cyle, and
the latency depends on the register length, address mode,
SEW, and address alignment. To avoid changing the
processor interface and memory architecture, the VLSU
shares the RS5 memory bus, acting as a single-lane unit.

6) Vector Arithmetic and Logic Unit (VALU). Handles
vector arithmetic and logic operations, processing an
entire VLEN register in parallel for any element width
up to ELEN (multi-lane). The number of cycles required
varies based on SEW, with wider operations taking more
cycles. For instance, additions are completed in one
cycle per register, while multiplications can take up to 4
cycles.

7) Write Enable Generation. Generation of the register
file’s write enable signal. It is a byte-enable signal that
considers SEW, VL, and mask.

8) Result Control and Demultiplexing. Demultiplex the re-
sult of the VALU and VLSU and send to write back in
the VRF or to the scalar register file

The VLEN is a design parameter. It can be changed at the
module instantiation and is flexible in powers of 2. When
VLEN is changed, the entire vector unit adapts to handle
VLEN-length data by adding more 32-bit lanes.

The vector unit implements a subset of the RVV extension,
selected specifically for machine learning applications. These
instructions are categorized into classes, as outlined in Table II,
indicating the processing cycles required for each Scalar
Element Width (SEW) and instruction class. Configuration

TABLE II
INSTRUCTIONS OF THE RS5 VECTOR UNIT AND THE CYCLES PER

REGISTER FOR DIFFERENT SEW CONFIGURATIONS.
Instruction

Class
Instruction Names

SEW=8

Cycles/Reg

SEW=16

Cycles/Reg

SEW=32

Cycles/Reg
Optional

Arithmetic VADD, VSUB, VRSUB 1 1 1 N
Logic VAND, VOR, VXOR 1 1 1 Y
Shifts VSLL, VSRL, VSRA 1 1 1 N

Mask
Compares

VMSEQ, VMSNE, VMSLTU,
VMSLT, VMSLEU, VMSLE,
VMSGTU, VMSGT

1 1 1 N

Min/Max VMIN, VMINU, VMAX,
VMAXU 1 1 1 Y

Multiplica-
tion

VMUL, VMULH, VMULHU,
VMULHSU 1 1 3-4 N

Widening
Multiplica-
tion

VWMUL, VWMULU,
VWMULSU 2 2 4-5 N

Multiply and
Accumulate

VMACC, VNMSAC, VMADD,
VNMSUB 2 2 4-5 N

Division VDIV, VDIVU, VREM, VREMU 1-8 1-16 1-32 Y
Sum
Reduction VREDSUM 1 1 1 Y

Min/Max
Reduction

VREDMIN, VREDMINU,
VREDMAX, VREDMAXU 1 1 1 Y

Logic
Reduction

VREDAND, VREDOR,
VREDXOR 1 1 1 Y

Register
Moves VMV, VMVR, VMVSX, VMVXS 1 1 1 N

Unit-Strided
Load/Store VLE, VSE →VLEN/32 →VLEN/32 →VLEN/32 N

Strided
Load/Store VSLE,VSSE VLEN/8 VLEN/16 VLEN/32 N

Index
load/Store

VLUXEI, VLOXEI, VSUXEI,
VSOXEI VLEN/8 VLEN/16 VLEN/32 N

instructions take one cycle to execute and are used to set
vector configurations (vector CSRs) such as VL, SEW, and
LMUL. The final column, optional, identifies classes that can
be disabled via design-time code parameters to minimize the
implemented instruction subset further.

IV. RESULTS

The validation application is a 1-dimensional CNN [15],
converted from a PyTorch model to a C model using integer
representation. It consists of three convolutional layers and two
fully connected layers, with rectified linear activation (ReLU)
applied after each convolution. The work in [16] extended
this CNN by adding temporal awareness while maintaining
low complexity. The model receives a unidimensional vector
corresponding to the raw data extracted from the dataset as
input. This raw data input is 1 ! 120, KERNEL SIZE=5, and
the number of filters equals 64. For a single inference, it is
necessary to execute 5,428,096 MAC operations.

scalar operand

instruction
& instruction operation

hold_o

VL

MASK
& VL
& RD

operands

hold

O
PF
/E
X

result_vlsu

result_valuEX
/W

B

MASK

rs1 data
& rs2 data

Vector
RegFile

result & write enable & destination register

rs1 & rs2

FSM - LMUL, VL &
Pointers Control

Vector CSRs

Write Enable
Generation

Scalar & Immediate
Replication

operands

scalar result

VALU

address & write enable & write data

read data

VLSU

hold_vlsu

hold_valu3

2

4

1

6

5

7

8

RISC-V RS5
Vector extension – subset, targeting ML applications

Nunes, W. A., Santos, A.., Moraes, F. G (2025). Accelerating Machine Learning with
RISC-V Vector Extension and Auto-Vectorization Techniques In: ISCAS, pages 1-5.

RISC-V RS5
Configurable in the top SystemVerilog file

- march in the gcc flags
64

Table 4.1: RS5 Design Parameters.

Parameter Description Options
Environment Environment type ASIC, FPGA

MULEXT Include Hardware Multiplication/Division extension MUL_OFF,
MUL_ZMMUL, MUL_M

AMOEXT Include Atomic operation extension
AMO_OFF,
AMO_ZALRSC,
AMO_ZAAMO, AMO_A

COMPRESSED Include Compressed extension TRUE, FALSE
XOSVMEnable Include XOSVM extension (MMU) TRUE, FALSE
ZIHPMEnable Include ZIHPM extension (Performance Monitors) TRUE, FALSE
ZKNEEnable Include ZKNE extension (AES Hardware acceleration) TRUE, FALSE
BRANCHPRED Include Branch prediction TRUE, FALSE
VEnable Include Vector extension TRUE, FALSE
VLEN Vector length in bits 64, 128, 256, ...

• XOSVMEnable – custom Memory Management Unit (MMU) in the form of a custom ex-
tension called XOSVM.

• ZIHPMnable – optional configuration that includes the performance monitors used for in-
struction profiling.

• ZKNEEnable – optional extension that accelerates the AES encryption algorithm.

• BRANCHPRED – branch predictor is an optional feature that improves performance but
can have area and timing drawbacks.

• VENABLE – optional extension that adds vector processing capabilities.

• VLEN – define the size of the registers in the vector unit when vector extension is enabled.
Otherwise, it is a don’t care.

4.1 Pipeline Stages

The IF stage controls the reception of instructions from the instruction memory (I-
MEM). It selects the Program Counter (pc) according to the core reset, trap occurrence, trap
return, jumps, and sequential operation. This stage works with virtual memory addresses
and can optionally be connected to an I-MMU to translate them to physical memory ad-
dresses. If the compressed extension is present, this stage includes an address aligner and
an instruction decompressor, which transform 16-bit instructions into 32-bit instructions to
be decoded.

The ID stage extracts the operation (op) requested by the fetched instruction and
the destination register (rd). The source registers (rs) have already been decoded at this
stage. It then fetches the operands (ops) from the register bank (GPRs) and performs hazard
detection. This stage can identify if an rs of the current instruction is the same as the rd being

RISCOF compliant

• The RISC-V Architectural Tests
ensure that software written for a
given RISC-V Profile will run on all
implementations that comply with
that profile

• These tests ensure that the
implementation follows correctly
the ISA

RISC-V RS5

https://riscof.readthedocs.io/en/stable/intro.html#intent-of-the-architectural-test-suite

10

4 stage pipeline
• Fetch (+ aligner and decompresser)

• Decode (+ branch prediction)

• Execute (+ div, mul, and atomic)

• Writeback

RS5 - implementation

Fetch

• Controls the reception of instructions from the instruction memory (I-MEM)

• Selects the Program Counter (PC) based on the following events:
• Reset
• Trap occurrence
• Trap return
• Jumps
• Sequential operation (default)

• Can operate with virtual memory addresses when connected to an I-MMU
for translating virtual to physical addresses (XOSVM extension)

• With Compressed Extension: includes an address aligner
• Contains an instruction decompressor that converts 16-bit

instructions into 32-bit instructions for decoding

RS5 - Fetch (IF)

Decode

• Extracts the operation (op) based on the fetched instruction
• Identifies the destination register (rd) and source registers (rs)
• Fetches the operands (ops) from the general-purpose register

file (GPR)
• Forwarding
• Hazard Detection
• Branch Predictor (opcional)

RS5 - Decode (ID)

Execute

UNITS:
• LOAD/STORE
• ALU
• BRANCH
• CSR

• Executes atomic operations on CSR
• Manages privileges and traps

• Multiplication (MUL) and Division (DIV) – optional (Zmmul)
• Atomic (optional): controls read-modify-write operations in

memory
• Vector (optional)

RS5 – Execute (XU) (1/2)

Execute

Memory Write: performed in the XU stage

Multi-Cycle Operation Management: the execute stage
controls the hold signal for multi-cycle operations:

• Multiplication: typically requires 4 to 5 cycles

• Division: may take up to 32 cycles
• Atomic operations: also managed via the hold signal
• Vector operations: 1-32 cycles

RS5 – Execute (XU) (2/2)

Writeback

RS5 – Writeback (WB)

• Performs the write-back of operation results
• Writes data obtained from the data memory (D-MEM) after

a read request issued by the LOAD/STORE unit
• Optional: a D-MMU can virtualize D-MEM addresses

16

PLIC (Platform Level Interrupt Controller)

RTC (Real Time Clock)

Memory mapped peripherals

RS5 – PLIC and RTC

17

• 225.3 CoreMark @100MHz

• +26% LUTs/FFs and >2x
performance w.r.t. Ibex
(LowRISC, 2021)

• Tested on Nexys 7 FPGA

RS5 - performance

RISC-V RS5 (LASCAS 2024)

1. RS5 RISC-V

2. MEMPHIS Manycore

3. SoC-Wimed

Ruaro, M., Caimi, L. L., Fochi, V., and Moraes, F. G. (2019). Memphis: a framework for heterogeneous many-core SoCs generation and validation.
Design Automation for Embedded Systems, 23(3-4):103-122.

Manycores

Manycore
• A SoC with hundreds to thousands of processing

elements (PEs)

Network-on-Chip
• Scalability
• Parallel communications (flows)

ET-SoC-1: 1’000+ RISC-V Cores

20

Memphis
Manycore Modeling Platform for Heterogeneous SoCs

Components

• Software stack (applications, management, support libraries)
• Operating System (MAestro)
• Hardware layer à Phivers (Processor Hive for RS5)
• Generation tools
• Debugging tools

21

Memphis
Manycore Modeling Platform for Heterogeneous SoCs

Homogeneous region: GPPC
• General Purpose Processing Cores

22

Heterogeneous region: Peripherals
• Connected to PE borders
• Provides:

○ I/O Interface
■ Default: Application Injector
■ Default: MA Injector

○ Hardware acceleration

PE – Homogeneous region

Processing Element:

• RS5 CPU
• DMNI (DMA + NI)
• Scratchpad memories
• Hermes router
• BrLite router

23

Memphis
Manycore Modeling Platform for Heterogeneous SoCs

DMNI
24

Direct Memory
Network Interface
• Interface between local memory and

the 2 NoCs
• Specialized for NoC-based manycores

Ruaro, M., Lazzarotto, F. B., Marcon, C. A., and Moraes, F. G. (2016). DMNI: A specialized network interface for NoC-based MPSoCs. In Proceedings of the
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1202-1205.

Local Memory
25

Scratchpad memories
Dual-port

• CPU access
• DMNI access

heap

stack

text

data

bss

Parameterizable n# of pages

• Xosvm extension

Packet-Switching Router
26

Moraes, F., Calazans, N., Mello, A., Möller, L., and Ost, L. (2004). HERMES: an infrastructure for low area overhead packet-switching networks on chip.
Integration, 38(1):69-93.

Hermes router
• XY routing

• Packet switching

• Wormhole credit-based control flow

• End-of-packet (EOP)

Hermes has other versions:

• Asynchronous

• Virtual-channel

• Circuit-switching

Broadcast Router
27

Wachter, E., Caimi, L., Fochi, V., Munhoz, D., Moraes, F. (2017). BrNoC: A broadcast NoC for control messages in many-core systems. Microelectronics
Journal, 68:69-77.

BrLite router
• Based on BrNoC
• Broadcast transmission only
• Single-flit messages
• Fast transmission of control messages
• “Fault-tolerant” NoC

Operating System
28

MAestro Kernel (C Language): ~20 KB
● User tasks

○ Virtual Memory
○ Scheduler (best-effort or real-time)

● System Calls
● Message Passing Interface (MPI API)

Ruaro, M., and Moraes, F. G. (2016). Dynamic real-time scheduler for large-scale MPSoCs.
In Proceedings of the Great Lakes Symposium on VLSI, pages 341-346.

Applications - toolchain
29

Support for recent GCC toolchain (14.2.0) – auto-vectorization
● Newlib support (4.4.0)
● Default: newlib-nano specs

○ Complete libc support
○ Software floating-point
○ 6 POSIX calls
○ 8 custom calls (NoC)

Application
30

Application
● Set of tasks
● Modeled as a CTG

(Communicating Task Graph)

!"#$%

&G

&(

&)

&*

+,-.

!"#

Task
31

Task is a .c file which perform some computation
and communication with other(s) task(s)

Example of a task code

Example of an application task files

!"#$%

&G

&(

&)

&*

+,-.

!"#

Main View
32

Debug possibilities
● Communication flows
● Routing
● Link utilization
● Management Protocols

Mapping View
33

Debug possibilities
● Task mapping algorithm
● PEs occupation
● Task execution status

CPU Utilization View
34

Debug possibilities:
● Scheduling algorithms
● OS and task bugs
● Other software malfunctions

Resources
35

Code, installation and usage instructions:

https://github.com/gaph-pucrs/memphis-v

https://github.com/gaph-pucrs/memphis-v
https://github.com/gaph-pucrs/memphis-v
https://github.com/gaph-pucrs/memphis-v
https://github.com/gaph-pucrs/memphis-v
https://github.com/gaph-pucrs/memphis-v

SoC-WiMed: Wireless SoC
for Medical Monitoring of Vital
Signs with a Focus on
Security and Low Power
Consumption

1. RS5 RISC-V

2. MEMPHIS Manycore

3. SoC-Wimed

RTC

AXI4-Lite
0x80001000

UART_JOIN

RS5

stall

32

32

32 4

32

64

master_to_AXI
logic

m
em

_d
at

a_
i

m
em

_d
at

a_
o

m
em

_w
rit

e_
en

ab
le

m

em
_a

dd
re

ss
_o

m
em

_o
pe

ra
tio

n_
en

ab
le

instruction_i

instruction_address_o

irq_i

interrupt_ack_o

mtime_i

mei

mti

0x00000000

MemLoader

data_i data_v

join_data

tx_uart_rdy

 32

join_valid

en_scanf

sys_reset_i

sys_reset_o

0x80003000

stall
0x20000000

0x20000000

mti

0x70000000

mtime

0x80006000

16adc_data

adc_eoc
SPI

Slave

cs

sclk

miso

mosi

0x800040000x80005000

12

host[0]

RAM

port2

port1

data_o1

addr1

R
A

M
 to A

X
I

0x00000000

32 32

host[1]

host[1]

PLIC

irq_o

iack_o

iack_i

irq_i

0x70000000

QSPI

0x80004000 irq_o ack_i

cs sclk
4

data_i

4
data_o

4
3state_en

4
pu_en

4

GPIO
Controller

n data_i

n data_o

n 3state_en

n pu_en

0x80005000

irq_o (n)

ack_i (n)

AFE
0x80003000

 data_i

ga
in

_p
pg

 g
ai

n_
ec

g

se
le

ct

st
ar

t_
ad

ceoc

irq_o

iack_i

44
spi_afe_en

BLE
irq_o
iack_i

bl
e_

ad
c_

st
ar

t

bl
e_

ad
c_

rd
y

bl
e_

ad
c_

ou
t

9ble_tx_in

spi_BLE_en

ble_tx_en

bl
e_

tx
_s

ta
rt

0x80006000

UART
RX and TX

iack_i
irq_o

data_mem_load_o

valid_mem_load_o

uart_active

cpu_enable_scanf

uart_tx uart_rx

0x80001000

tx_in

tx_en

AI Filtro Processador

AFE

Sinal analógico Sinal digital

Overview of the SoC-WiMed

RS5
RISC-V

37

Transmissor

Receptor

Gerador de
frequências

Camada
física
(PHY)

Camada
de

acesso
ao meio
(MAC)

+
LL

ADC

DAC

SPI

RTC

AXI4-Lite
0x80001000

UART_JOIN

RS5

stall

32

32

32 4

32

64

master_to_AXI
logic

m
em

_d
at

a_
i

m
em

_d
at

a_
o

m
em

_w
rit

e_
en

ab
le

m

em
_a

dd
re

ss
_o

m
em

_o
pe

ra
tio

n_
en

ab
le

instruction_i

instruction_address_o

irq_i

interrupt_ack_o

mtime_i

mei

mti

0x00000000

MemLoader

data_i data_v

join_data

tx_uart_rdy

 32

join_valid

en_scanf
sys_reset_i

sys_reset_o

0x80003000

stall
0x20000000

0x20000000

mti

0x70000000

mtime

0x80006000

16adc_data

adc_eoc
SPI

Slave

cs

sclk

miso

mosi

0x800040000x80005000

12

host[0]

RAM

port2

port1

data_o1

addr1

R
A

M
 to A

X
I

0x00000000

32 32

host[1]

host[1]

PLIC

irq_o

iack_o

iack_i

irq_i

0x70000000

QSPI

0x80004000 irq_o ack_i

cs sclk
4

data_i

4
data_o

4
3state_en

4
pu_en

4

GPIO
Controller

n data_i

n data_o

n 3state_en

n pu_en

0x80005000

irq_o (n)

ack_i (n)

AFE
0x80003000

 data_i

ga
in

_p
pg

 g
ai

n_
ec

g

se
le

ct

st
ar

t_
ad

ceoc

irq_o

iack_i

44
spi_afe_en

BLE
irq_o
iack_i

bl
e_

ad
c_

st
ar

t

bl
e_

ad
c_

rd
y

bl
e_

ad
c_

ou
t

9ble_tx_in

spi_BLE_en
ble_tx_en

bl
e_

tx
_s

ta
rt

0x80006000

UART
RX and TX

iack_i
irq_o

data_mem_load_o

valid_mem_load_o

uart_active

cpu_enable_scanf

uart_tx uart_rx

0x80001000

tx_in

tx_en

38

Hardware:

1. RS5 - RV32IMAC
a. PLIC
b. RTC
c. Memory

2. AXI-Lite bus

3. UART /SPI / GPIO /
QSPI

4. MemLoader

5. Interface with other
subsystems – AFE
and BLE

5

1
a

b

c

4
2

33

3 3

5

https://github.com/gaph-pucrs/RS5

Digital Block (PUCRS)

https://github.com/gaph-pucrs/RS5
https://github.com/gaph-pucrs/RS5
https://github.com/gaph-pucrs/RS5

Software - Zephyr RTOS

• Deployment of the open-source Zephyr OS

• Low memory requirements (< 20 KB)

• Configuration and development of drivers

• Bluetooth support

• Multitasking capability

39

FPGA Prototyping

USB-Serial connection
AES 128-bit encryption (Zkne)

Multitasking debug

40

Arduino

• FPGA Artix7 (@100MHz)
• Arduino – simulates low-

frequency ADC data

ASIC Implementation – TSMC 28 nm
• Post-synthesis simulation with physical memories @256MHz in the 3

corners - signoff ok (setup/hold)
• GDS: 620 μm x 380 μm

41

64 KB dual-port
memory

ASIC Implementation
• Analog on top – integration with the pad ring

42

Q&A

43

Thanks for
the

attention

